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Abstract: In the realm of federated learning (FL), the exchange of model data may inadvertently
expose sensitive information of participants, leading to significant privacy concerns. Existing FL
privacy-preserving techniques, such as differential privacy (DP) and secure multi-party computing
(SMC), though offering viable solutions, face practical challenges including reduced performance and
complex implementations. To overcome these hurdles, we propose a novel and pragmatic approach
to privacy preservation in FL by employing localized federated updates (LF3PFL) aimed at enhancing
the protection of participant data. Furthermore, this research refines the approach by incorporating
cross-entropy optimization, carefully fine-tuning measurement, and improving information loss
during the model training phase to enhance both model efficacy and data confidentiality. Our
approach is theoretically supported and empirically validated through extensive simulations on three
public datasets: CIFAR-10, Shakespeare, and MNIST. We evaluate its effectiveness by comparing
training accuracy and privacy protection against state-of-the-art techniques. Our experiments, which
involve five distinct local models (Simple-CNN, ModerateCNN, Lenet, VGG9, and Resnet18), provide
a comprehensive assessment across a variety of scenarios. The results clearly demonstrate that
LF3PFL not only maintains competitive training accuracies but also significantly improves privacy
preservation, surpassing existing methods in practical applications. This balance between privacy
and performance underscores the potential of localized federated updates as a key component in
future FL privacy strategies, offering a scalable and effective solution to one of the most pressing
challenges in FL.

Keywords: privacy preserving; federated learning; local federalization; differential privacy

1. Introduction

Federated learning (FL) has emerged as a pivotal collaborative machine learning
paradigm, widely recognized for its potential to protect data privacy across various do-
mains, notably in healthcare [1], financial services [2], and smart devices. In particular,
the FedAVG algorithm [3] has garnered significant attention within this domain due to its
superior performance and efficient collaboration across multiple institutions.

FedAVG enhances the efficiency of model training by simplifying the training process
and reducing the need for data exchange. This allows participants to contribute their
computational resources and data insights without directly sharing sensitive information.
This method not only strengthens data privacy but also improves the model’s generalization
capability by integrating data from diverse sources, which is especially crucial for tasks
involving large-scale sensitive data. While the FedAVG algorithm is widely recognized
for its significant advantages in enhancing the efficiency of collaborative training across
multiple institutions, its limitations in dealing with highly heterogeneous data distributions
and none theoretically explains why averaging parameters is a good approach. Some
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studies show that averaging parameters may not be the optimum way of aggregating
trained parameters [4]. In addition, potential privacy leaks during the model parameter
update process have become hot topics in the research community [3]. These challenges
have spurred researchers to explore new federated learning solutions that better balance
efficiency, privacy protection, and diversity in data handling.

In the pursuit of enhancing data privacy while improving model performance, the
academic community has introduced various innovative federated learning strategies. Split
learning has emerged as a novel approach that minimizes the amount of data required to
be shared by partitioning the model training process, effectively enhancing data privacy
protection [5]. In this method, each participant only needs to compute part of the model
and sends the intermediate results to a central server for further processing, significantly re-
ducing the risk of sensitive data leakage [6]. Concurrently, the FedProx algorithm addresses
the challenge of non-independent and identically distributed (non-IID) data, a common
issue in federated learning, by incorporating regularization terms into the traditional feder-
ated learning framework [7]. This improves the stability and accuracy of the model when
dealing with information from diverse data distributions, offering a reliable solution for
complex application scenarios in federated learning [8].

Despite the progress made by split Learning and FedProx in enhancing privacy protec-
tion and handling data heterogeneity, they have their limitations. Split learning might lead
to higher communication overhead due to frequent model interactions [9], while FedProx,
although optimizing the handling of non-IID data, may increase the complexity of model
training, affecting training efficiency [7]. Given these challenges, there is a growing demand
in the federated learning field for new methods that better balance privacy protection, com-
munication cost reduction, and model generalization capabilities [2], driving continuous
research and innovation in federated learning algorithms.

Moreover, even though federated learning protects privacy by exchanging model pa-
rameters instead of raw data, it still faces potential threats of privacy leakage. Attacks such
as DLG and iDLG have demonstrated how sensitive information can be reconstructed from
shared gradients [10,11]. Differential privacy federated learning (DP-FL) offers a privacy
protection solution by introducing noise into shared updates, but this can affect model
accuracy [12]. Privacy protection measures like DP-FL, while mitigating the risk of informa-
tion leakage to some extent, usually come at the cost of increased communication overhead,
prolonged training time, or reduced model performance [13], which is particularly evident
in applications requiring quick responses, such as in smart device environments.

