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Abstract: Clinicians often have to face infections caused by microorganisms that are difficult to
eradicate due to their resistance and/or tolerance to antimicrobials. Among these pathogens, Pseu-
domonas aeruginosa causes chronic infections due to its ability to form biofilms on medical devices,
skin wounds, ulcers and the lungs of patients with Cystic Fibrosis. In this scenario, the plant world
represents an important reservoir of natural compounds with antimicrobial and/or antibiofilm prop-
erties. In this study, an extract from the leaves of Combretum micranthum G. Don, named Cm4-p,
which was previously investigated for its antimicrobial activities, was assayed for its capacity to
inhibit biofilm formation and/or to eradicate formed biofilms. The model strain P. aeruginosa PAO1
and its isogenic biofilm hyperproducer derivative B13 were treated with Cm4-p. Preliminary IR,
UV-vis, NMR, and mass spectrometry analyses showed that the extract was mainly composed of
catechins bearing different sugar moieties. The phytocomplex (3 g/L) inhibited the biofilm formation
of both the PAO1 and B13 strains in a significant manner. In light of the obtained results, Cm4-p
deserves deeper investigations of its potential in the antimicrobial field.

Keywords: Pseudomonas aeruginosa; biofilm; antimicrobial treatment; Combretum micranthum G. Don;
phytocomplex

1. Introduction

Pseudomonas aeruginosa is an opportunistic pathogen capable of causing infections
in immunocompromised and hospitalized patients [1]. The worsening of their health
may be attributed to the bacterial production of a wide spectrum of virulence factors
and to the low efficacy of antibiotics and disinfectants [2]. Furthermore, P. aeruginosa
cells adhering to medical devices such as prosthesis and catheters or human tissues form
biofilms, thus favoring the onset of chronic infections [3,4]. Biofilms are multicellular
highly organized communities encased in an extracellular matrix of glycosidic nature,
incorporating extracellular proteins and eDNA [5]. The matrix, in combination with
persister cells, contributes to the failure of traditional antimicrobials [5,6]. Bacteria inside
the biofilm have a decreased growth rate, and related multi-omic analyses compared to
those of the planktonic cells confirm a metabolic adaptation [6].

Since in the clinical field, bacterial biofilms are an important concern to face, new
anti-biofilm strategies need to be developed. Researchers proceed in investigating new
materials and coatings that prevent bacterial adhesion and in quenching quorum sensing
(QS) mechanisms that drive biofilm formation. In addition, new compounds that are
able to break, detach and possibly eradicate mature biofilms are tested [7]. At present,
biofilm disruption and/or corrosion can be obtained by employing metal chelators, such as
EGTA (Ethylene Glycol Tetraacetic Acid) and EDTA (Ethylene DiamineTetraacetic Acid) [8];
Sodium Dodecyl Sulfate (SDS) as a surfactant [9]; D-aminoacids [10]; or new photoactivated
antimicrobials [11].
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Indeed, a new promising source of medical compounds is offered by vegetables which
are often used as antimicrobials in traditional medicine. For example, in West Africa, to
fight against many health diseases caused by microbial pathogens, local populations use
medicinal plants [12,13]. They contain different structural classes of molecules, such as al-
kaloids, acetylenes, coumarins, flavonoids and isoflavonoids, iridoids, lignans, macrolides,
phenols, polypeptides, quinones, steroidal saponins, terpenoids and xanthones [14].

The Combretaceae plant family is one of the most widely used and appreciated resources
for ethnomedical purposes: it comprises about 20 genera and 600 species [15]. It includes
forest trees, sometimes exceeding the height of 50 m, dwarf shrubs with subterranean
rhizomes and short aerial shoots. In ethnomedicine, many parts of Combretum are used,
including the leaves, roots, barks or even fruits [16,17]. Since preparations from different
species of Combretum are frequently employed to treat microbial infections, many studies
explored the in vitro antibacterial and antifungal effects of Combreataceae extracts [18,19].
Some extracts showed antimicrobial activities when prepared as water decoctions and
infusions, while only alcoholic and acetone extracts were found active for some other
microorganisms [20]. Combretastatins are bibenzylic molecules that account for the most
important antibacterial activity found in Combretum spp., while other interesting substances
are phenanthrenes, acidic tetra- and penta- cyclic triterpenes, triterpenoids, flavonoids,
ellagitannins and saponins [21].

