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Energy and the environment are the foundations of modern human society. The
demand for energy has rapidly increased with the acceleration of industrialization over
the past decades. However, the consumption of fossil fuels as the dominant energy source
has brought about serious environmental problems. Carbon dioxide emissions have to
climate change as a result of the greenhouse effect. Under the constraints of the carbon
peak and carbon neutralization, the development and application of renewable energy
have been the focus in the energy field. Even though the transition towards renewable
sources is ultimately inevitable, the consumption of renewable energy is still insufficient.
The development and utilization of sustainable clean energy and environmental pollution
control are still major challenges in the Multi-Energy Complementary Age.

Catalysis includes thermal catalysis, photocatalysis, electrocatalysis, and photoelectro-
chemical catalysis. It plays an important role in the development of advanced renewable
energy technologies, such as green hydrogen, metal–air batteries, and fuel cells, among
others. For instance, electrocatalytic water splitting is a green technology capable of produc-
ing clean hydrogen with zero carbon emissions. However, the efficiency of this technique
has been constrained by its high overpotential and sluggish multi-electron kinetics. Cata-
lysts, which accelerate the reaction rate while reducing activation energy, are a promising
prospect in this field. Their performance can be evaluated in terms of their activity, se-
lectivity, and stability—which is closely associated with their intrinsic activity—as well
as in terms of the number of active catalyst sites. Unsatisfactory catalytic activity and
selectivity limit the efficiency of industrial production, increase separation costs, and lead
to environmental pollution. As catalysis is a new chemical process, low catalytic efficiency
and high production costs directly hinder its large-scale application.

The intrinsic activity of catalysts can be substantially improved by modifying their
electronic structures. An expanded specific surface area can be achieved through mor-
phology and architecture design and engineering. Catalytic performance can be enhanced
through many strategies, including element doping, crystal facets, heterostructures, co-
catalysts, oxygen and metal vacancies, and lattice distortion. For example, doped elements
could tailor the d-band center of the active metal to optimize binding strength during
the catalytic process. The fundamentals that guide the catalytic process are still being
explored. Some electrocatalytic mechanisms can be inspired by bionics. Inspired by the
active center (CaMn4O5) of the PSII system in the chloroplast, the synergy regulation of
bimetallic electrocatalysts in the formation and breaking of O-O bonds was reported for
water oxidation. Although catalytic activity has been substantially enhanced, challenges
remain, including catalyst migration in the electrocatalytic process and their operation in
industrial conditions.

This Special Issue reports on the latest research results, past experiences, and prospects
in the fields of energy and the environment. It contains twenty-three original research
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papers related to this topic. Here, we aim to briefly introduce and classify these works.
The majority focus on the synthesis and mechanisms of photo-/electrocatalysts [1–9].
Photo-/electrocatalysis technology has great potential for energy conversion and storage.
Improving the catalytic activity and stability of photo-/electrocatalysts under industrial
conditions is a key problem that restricts their large-scale application. This Special Issue ex-
plores the promotion of photo-/electrocatalytic activity by means of morphology control [4],
element doping [3], heterojunction construction [6–8], oxygen vacancy regulation [1], and
optical properties [9], among others. Various approaches to the design and engineering of
efficient photo-/electrocatalytic materials are presented. One review discusses research
on solid-state hydrogen storage technology [10]. Meanwhile, photo-/electrocatalytic mate-
rials can be employed in other applications and devices. ZnO and Fe2O3 are traditional
photocatalysts that are applied in memory cells for resistive switching behaviors [11,12].
Metal–organic frameworks (MOFs), as one of most promising catalyst materials, serves
as a fluorescent probe in a visual sensor [13]. In addition, carbon-based composites are
employed for lithium-ion batteries [14–16]. This Special Issue also includes investigations
related to pollutant removal with sorption capability [17–23]. The preparation and adsorp-
tion performance of activated carbon are emphatically discussed [19,20]. Though some
works do not directly discuss catalytic applications, they are still related to the scope of this
Special Issue. We hope that this Special Issue will advance the field of “catalysis for energy
and the environment” with its collection of insightful and meaningful articles.
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