Addressing these challenges, this paper proposes a new privacy-preserving federated
learning approach: local privacy-preserving federated learning (LF3PFL). LF3PFL enhances
privacy protection without compromising model performance by partitioning each par-
ticipant’s data into subsets, training models independently on these subsets, and then
aggregating the models. Unlike FedAVG, which primarily focuses on efficiency, LF3PFL
adds an extra layer of privacy through local model aggregation. Moreover, LF3PFL does
not require the introduction of noise in the updates, as is the case with DP-FL, thereby
preserving model accuracy more effectively.

This research aims to bridge the gap between privacy and efficiency in current FL
frameworks. By introducing LF3PFL, we seek to establish a framework that ensures data
privacy while maintaining high efficiency and accuracy, catering to the growing demands
for privacy protection in increasingly complex application scenarios. Our contributions are
manifold and significant:

• Seamless integration and enhancement: The core strength of LF3PFL lies in its seam-
less integration with existing federated learning (FL) frameworks, aimed at elevating
the level of data privacy protection without compromising the utility of shared data.
This method enhances security and efficiency in data sharing by optimizing privacy
safeguards, ensuring efficient and uninterrupted system operation.

• Flexible performance: LF3PFL distinguishes itself with flexible performance, seam-
lessly adapting to various datasets and model structures. This versatility ensures its
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applicability across a wide range of federated learning contexts, from privacy-sensitive
tasks to standard settings, positioning it as a reliable tool across multiple domains.

• Robust privacy shield: LF3PFL excels in privacy attack defenses, effectively balancing
data protection with training precision. Its effectiveness in mitigating risks from
sophisticated threats, such as DLG attacks, ensures the protection of sensitive data.
This dual strength in privacy and accuracy makes LF3PFL an ideal choice for secure
federated learning across sensitive domains.

• Open-source contribution: We present a prototype of our method, openly accessible
for community engagement and further exploration at https://github.com/ITSEG-
MQ/LF3PFL (accessed on 14 March 2024). This open-source initiative fosters collabo-
rative advancements and broadens the scope of research applications in the field.

2. Related Work

Federated learning is increasingly being applied in privacy-sensitive, multi-party
collaborative environments, notably in healthcare sector applications [1]. In this field,
multiple medical institutions collaborate to collectively train models, aiming to improve
the accuracy of disease diagnosis while ensuring the confidentiality of sensitive patient
health information. To coordinate the various distributed computing nodes, transmission
of model-related information is required [13], this necessitates the preservation of privacy
for exchanged data (e.g., gradients) to prevent the leakage of sensitive information from
raw data through backward inference from publicly shared information [7,10,14,15]. At
present, privacy preservation in federated learning primarily relies on two techniques:
differential privacy and secure multi-party computing.

2.1. Differential Privacy

A common method for privacy preservation is to quantify and limit the leakage of
sensitive data. This method employs a randomized mechanism, such as the introduction
of random sub-sampling or the addition of random noise, to distort the input or output
of user processes, thereby making the results of user processes somewhat resistant to
privacy analysis (i.e., reducing privacy sensitivity). In differential privacy (DP)-based
FL, a decrease in the value of ϵ leads to an increase in added noise, enhancing privacy
protection but concurrently reducing the model’s training accuracy due to the higher noise
level. Conversely, increasing ϵ reduces noise, potentially lowering privacy protection while
improving model accuracy. However, Zhu et al. [10] proposed the deep-leakage-from-
gradients (DLG) method, which was improved by Zhao et al. [15], experimentally showing
that the DLG method fails only when the variance of noise added via the DP algorithm
exceeds 10−3; however, such added noise significantly compromises the training model’s
accuracy. In contrast, our proposed approach preserves privacy without compromising
model accuracy.

2.2. Secure Multi-Party Computing

Utilizing secure multi-party computing (SMC) for the secure aggregation of local
model updates presents a promising approach to safeguard privacy in FL. At present, there
are various approaches such as homomorphic encryption, secret sharing, and information
masking, which are briefly discussed below.

2.2.1. Homomorphic Encryption

Homomorphic encryption (HE) schemes enable the performance of complex math-
ematical operations directly on ciphertexts, eliminating the need for decryption [16–21].
As these operations bypass the plaintext during computation, HE is considered an ideal
method for implementing SMC protocols [9].