In the present study, we investigated the anti-biofilm potential of an ethanolic extract
from the leaves of Combretum micranthum G. Don. The extract, called Cm4-p, was obtained
through a modification of the extraction protocol developed in a previous work in which
its activity was also tested on various bacterial strains [22]. The model microorganism
P. aeruginosa PAO1 was chosen as a biofilm former both in static and dynamic conditions.

2. Results and Discussion

The use of natural products as antimicrobials is an important field that deserves atten-
tion. Ethanolic extract from Combretum micranthum G. Don leaves (Cm4-p) showed promis-
ing antimicrobial activity against both Gram-negative and Gram-positive pathogens [22].
This extract could be obtained quite easily and in good yields (about 1.5 g/100 g leaves),
and its antibacterial activity was independently reproducible from the leaf batch and/or
collection period [22]. Therefore, it can be considered a good candidate for practical appli-
cations thanks to the widespread abundance of the plant. In this work, we investigate the
potential use of Cm4-p as an anti-biofilm compound.

2.1. Chemical Analysis of Cm4-p Extract

Preliminary approaches to determine Cm4-p’s chemical composition are described
herein. According to a UV-Visible analysis, Cm4-p showed one absorbance peak at 276 nm
with a shoulder at 318 nm, a characteristic signal of π-π* transitions of aromatic compounds
(Figure 1A). Infrared spectroscopy showed the presence of an intense signal in the range of
3400–3300 cm−1, which is indicative of the presence of hydroxyl groups (Figure 1B). As a
consequence, a polyphenolic structure of the flavonoid family might be hypothesized for
this compound.

In accordance, in the 1H-NMR spectrum (Figure 2A) of Cm4-p, a few aromatic hy-
drogens and a low number of aliphatic ones could be identified, whereas an abundant
presence of hydrogens on carbons bearing heteroatom (3.0–4.5 ppm) was observed. 13C-
NMR (Figure 2B) showed the absence of carbonyls and the presence of a few sp2 hybridized
carbons (then few aromatic rings) along with the presence of a small number of aliphatic sp3

carbon atoms. As expected from the data obtained with 1H-NMR, several sp3 hybridized
carbons were found in the range of 50–80 ppm (i.e., carbon atoms close to heteroatoms), par-
ticularly near oxygen (over 60 ppm) and nitrogen (50–60 ppm) atoms. These spectra clearly
indicate the presence of a glycoside structure composed of more than one monosaccharide
unit and a glycone part.
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The heteronuclear single quantum correlation (HSQC) experiment (Figure 3) indicates
the presence of two diastereotopic hydrogens upon a single sp3 carbon (37 ppm), thus
indicating the presence of an adjacent stereogenic center.

The trimethylsilyl (TMS) derivative of Cm4-p was synthesized for GC/MS analyses.
The structures of the TMS derivatives were identified by comparison with the mass spectra
of the National Institute of Standards and Technology (NIST) Library, suggesting the
presence of some glycosides and an unidentified compound. The following molecules were
recognized: D-fructose at 18.36 min, D-glucose at 19.98, one not identified glycoside at
21.83 min (low matching with the structure reported in the NIST Library), a D-turanose at
36.55 min, a catechin at 40.77 min and a 2,6-dihydroxybenzoic acid at 42.65 (Figure 4).

In addition, a compound at 43.39 min, with a molecular peak of m/z 648, was not
identified. All of the analyses support the hypothesis that in Cm4-p, a phytocomplex made
up of a catechin linked to a composite glyosidic structure is present.
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2.2. Effect of Cm4-p on P. aeruginosa Biofilms

Previous investigations highlighted the antimicrobial activity of Cm4-p extract against
Gram-positive species, such as Staphylococcus aureus, Staphylococcus xylosus and Clostridium
difficile. Interesting results were also obtained with Gram-negative Escherichia coli and
P. aeruginosa [22]. In this study, P. aeruginosa was chosen as a model microorganism for
two main reasons: it is an opportunistic pathogen that can be isolated from soil, vegeta-
bles, plants and water and can cause infections in immunocompromised and defeated
patients [23]. Figure 5 shows the representative results of a spot test of P. aeruginosa PAO1
serial dilutions challenged with increasing concentrations of Cm4-p. The killing effect was
dose-dependent: at the highest extract concentrations (5 and 2.5 g/L), growth inhibition
was clearly more efficient than that observed at the lowest ones (0.5 and 1 g/L, respectively).
Furthermore, the activity was cell-concentration-dependent, as the compound was not
active at the highest cell amount (107 CFU/spot).
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of three independent experiments.

Among bacterial species, P. aeruginosa is one of the most tolerant to antimicrobial treat-
ments thanks to its intrinsic resistance mechanisms to antibiotics, the wide arsenal of virulence
factors and its ability to form biofilms on inert and living surfaces. Indeed, biofilm formation
represents the main survival strategy of bacteria to persist in natural environments [24]. In
this scenario, we assayed the potential of Cm4-p as an anti-biofilm compound.
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To this aim, microbiological tests were performed on P. aeruginosa PAO1 and its isogenic
derivative B13, which was previously identified as a biofilm hyperproducer [25]. This
transposon mutant, isolated in our laboratory, is characterized by the interruption of the retS
gene by a gentamycin resistance cassette. RetS codifies the regulator of exopolysaccharide
and the type III secretion system, which is known to influence biofilm formation [26,27].

As shown in Figure 6A, the 24 h old untreated biofilm of P. aeruginosa B13 was charac-
terized by an adherent biomass (OD590 = 24.46 ± 5.23) 3.5-fold higher than that of wild-type
P. aeruginosa PAO1 (OD590 = 6.90 ± 1.43). On the other hand, the planktonic biomass of
the B13 strain (OD600 = 0.29 ± 0.07) was lower than that of PAO1 (OD600 = 1.01 ± 0.09)
(Figure 6B). The data show that, under the tested conditions, B13 (BFI = 93.93 ± 25.20) was
a better biofilm former than PAO1 (BFI = 4.99 ± 2.81).
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Figure 6. (A) Effects of Cm4-p (3 g/L) and catechin (3 g/L) on Pseudomonas aeruginosa PAO1 and
B13 biofilm formation upon 24 h treatment in static conditions. Adherent biomass after crystal violet
staining (OD590) and representative images of biofilms after crystal violet staining. (B) Planktonic
biomass (OD600) upon different treatments. Data are means of three independent experiments ± SD.
** p < 0.01; * p < 0.05.

2.2.1. Effect of Cm4-p on P. aeruginosa Biofilm Formation

To evaluate the potential of Cm4-p on biofilm formation, the phytocomplex was ad-
ministered to PAO1 and B13 suspensions. Bacteria were treated with 3 g/L of Cm4-p,
a concentration ~2.5-fold higher than the MIC value (1.25 g/L) previously obtained by
authors following the official CLSI protocol on samples at 105 CFU/mL [22]. According
to the experimental results of the spot tests shown in Figure 5, the concentration of at
least 2.5 mg/mL was enough to inhibit the growth of a spot at ~105 CFU correspond-
ing to samples at ~107 CFU/mL. The natural extract inhibited, in a significant manner,
the adherent biomass formation of both strains. In PAO1, in the presence of Cm4-p, the
amount of adherent biofilms was ~75% lower than that of the controls (p = 0.04), and in
B13, the amount of adherent biofilms was ~94% lower (p = 0.025), respectively. On the
other hand, in both strains, the planktonic biomasses were significantly higher than those
in the untreated samples. Indeed, the extract greatly compromised the ability to form
biofilms, especially in the hyperproducer strain B13. Upon Cm4-p treatment, the BFI of
B13 decreased by ~90-fold, while that of PAO1 decreased by ~4-fold with respect to the
untreated counterparts. This could be the result of a direct bactericidal effect of Cm4-p
and/or a Quorum Sensing quenching. The time-killing assays showed the bactericidal
activity of Cm4-p on P. aeruginosa PAO1: a three Log-unit reduction in viable cells was
obtained after 6 h (Figure 7). Thus, the impaired biofilm formation could mainly rely on
the observed killing effect of the microbial inoculum. Furthermore, in P. aeruginosa, envi-
ronmental and physiological signals tune the complex transcriptional machinery towards
adhesion functions and biofilm formation [28]. Under the chosen conditions, the plant
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extract could subtract cells from this “social” commitment, preventing biofilm formation.
As a result, the observed lifestyle change could be due to the ability of Cm4-p to shift
microbial populations towards a suspended form rather than an adherent one. Notably,
the activity of Cm4-p in inhibiting the biofilm formation of P. aeruginosa could be relevant
for clinical issues such as the colonization of catheters and prosthesis. As Quorum Sensing
(QS) systems are the most relevant actors involved in biofilm formation [29,30], they are un-
doubtedly antimicrobial promising targets. As mentioned before, Cm4-p extract has a high
content of catechin compounds that have been recently proposed as putative QS inhibitors
(QSIs). In particular, molecular docking simulations showed the interaction of catechin
with LasR, the hierarchically prominent QS regulator in P. aeruginosa [31]. The anti-QS and
anti-biofilm activities of epigallocatechin-3-gallate (EGCG) were reported by Suqi Hao [32],
and Abdel Bar observed the synergistic effect of catechins combined with gallic acid in
P. aeruginosa [33]. On the basis of these studies, we compared the effect of catechins alone
with that of catechins combined with sugar moieties in Cm4-p on biofilm formation.
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Figure 7. Time-killing assay of Cm4-p (3 g/L) on Pseudomonas aeruginosa PAO1. Control cultures are
reported with solid lines, whereas treated cultures are represented with dashed lines. Data are means
of three independent experiments ± SD.