In federated learning settings, Hardy, Aono, and others have proposed several privacy-
preserving solutions based on additive homomorphic encryption (AHE) schemes [22–24].
Since HE does not entail obfuscating or distorting operations, it preserves the training
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model’s accuracy to a great extent. However, HE-based schemes face several challenges.
Firstly, even relatively simple AHE algorithms demand significant computational resources
and may require specific hardware conditions. Secondly, substantial parallelization is often
necessary to achieve real-time processing for practical applications, which may not always
be feasible for certain tasks [25]. Thirdly, some HE-based solutions might necessitate a
trusted third party to manage encryption and decryption processes, which contradicts
the standard federated learning principle of eliminating reliance on a central trusted
authority [9]. In contrast, our proposed design is computationally efficient and operates
independently of any trusted third party.

2.2.2. Secret Sharing

Secret sharing is a cryptographic method where a secret is divided into multiple parts
and distributed among different parties. The original secret can only be reconstructed when
these parties combine their respective shares [26]. This method is employed to securely
aggregate gradients updated by users; several privacy-preserving secure aggregation
methods based on secret sharing have been proposed [27–30].

Our scheme shares similarities with the aforementioned approaches. However, in our
approach, there’s no need for additional operations (such as obfuscation or encryption)
before transmitting masked information. This efficiency is achieved as our scheme employs
a peer-to-peer encrypted secure transmission channel. As a result, our method is more
efficient and demands fewer resources.

2.2.3. Information Masking

The pairwise-masking mechanism has been discussed in previous works [31–33].
These schemes can be compared to those based on DP, but they feature a fragile recovery
phase in their protocols [33], and they incur additional overhead due to the use of AHE.
Furthermore, Li et al. [34] proposed a privacy-preserving federated learning framework
employing a single-masking mechanism. Conversely, our LF3PFL approach enhances
efficiency by lowering both communication and computational costs.

2.3. Model Compression

In federated optimization, model compression technologies are employed to address
communication cost challenges and enhance communication efficiency, encompassing
techniques like sparsification [35–41], model pruning [42–45], and quantization [35,46,47].
Among these studies, few directly utilize model compression as a means for privacy
preservation. Only a limited number of them integrate the discussed privacy preserva-
tion techniques with communication efficiency improvements. However, Zhu et al. [10]
demonstrated experimentally that compressing model parameters to a certain ratio can
provide a level of privacy preservation. Nevertheless, a high compression ratio might also
negatively affect model accuracy. In contrast, our scheme ensures privacy preservation
without compromising model accuracy.

3. Method

In this section, we explore the intricate details of our proposed local federalized
privacy-preserving federated learning (LF3PFL) approach. LF3PFL is designed to safeguard
the privacy of participant data in federated learning environments without sacrificing the
accuracy of resulting models. To facilitate comprehension and ensure the clarity of the
ensuing discussion, Table 1 delineates a comprehensive list of symbols utilized throughout
this paper, along with their respective definitions. This preparatory step aims to streamline
the reader’s navigation through the technical aspects of our methodology and enhance their
understanding of the novel contributions LF3PFL brings to the field of privacy-preserving
federated learning.
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Table 1. List of symbols and their meanings.

Symbol Meaning

K Number of clients in the federated learning system
T Number of training rounds
B Local minibatch size for training
E Number of epochs for local training
η Learning rate for the optimization algorithm

w0
G Initial global model parameters

wt
G Global model parameters in round t

wt
k Local model parameters of client k in round t

wt
k,n Local federalized model n of client k in round t

Dk Local dataset of participant k
Dk,n Subset n of the local dataset of participant k

N Number of data subsets into which a local dataset is divided
m Number of participants selected in each round for updating

ℓ(w; b) Loss function evaluated on parameters w and batch b

3.1. Problem Statement

Federated learning (FL) represents a revolutionary shift towards collaborative and
privacy-centric machine learning, where participants jointly contribute to model training
by sharing model parameters, rather than exposing their sensitive raw data. This paradigm
offers a semblance of privacy; however, the very act of parameter sharing introduces
vulnerability to information about underlying training data that can, inadvertently, be
revealed. This is exacerbated by sophisticated model-analysis attacks, such as deep leakage
from gradients (DLG) and its improved variant (iDLG), which exploit shared gradients or
interactive parameters to infer private data.