The administration of 3 g/L of catechin had a pro-biofilm effect, especially in the
PAO1 strain, where the adherent phase was 6-fold higher than that of the untreated control,
while in the B13 strain, a 1.5-fold increase was observed (Figure 6A). As the effect of pure
catechin on the planktonic population was not relevant, we evaluated the anti-biofilm
activity of a combination of catechins with glyosidic moieties contained in Cm4-p. This was
in agreement with Abdel Bart, who observed good activity upon combining catechin with
gallic acid rather than catechin alone [33]. Curiously, both gallic acid and sugar moieties
contain different hydroxylic substituents.

2.2.2. Effect of Cm4-p on P. aeruginosa Biofilm Eradication

Biofilms are often responsible for chronic infections of the urinary tract, surgical
wounds, venous leg ulcers, diabetic foot ulcers and pressure ulcers. They represent an
unlimited reservoir of pathogens [34], and conventional antibiotic and antimicrobial treat-
ments often fail in disrupting well-established biofilms adherent to tissues and clinical
devices. As a consequence, it is mandatory to find new strategies that are able to eradicate
these microbial communities. Thus, Cm4-p was administered to 24 h old PAO1 and B13
biofilms, and the effect was evaluated 24 h after treatment (Figure 8).

The phytocomplex showed a modest (33%) but statistically significant (p = 2.1 × 10−4)
eradicating effect on the hyperproducer B13 strain compared to the untreated control. This
detaching effect was combined with a significant increase in the planktonic counterpart
(p = 3.1 × 10−8), while catechin alone showed significant pro-biofilm activity. On PAO1,
Cm4-p shifted the equilibrium versus the planktonic phase without showing any erad-
icating activity. Thus, the phytocomplex was partially active in eradicating the biofilm
hyperproducer B13.
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Figure 8. Effects of Cm4-p (3 g/L) and catechin (3 g/L) on Pseudomonas aeruginosa PAO1 and B13
biofilm eradication upon 24 h treatment in static conditions. (A) Adherent biomass after crystal violet
staining (OD590) and (B) planktonic biomass (OD600) upon different treatments. Data are means of
three independent experiments ± SD. ** p < 0.01.

In biofilms, a large number of cells are in a dormant condition and, as a consequence, an-
tibiotics, which are usually effective against dividing bacteria, are not active. In addition, drugs
are often adsorbed by the biofilm matrix and prevented from reaching microorganisms [35].
The combination of catechins with the glyosidic components of the phytocomplex could favor
the crossing of the sugar matrix formed by Psl, Pel and alginate polysaccharides. As catechins
are active in upregulating the expression of glycosyl hydrolases, they could trigger biofilm
disassembly by disrupting the exopolysaccharide matrix [36]. Overall, an interesting outcome
is that Cm4-p, regardless of the underlying mechanism/s, favors the passing of bacteria from
the adherent phase to the suspended one in both strains. In the view of next-generation
antimicrobials, the combination of Cm4-p with antibiotics could be a promising chance, as
antibiotics could display their activities on bacteria released from the matrix.

The administration of Cm4-p (3 g/L) in flow conditions for 24 h on a 72 h old PAO1
biofilm did not cause any eradication. Thus, the extract concentration was raised to the
solubility limit of 12.5 g/L, and as can be observed in Figure 9D–F, this new condition
resulted in clear anti-biofilm activity. Notably, the almost complete absence of a red signal
(Figure 9E,F) suggests that the treatment with Cm4-p caused a complete eradication of
biofilms. In this experimental set-up, we could not evaluate the viability of detached cells.
If viable cells were still present, Cmp-4 could be all the same a valuable tool to combine
with traditional antibiotics.
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Figure 9. Eradication of formed biofilms under flow conditions (1 mL/min). CLSM images of 96 h 
old biofilms of P. aeruginosa PAO1 grown for 72 h under flow and subjected or not subjected to 
Cm4-p (12.5 g/L) treatment for 24 h. Green stained cells with intact membrane have to be considered 
alive (A,D), whereas red cells with compromised membranes have to be considered dead bacteria 
(B,E). Three-dimensional reconstructions of merged channels (live and dead cells) are on right side 
(C,F). 

  

Figure 9. Eradication of formed biofilms under flow conditions (1 mL/min). CLSM images of 96 h
old biofilms of P. aeruginosa PAO1 grown for 72 h under flow and subjected or not subjected to Cm4-p
(12.5 g/L) treatment for 24 h. Green stained cells with intact membrane have to be considered alive
(A,D), whereas red cells with compromised membranes have to be considered dead bacteria (B,E).
Three-dimensional reconstructions of merged channels (live and dead cells) are on right side (C,F).
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3. Materials and Methods
3.1. Generals

Analytical pure solvents, cyclohexane (CHE), ethanol (EtOH), methanol (MeOH), ace-
tonitrile (MeCN) and bis-(trimethylsilyl)trifluoroacetamide + tertbutyldimethylchlorosilane
(MSTFA + 1% TMCS > 95%) were purchased from Sigma-Aldrich (Burlington, MA, USA)
and used as received.

3.2. Cm4-p Extraction

Cm4-p extract was obtained by modifying the previously reported procedure [22].
Dried leaves of C. micranthum (100 g) were manually minced, poured in a 2.5 L brown glass
bottle and treated for 24 h at room temperature (RT) under gentle mechanical stirring with
600 mL of CHE. The vegetal material was then separated from the solvent by filtration on a
large Buckner funnel, and the leaves were treated, as above, with 95% EtOH. The ethanolic
fraction was collected by filtration and evaporated to dryness, providing a solid compound.
From this raw material, the purification procedures previously described were carried out,
affording Cm4-p. With this extract, water solutions at known weight concentrations were
prepared and then used for antimicrobial activity assays and analytical investigations.

3.3. Cm4-p Analyses

The Cm4-p extract was analyzed by UV-Vis spectroscopy with a Perkin-Elmer Lambda
10 instrument (PerkinElmer, Waltham, MA, USA), preparing a 1 × 10−4 g/L solution in
MeOH (wavelength region from 270 to 500 nm, with a step of 1 nm). The FT-IR analysis
was carried out with the Nicolet AVATAR FT-IR 360 (Spectralab Scientific Inc., Markham,
ON, Canada) by dispersing the sample in KBr disks. Finally, the extract dissolved in D2O
was analyzed for NMR analysis (recovered on a Bruker 400 MHz spectrometer, Bruker,
Billerica, MA, USA) for 1H, 13C and the heterocorrelation.

3.4. Gas Chromatography/Mass Spectrometry

Gas chromatographic (GC) separations were performed on a CP-SIL 5 capillary column
(30 m length × 0.25 mm i.d. and 1 µm film thickness; Varian, Leini, Italy) using FOCUS gas
chromatography equipped with a DSQ II mass spectrometer (Thermo Scientific, Rodano,
Italy) with an electron impact (EI) source operating at 70 eV.