Traditional countermeasures against these vulnerabilities typically revolve around
differential privacy (DP) and secure multi-party computation (SMC). While these methods
offer theoretical safeguards, they are not devoid of drawbacks. The implementation of DP
and SMC often leads to significant increases in communication overhead and training times,
or necessitates compromises on model accuracy. Such trade-offs between privacy preserva-
tion and model performance present a formidable challenge in the practical application
of FL.

In response to these challenges, this paper introduces a practical, efficient privacy-
protection scheme tailored to federated learning environments. Our proposal centers on
a novel local-federalized update mechanism that aims to fortify the privacy of training
data while minimizing the impact on communication efficiency and model accuracy. By
reimagining the client local training process in FL, our approach seeks to mitigate the risk
of sensitive information leakage through more granular and controlled sharing of model
parameters. This strategy represents a significant departure from conventional methods,
promising to reconcile the often conflicting goals of privacy preservation and functional
performance in federated learning systems.

3.2. Problem Preliminaries

Federated learning (FL) is fundamentally designed to optimize empirical risk across a
diverse dataset that is distributed among numerous devices, a principle that underscores
the decentralized and collaborative nature of this learning paradigm [48]. At the outset of
each training iteration, participants retrieve the global model parameters from a central
aggregation node (or server). Utilizing these global parameters as a starting point, each
user then proceeds to train a local model using their respective datasets. The culmination
of this local training phase is the generation of updated local model parameters, which are
subsequently transmitted back to the aggregation node as the user’s contribution to the
learning process. In turn, the aggregation node synthesizes these contributions to update
the global model parameters, thereby completing one iteration of the learning cycle. This
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iterative process continues until a predefined termination criterion is satisfied, marking the
completion of the training phase.

Among the various algorithms that facilitate federated learning, FedAVG [13] stands
out as a seminal and widely adopted framework, serving as the foundational algorithm
against which this study benchmarks its proposed enhancements. In the FedAVG setup,
we consider a scenario with one central aggregation node and K users, each possessing
a distinct local dataset. This delineation ensures a structured and scalable approach to
distributed learning, where the intricacies of data heterogeneity and device variability are
inherently accounted for.

The operational mechanics of the FedAVG algorithm [13] are quantified through
several key parameters: K represents the total number of participating users, indexed by k;
B signifies the size of the local minibatch employed during training; E denotes the number
of epochs for which each local model is trained; η indicates the learning rate, a critical
hyperparameter that influences the rate of convergence towards optimal model parameters.
The procedural flow and algorithmic details of FedAVG are encapsulated in Algorithm 1,
providing a blueprint for its implementation and execution.

Algorithm 1 Federated averaging algorithm (FedAVG)

1: Inputs:
2: K: Number of clients
3: T: Number of training rounds
4: B: Local minibatch size
5: E: Number of epochs for local training
6: η: Learning rate
7:
8: Aggregation Node Operations:
9: Initialize global model parameters w0

G
10: for each round t = 1, 2, . . . , T do
11: Select a random set St of m users ▷ m < K
12: for each user k ∈ St do ▷ In parallel
13: Update local model parameters: wt

k ← UserUpdate(k, wt−1
G )

14: end for
15: Update global model parameters: wt

G ←
1
m ∑k∈St wt

k
16: end for
17:
18: function USERUPDATE(k, w)
19: Partition local data into batches of size B
20: for each epoch i = 1, 2, . . . , E do
21: for each batch b in local data do
22: Perform parameter update: w← w− η∇ℓ(w; b)
23: end for
24: end for
25: return w
26: end function

In Algorithm 1, the central aggregation node plays a pivotal role, initiating the learn-
ing process by distributing the current global model parameters to selected users and
subsequently aggregating their local updates to refine the global model. Each participating
user, leveraging the mini-batch stochastic gradient descent (SGD) method, aims to optimize
the local model parameters based on their data, contributing to the collective learning goal.

The mathematical objective for each participating user i in round t is formalized as
finding the local optimal parameters wt∗

i that minimize the loss function f (wt
i ), repre-

sented by:

wt∗
i = arg min f (wt

i ). (1)
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The aggregation of these local updates to compute the new global model parameters
is crucial for the convergence and performance of the federated learning process. The
FedAVG algorithm achieves this through an averaging aggregation mechanism, where the
updated global model parameters wt+1

G are computed as follows:

wt
G ←

1
m ∑

k∈St

wt∗
k , (2)

where m denotes the number of participants selected in each round. This aggregation
process underscores the essence of federated learning, enabling collaborative model training
while maintaining the privacy and integrity of each participant’s data.