An aliquot of 5 mg of Cm4-p was dissolved in 10 mL of MeOH; from this mother
solution, a water dilution of 1:50 (total volume 10 mL) gave a sample concentration of
1.0 × 10−2 g/L (10 ppm). Two sequential 1:10 dilutions were further made to prepare
Cm4-p sample at concentrations of 1 ppm and 0.1 ppm, respectively. An aliquot of 100 µL
of each diluted solution was dried under gentle N2 stream, and silylation of hydroxyl
groups was carried out by treating samples with mixtures composed of 40 µL MeCN and
60 µL of MSTFA + TMCS 1%. Derivatization processes were performed in sealed vials at
37 ◦C for 4 h. After this period, 1 µL of silylated Cm4-p was analyzed by means of GC/MS
according to the conditions reported below.

GC/MS analyses were performed under these conditions: the oven temperature was
kept at 150 ◦C for 1 min and then raised to 190 ◦C at 15 ◦C/min, held for 6 min and
then raised to 280 ◦C and maintained at this value for 20 min. Injector was set at 250 ◦C,
transfer line was set at 250 ◦C and carrier gas (He) was set at 1.0 mL/min constant flow.
Mass instrument ion source was set at 300 ◦C, the acquisition started 5 min after injection,
scanned masses ranged from 50 to 700 m/z with a scan speed of 1 scan/s. The components
were identified through recognition with the NIST library.

3.5. Bacterial Strains

The Cm4-p extract was tested against P. aeruginosa PAO1 [37] and its isogenic derivative
B13, a biofilm hyperproducer transposon mutant that was previously isolated [25].
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3.6. Time-Killing Assay

Time-killing studies were performed according to the CLSI guidelines (formerly Na-
tional Committee for Clinical Laboratory Standards, Approved Standards M7-A4, Wayne,
1997), which were modified as necessary for the extract under study. P. aeruginosa cells were
grown overnight in LB medium at 37 ◦C with agitation, and then the culture was diluted to
a final concentration of 105 CFU/mL and incubated with Cm4-p (3 g/L) at 37 ◦C under
shaking at 150 rpm for 36 h. Samples were collected at periods of 0, 30, 80 and 160 min and
6 h and 36 h after treatment. At each time point, bacterial concentration was determined
by viable count technique and expressed as CFU/mL; to this aim, a volume (0.01 mL) of
undiluted or serially diluted samples was plated on LB agar and incubated for 24 h at
37 ◦C.

3.7. Spot Test

An overnight culture of P. aeruginosa grown in LB medium at 37 ◦C with agitation was
centrifuged at 4000× g for 10 min, washed twice with one volume of 1× phosphate buffer
(KH2PO4/K2HPO4, 10 mM, pH 7.4) and suspended in one volume of the same solution.
Volumes of 200 µL (of 1× phosphate buffer) deriving from the original cell suspension
or from ten-fold serial dilutions were added to a 96 multi-well plate and incubated alone
or in the presence of decreasing concentrations of the extract. After 6 h of incubation at
room temperature, bacteria were inoculated on LB agar. After incubation at 37 ◦C for 24 h,
growth spots were analyzed. Experiments were performed in triplicate.

3.8. Evaluation of Anti-Biofilm Activity of Cm4-p on P. aeruginosa Strains

Wild-type P. aeruginosa PAO1 and B13 mutant strains were grown overnight in M9
medium with the addition of 10 mM of glucose and were 100-fold diluted in fresh medium
to inoculate a 12 well plate. To evaluate the inhibition of biofilm formation, Cm4-p or pure
catechin (Sigma Aldrich) was added to cells at a final concentration of 3 g/L. After 24 h of
incubation at 37 ◦C, planktonic biomass was removed, and OD (optical density) at 600 nm
was measured. Biofilms were stained with Crystal Violet (CV) 0.1% for 15 min, washed
twice with phosphate buffer and dried for 2 h. The amount of CV attached to biofilms was
measured by treating samples with acetic acid 30% for 10 min and measuring the amount
of solubilized dye spectrophotometrically at 590 nm. The BFI (Biofilm Forming Index)
was determined by applying the formula BFI = (AB − CW)/G, in which AB is the OD
of the stained attached microorganisms, CW is the optical density of the stained control
wells containing only medium and G is the optical density of the cells grown in suspended
cultures [38].