3.3. Proposed Method

The LF3PFL method represents an innovative approach to federated learning, em-
phasizing privacy preservation without the need for additional disturbances such as noise
addition or encryption. This method unfolds across three primary stages: data segmen-
tation, local-federalized training, and global aggregation, collectively establishing a ro-
bust framework for secure and efficient collaborative learning. Figure 1 illustrates the
comprehensive architecture of the LF3PFL scheme, showcasing its operational flow and
component interactions.

Figure 1. Architecture of the LF3PFL scheme.

3.3.1. Data Segmentation

CIFAR and MNIST datasets: We implemented the dominant class partition method to
segment the data effectively. In this approach, client data are divided into a dominant class
and other classes. We utilized parameter Q to denote the proportion of the dominant class
within each dataset. Setting Q to 0.5 in our experiments implies that 50% of the data belongs
to a single label, while the remaining 50% consists of random samples from other categories.
This segmentation method facilitates the simulation of a balanced scenario, moderating
the influence of any single class. Such a setup provides a robust test environment for our
algorithms, particularly under conditions where data are not uniformly distributed across
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classes. This allowed us to evaluate the performance and resilience of our algorithms more
effectively, ensuring they are capable of handling real-world data variances.

Shakespeare dataset: We adopted a non-IID sampling methodology, ensuring that the
distribution of data for each user aligned consistently with the composition of the original
dataset. Recognizing that data distributions naturally vary among users in the raw dataset,
we categorized this sampling approach as non-IID. This method accurately reflects real-
world scenarios, where data distribution can vary significantly from one user to another. It
is vital for evaluating the adaptability and efficiency of our proposed models when faced
with diverse and uneven data distribution patterns. This approach tests the models’ ability
to adapt and perform reliably across various complex scenarios, thus demonstrating their
potential applicability in practical, variable data environments.

3.3.2. Local-Federalized Training

At the heart of LF3PFL is the local-federalized training phase, which incorporates
federation optimization principles directly into the local training routines of participants.
Assuming a participant’s dataset, Di, is segmented into N subsets (Di,1, . . . , Di,N), and
the participant independently trains each subset, yielding N sets of model parameters
(wt

i,1, . . . , wt
i,N). To align the computation with traditional FL algorithms, we maintained a

consistent number of local training rounds. The critical part of this phase is the computation
of the average parameter set from these subsets, forming the participant’s update for
the round.

wt
i =

1
N

N

∑
n=1

wt
i,n. (3)

3.3.3. Global Aggregation

The global aggregation phase mirrors the classical FedAVG algorithm, where the
aggregation server computes the new global model by averaging the updates received
from participants. This collaborative effort results in an updated global model that is then
distributed back to all users for subsequent training rounds:

wt
G =

1
m ∑

i
wt

i . (4)

Through these meticulously designed stages and algorithmic procedures, LF3PFL
advances the state of federated learning by introducing a novel mechanism for privacy
preservation, operational efficiency, and model accuracy.

3.3.4. Objective Function

In the context of federated learning, the optimization objective for training models
is often formulated using the cross-entropy loss function. Cross-entropy measures the
dissimilarity between the true label distribution and the predictions made by the model,
making it particularly advantageous for classification tasks. Its efficacy lies in quantifying
information loss when using predicted probabilities instead of the true distribution. The
formula for cross-entropy loss for a multi-class classification problem is provided by the
following equation:

H(y, ŷ) = −
M

∑
c=1

yo,c log(ŷo,c), (5)

where M is the number of classes, y is the binary indicator (0 or 1) of class c being the correct
classification for observation o, and ŷ is the predicted probability that observation o is of
class c. This formulation encourages the model to adjust its parameters to minimize the
difference between actual and predicted probability distributions, effectively enhancing the
model’s predictive accuracy and robustness in capturing the underlying data distribution.
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The procedural details and operational logic of LF3PFL are encapsulated in Algorithm 2,
delineating the algorithmic steps for both the aggregation and participating nodes within
the federated learning framework.

Algorithm 2 LF3PFL algorithm

1: Inputs:
2: K: Number of clients
3: N: Number of local federalized models
4: T: Number of training rounds
5: B: Local minibatch size
6: E: Number of epochs for local training
7: η: Learning rate
8:
9: Aggregation Node:

10: Initialize w0
G ▷ Global model parameters

11: for round t = 1, 2, . . . , T do
12: St ← (random set of m users) ▷ m < K
13: for each user k ∈ St do ▷ In parallel
14: wt

k ← LFUpdate(k, wt−1
G ) ▷ Local federalized update

15: end for
16: wt

G ←
1
m ∑k∈St wt

k ▷ Global federalized update
17: end for
18:
19: Participating Node k:
20: Dk,1, . . . , Dk,N ← Segment Dk ▷ Local dataset segmentation
21:
22: function LFUPDATE(k, w)
23: Bn ← (Partition Dk,n into batches of size B)
24: for n = 1, 2, . . . , N do ▷ Parallel training on Dk,n
25: for local epochs i = 1, 2, . . . , E do
26: for batch b ∈ Bn do
27: w← w− η∇ℓ(w; b)
28: end for
29: wt

k,n ← arg min ℓ(w)
30: end for
31: end for
32: wt

k ←
1
N ∑N

n=1 wt
k,n ▷ Aggregate Local Model Parameters

33: return wt
k

34: end function

4. Experiment

In this section, we provide a detailed overview of the experimental setup. Following
this, we assess the proposed local federated privacy-preserving federated learning (LF3PFL)
scheme from three critical dimensions: model accuracy, performance, and security. The
analysis of the experimental outcomes leads to the formulation of our concluding insights.

4.1. Experimental Settings

In this study, we utilize PyTorch version 2.0 as the experimental platform, operating
under Python 3.10. Our simulation experiments are conducted on a computer equipped
with dual Intel Xeon Gold 6234 processors at 3.3 GHz, 64.0 GB of installed RAM, and an
NVIDIA Quadro RTX 5000 GPU with 16.0 GB of RAM.

Our evaluation focuses on two main aspects.
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4.1.1. Comparison Experiments between LF3PFL and State-of-the-Art Privacy-Preserving
Federated Learning Models

We commence by benchmarking the performance of our privacy-enhanced local
federated privacy-preserving federated learning (LF3PFL) approach against the predictive
capabilities of contemporary state-of-the-art (SOTA) methodologies.

Following the federated learning parameters outlined by McMahan et al. [13] and
Abadi et al. [12], our experimental setup is characterized as follows:

• A total of K = 16 participating users;
• A user participation rate of C = 0.5;
• T = 30 communication rounds;
• A learning rate of η = 0.001;
• Differential privacy (DP)-based federated learning settings with ϵ values fixed at 8

and 1 for comparative analysis.

For the comparative evaluation of the accuracy and performance of privacy-preserving
models, we employ three widely recognized public datasets: (i) the CIFAR-10 image classi-
fication dataset, (ii) the Shakespeare textual dataset, and (iii) the MNIST image classifica-
tion dataset.

To measure the accuracy of our proposed framework, we compare it with several
benchmark methods:

• DP-FL: A federated learning algorithm fortified with a differential privacy mechanism
for enhanced privacy [49].

• CS-FL: A federated learning algorithm employing a low-overhead model pruning
technique based on complement sparsification [41].

• Chain-PPFL: A privacy-preserving federated learning framework that enhances data
privacy through a novel chained structure and a single-masking and chained commu-
nication mechanism [34].

To rigorously test the privacy safeguarding capabilities of our method, we engaged
the deep leakage from gradients (DLG) methodology [10] to conduct resistance-to-attack
experiments on the aforementioned models. This includes gradient inversion attacks
employing generative image priors [50] to empirically assess the leak-defense efficacy of
federated learning algorithms.

4.1.2. Comparison Experiments between LF3PFL and State-of-the-Art
Non-Privacy-Enhanced Federated Learning Models

In our study, we conducted comparative performance evaluations of our proposed
FL3PFL against state-of-the-art federated learning methods using the CIFAR-10, MNIST,
and Shakespeare datasets. For CIFAR-10 and MNIST, we involved 16 clients in the experi-
ments. For the Shakespeare dataset, the number of participating clients was increased to 66.
The experimental setup was standardized by limiting the local training rounds for each
client to 10 and the total communication rounds to 30. The performance of the aggregated
global model was assessed on the test sets following the final communication round. The
benchmarks for comparison included the following:

• FedAVG: This foundational federated learning algorithm [13] serves as a primary
reference point for our comparison.

• FedProx: An enhancement over the FedAvg algorithm, FedProx introduces a tunable
proximal term to address the challenges of system heterogeneity [51].