To evaluate the efficacy in biofilm eradication, Cm4-p or catechin was added, at a
concentration of 3 g/L, to 24 h old biofilms which were allowed to grow for a further 24 h
at 37 ◦C. CV staining was performed as described above.

3.9. Evaluation of Anti-Biofilm Activity of Cm4-p on Biofilms Grown under Flow

The prototype of the flow chamber box built for this study is presented in Figure 10.
The flow chamber box is a modular system (Figure 10A,B) composed of three parts. On

the bottom, a metallic plate constitutes the surface on which a biofilm support of various
materials (glass, plastic) is placed. In the middle of the chamber, there is a block with
six wells (four designed for growth under flow and two for static incubation) and plastic
input/output tube connectors. A top cover is placed for sterility purposes and to prevent
evaporation. The input (inlet) connector is positioned near the top of each round well, while
the output connector (drain) is placed near the bottom. Pin injectors with a diameter of
1 mm are placed on the cover surface and sealed with external rubber disks. This chamber
was sterilized by a treatment with a 50% ethanol aqueous solution for 10 min, followed by
drying under a vacuum (rotary vacuum pump) for 24 h. A peristaltic pump (Figure 10C)
was connected to the flow chamber box to create a tunable flux of 1 mL/min.
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Figure 10. A biofilm chamber box (mounted assembly). The 3D project (A) and built model (B): (1) sup-
port plate, (2) biofilm support material, (3) chamber basement, (4) chamber cover (without injectors).
The four chambers in the central line are designed for dynamic biofilm growth while the two in
the middle, above and below the central chamber line are designed for static biofilm incubation. A
peristaltic pump (C) was connected with four rotors that rotate at the same speed in order to flow the
medium at 1 mL/min.

To evaluate the eradication effect of Cm4-p on the formed biofilms, P. aeruginosa PAO1
was grown overnight in LB (Lysogeny Broth) medium and diluted to 105 CFU/mL in
M9 medium supplemented with 10 mM glucose. A glass disk was placed in each of the
four-chamber bases for biofilm adhesion. Each of the four growth chambers was filled
with 4 mL of the bacterial culture. The chambers were pre-incubated in the absence of
flow for 1 h, and the flow was applied for the following 72 h at 37 ◦C. After the addition
of Cm4-p (3 g/L or 12.5 g/L) or distilled water, incubation was further performed for
24 h at 37 ◦C under flow. Biofilm chambers were then recovered after the removal of the
planktonic phases, unlinking each inlet tube from its respective chamber. BacLight® kit
(Invitrogen, Carlsbad, CA, USA) reagents (20 µL) were added to each chamber, and after
15 min, each stained disk was laid onto a cover glass for further Confocal Laser Scanning
Microscopy (CLSM) analyses. CLSM acquisitions were performed with a Leica TCS SP5
(Leica Microsystems, Wetzlar, Germany). Biofilms’ 3D models were obtained using V3D
2.801 under Linux environment [39].

3.10. Statistical Analyses

Statistical analyses of the experimental data (at least 3 independent tests) were per-
formed using one-way ANOVA followed by Duncan’s post hoc test. The ANOVA test was
performed by considering data with a p-value less than 0.05 as significant. Data normality
was tested using the Shapiro–Wilk test [40].

4. Conclusions

The extract from dried leaves of C. micranthum G. Don, named Cm4-p, is a phyto-
complex characterized by the presence of catechin and sugar moieties. This extract seems
to be a very promising compound as it inhibited the biofilm formation of P. aeruginosa
PAO1 at a concentration of 3 g/L. At a higher concentration (12.5 g/L), it was able to
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eradicate 72 h old PAO1 biofilms under flow conditions. Interestingly, its activity was also
observed against the hyperproducer biofilm B13 strain, a PAO1 derivative known to enrich
the exopolysaccharide part of the biofilm.

As pure catechin alone showed pro-biofilm activity, the glycosidic components seem
to be essential to confer anti-pseudomonal activity to the phytocomplex. Further investiga-
tions will be focused on determining the glycosidic skeleton of the phytocomplex.
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