• FedMA (federated matched averaging): Designed to accommodate data distribution
heterogeneity, FedMA improves federated learning by aligning and averaging cor-
responding layers across client models, thereby enhancing model performance and
learning efficiency [52].
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4.2. Performance Experiments between LF3PFL and SOTA Non-Privacy-Enhanced Federated
Learning Models

In the evaluation of non-privacy-enhanced federated learning algorithms, shown in
Table 2, our proposed LF3PFL method not only maintains commendable performance
but also offers significant advantages in terms of privacy protection compared to other
contemporary federated learning algorithms. The baseline algorithm, FedAVG, shows
moderate performance across all datasets, with accuracy rates of 76.71% for CIFAR-10,
89.46% for MNIST, and 56.24% for Shakespeare. FedProx, which introduces a regulariza-
tion term to tackle system heterogeneity, improves the accuracy of CIFAR-10 to 81.54%,
surpassing FedAVG, but experiences slight declines in performance on the MNIST and
Shakespeare datasets. This suggests that while it may effectively handle non-IID data, it
does not consistently enhance model accuracy.

Table 2. Comparative analysis of SOTA FL accuracies in various datasets.

Non-Privacy-Enhanced FL Privacy-Preserving FL
FedAvg FedProx FedMA DP-FL Chain-PPFL CS-FL LF3PFL

Cifar-10 76.71 81.54 82.12 79.81 81.56 80.01 81.63
MNIST 89.46 84.69 99.13 81.88 85.65 82.92 97.21
Shakespeare 56.24 53.49 47.74 52.39 52.74 52.27 55.86

On the other hand, FedMA surpasses both FedAVG and FedProx on CIFAR-10 and
MNIST with accuracy rates of 82.12% and 99.13%, respectively, indicating its suitability
for image-related datasets. However, its significant drop in accuracy to 47.74% on the
Shakespeare dataset raises concerns about its adaptability to non-image data, hinting at
potential overfitting issues or a lack of robustness across diverse data types.

Our LF3PFL algorithm not only demonstrates competitive accuracy rates of 81.63%
on CIFAR-10 and 97.21% on MNIST but also shows more consistent performance across
different datasets, including outperforming FedMA on the Shakespeare dataset with an
accuracy rate of 55.86%. This comparative analysis highlights LF3PFL as a vital alternative
that maintains robustness without compromising privacy, signifying its superiority in sce-
narios where data confidentiality is crucial. The balance LF3PFL achieves between accuracy
and privacy protection is particularly important in today’s era, where data protection and
the insights derived from it are equally valued, making it a significant advancement in the
field of federated learning.

4.3. Performance Experiments with SOTA Privacy-Preserving Federated Learning Methods

In the comparative analysis of privacy-preserving algorithms, shown in Table 2, our
LF3PFL method manifested a significant edge in safeguarding data privacy while main-
taining comparable levels of accuracy with other algorithms. The DP-FL algorithm exhibits
lower accuracy on both CIFAR-10 and MNIST datasets, indicating potential fluctuations
when confronted with different types of data; however, it performs relatively well on the
Shakespeare dataset with an accuracy of 52.39%. The CS-FL algorithm shows consistent
performance across all three datasets but does not exhibit superior performance on any
particular one, suggesting a possible trade-off between enhanced privacy protection and
accuracy. Chain-PPFL performs very well in all existing privacy-preserving FL work,
which means that it can prevent privacy leakage to a certain extent while ensuring that the
performance of federated learning is not greatly affected.

Our LF3PFL algorithm demonstrates SOTA performance across all datasets and no-
tably achieves the highest accuracy of 97.21% on the MNIST dataset, outperforming other
privacy-preserving algorithms. The pivotal advantage of LF3PFL is its exceptional capabil-
ity to protect privacy, effectively reducing the risk of potential data leakage by incorporating
differential privacy or other advanced privacy-preserving measures into the model training



Entropy 2024, 26, 353 12 of 17

process. This is critically important for handling highly sensitive information, providing a
safer data environment for users.

4.4. Ablation Study
4.4.1. The Impact of the Number of Clients on the Performance of LF3PFL

This ablation study investigates the impact of varying the number of local federated
sub-models on classification performance using the ModerateCNN model on the CIFAR-10
dataset. As shown in Figure 2, the findings reveal a trend where the accuracy initially
increases with more local clients but begins to plateau or slightly decline beyond a certain
number. This may be because, as the number of local FL clients increases, the amount of
data allocated to each sub-client is greatly reduced, resulting in local sub-models generally
being in a state of overfitting, resulting in poor performance of the final aggregated local
model. Specifically, the accuracy peaks when the number of local clients is between four and
eight, suggesting an optimal range for local client numbers to balance model performance
and computational efficiency in federated learning scenarios.
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Figure 2. Accuracy of ablation study on different local FL client numbers. The local federated model
used is ModerateCNN, and the test dataset is CIFAR-10.

4.4.2. The Impact of Different Local Models on the Performance of LF3PFL

As shown in Figure 3, in this set of experiments, our ablation studies on CIFAR-10,
with a fixed setup of two local federated sub-models, illustrate the significant impact
of model architecture on classification performance, ranging from Simple-CNN to more
sophisticated ones like ResNet18. It can be found that the LF3PFL method we proposed
can be adapted to a variety of different models and can exert the expected performance
of the model. Meanwhile, the variance in accuracy across models emphasizes the critical
role of choosing the right architecture in federated learning environments. These findings
not only highlight the adaptability and effectiveness of our proposed method in enhancing
classification accuracy across different architectures but also underscore the necessity of
balancing model complexity with performance to achieve optimal outcomes in federated
learning settings.



Entropy 2024, 26, 353 13 of 17

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Different Model

A
cc
u
ra
cy

Abla�on Study on Local FL Model

Simple-CNN

ModerateCNN

Lenet

VGG9

ResNet18

Figure 3. Accuracy of ablation study on different local FL models. The local FL client number is fixed
to 2, and the test dataset is CIFAR-10.

4.5. Privacy Attack Experiment

In the privacy attack experiment employing the deep leakage from gradients (DLG)
method, our proposed LF3PFL method exhibited superior defense capabilities. The experi-
ment compared existing privacy-preserving FL methods such as FedAvg, DP-FL (differ-
ential privacy federated learning), and CS-FL (compressed sensing federated learning),
highlighting the clear advantage of LF3PFL in protecting against privacy breaches. The
DLG attack is a privacy invasion technique targeting deep learning models, particularly
within federated learning settings, demonstrating the risk that an attacker could reconstruct
original training data from gradient information alone, without direct access to the model’s
training data.

In the experiment shown in Figure 4, the perturbed images from FedAvg and DP-
FL retained discernible features of the original images, suggesting that the DLG attack
could reconstruct the data to some extent, which points to limitations in their privacy
protections. While CS-FL showed some defense capability in image reconstruction, the
perturbed images were still relatively recognizable compared to LF3PFL. In contrast, the
perturbed images from LF3PFL showed a high degree of distortion, indicating a robust
resistance to DLG attacks and reflecting LF3PFL’s significant superiority in ensuring the
privacy of training data.

These comparisons demonstrate that LF3PFL far exceeds other methods in terms of pri-
vacy protection, especially against privacy attack techniques such as DLG. The exceptional
performance of LF3PFL, in terms of design and practical application, validates its effective-
ness in safeguarding user privacy. Hence, LF3PFL’s performance in privacy-preserving
federated learning algorithms can be considered the best among current methods, marking
an important advancement for federated learning applications that handle sensitive data.
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Figure 4. Privacy attack experiment result. In this comparative experiment, each row represents a
different FL (federated learning) method, with the original image from the training data on the left
and the image reconstructed using the DLG (deep leakage from gradients) attack on the right. The
methods being compared include FedAvg, DP-FL (differential privacy federated learning), CS-FL
(compressed sensing federated learning), and our proposed LF3PFL method.

5. Conclusions

In conclusion, LF3PFL represents a significant advancement in the field of feder-
ated learning (FL), addressing the critical challenge of balancing data privacy with model
utility. Our research highlights the innovative approach of LF3PFL in seamlessly integrat-
ing privacy-preserving mechanisms into existing FL frameworks without compromising
the efficiency and accuracy of the learning process. The method’s robustness against so-
phisticated privacy attacks, such as deep leakage from gradients (DLG), underlines its
potential to safeguard sensitive information in a variety of FL applications. Furthermore,
the open-source availability of LF3PFL’s prototype implementation fosters a collaborative
environment for further exploration and development within the research community. By
offering this tool, we aim to catalyze advancements in both privacy protection techniques
and federated learning methodologies.

Key insights from our research underscore LF3PFL’s adaptive excellence in diverse set-
tings, proving its efficacy across different datasets and model architectures. This adaptabil-
ity, coupled with the method’s seamless integration and enhancement of privacy without
sacrificing performance, sets a new benchmark for future FL solutions. LF3PFL’s contribu-
tion to the field not only addresses current privacy and efficiency concerns but also opens
new avenues for the practical application of FL in sensitive and critical domains, ultimately
contributing to the broader goal of secure and efficient distributed machine learning.
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