
����������
�������

Citation: Ashraf, M.F.; Hou, D.;

Hussain, Q.; Imran, M.; Pei, J.;

Ali, M.; Shehzad, A.; Anwar, M.;

Noman, A.; Waseem, M.; et al.

Entailing the Next-Generation

Sequencing and Metabolome for

Sustainable Agriculture by

Improving Plant Tolerance. Int. J.

Mol. Sci. 2022, 23, 651. https://

doi.org/10.3390/ijms23020651

Academic Editor: Setsuko Komatsu

Received: 26 November 2021

Accepted: 29 December 2021

Published: 7 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Review

Entailing the Next-Generation Sequencing and Metabolome for
Sustainable Agriculture by Improving Plant Tolerance

Muhammad Furqan Ashraf 1,† , Dan Hou 1,†,‡, Quaid Hussain 1,‡ , Muhammad Imran 2 , Jialong Pei 1,
Mohsin Ali 3 , Aamar Shehzad 4, Muhammad Anwar 5 , Ali Noman 6 , Muhammad Waseem 2

and Xinchun Lin 1,*

1 State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Lin’An,
Hangzhou 311300, China; furqan2210uaf@zafu.edu.cn (M.F.A.); 20184007@zafu.edu.cn (D.H.);
quaid_hussain@yahoo.com (Q.H.); 2019202011010@stu.zafu.edu.cn (J.P.)

2 Colleges of Agriculture and Horticulture, South China Agricultural University, Guangzhou 510642, China;
muhammadimran@scau.edu.cn (M.I.); m.waseem.botanist@gmail.com (M.W.)

3 State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences,
Beijing 100101, China; moh.uaf2356@outlook.com

4 Maize Research Station, AARI, Faisalabad 38000, Pakistan; aamarshehzad1763@gmail.com
5 Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of

Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China;
anwar_uaar@yahoo.com

6 Department of Botany, Government College University, Faisalabad 38000, Pakistan; alinoman@gcuf.edu.pk
* Correspondence: lxc@zafu.edu.cn or linxcx@163.com
† Authors have shared the first authorship.
‡ These authors contributed equally to this work.

Abstract: Crop production is a serious challenge to provide food for the 10 billion individuals
forecasted to live across the globe in 2050. The scientists’ emphasize establishing an equilibrium
among diversity and quality of crops by enhancing yield to fulfill the increasing demand for food
supply sustainably. The exploitation of genetic resources using genomics and metabolomics strategies
can help generate resilient plants against stressors in the future. The innovation of the next-generation
sequencing (NGS) strategies laid the foundation to unveil various plants’ genetic potential and help
us to understand the domestication process to unmask the genetic potential among wild-type plants
to utilize for crop improvement. Nowadays, NGS is generating massive genomic resources using
wild-type and domesticated plants grown under normal and harsh environments to explore the
stress regulatory factors and determine the key metabolites. Improved food nutritional value is
also the key to eradicating malnutrition problems around the globe, which could be attained by
employing the knowledge gained through NGS and metabolomics to achieve suitability in crop
yield. Advanced technologies can further enhance our understanding in defining the strategy
to obtain a specific phenotype of a crop. Integration among bioinformatic tools and molecular
techniques, such as marker-assisted, QTLs mapping, creation of reference genome, de novo genome
assembly, pan- and/or super-pan-genomes, etc., will boost breeding programs. The current article
provides sequential progress in NGS technologies, a broad application of NGS, enhancement of
genetic manipulation resources, and understanding the crop response to stress by producing plant
metabolites. The NGS and metabolomics utilization in generating stress-tolerant plants/crops without
deteriorating a natural ecosystem is considered a sustainable way to improve agriculture production.
This highlighted knowledge also provides useful research that explores the suitable resources for
agriculture sustainability.

Keywords: sustainable crop production; genome; next-generation sequencing (NGS); genetic
resources; metabolomics; metabolites; stress tolerance; bamboo
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1. Introduction

The current global population is forecasted to cross ~9.8 billion in 2050 [1–3]. Several
parts of the world are at risk of food insecurity [3]. After a consistent decline in crop
production, the frequency of malnutrition in different world areas overturned the passage
beginning in 2015 and has continued to climb. Malnutrition is predicted to increase up
to 9.8% in 2030, presently soaring at ~9% worldwide, leading to a hunger crisis among
~850 million persons. Furthermore, agriculture production endures consuming a vast
resource footmark, captivating ~38% of the surface area of the Earth and utilizing ap-
proximately 70% and 1.2% of fresh water and global energy resources, respectively, of the
world [1,4]. Besides agriculture consumption, other challenges include the degradation
of agricultural land, urbanization, increasing water shortage, and dependence on carbon-
economy-based synthetic inputs [1,5]. Agriculture production should be increased more as
compared to the current progress in an ecofriendly, sustainable, and safe way [6,7]. After
that, the food supply can be maintained to deliver enough food worldwide and avoid food
insecurity events. Different types of plants have been domesticated to use as a food source
and confront the huger events across the globe. Still, environmental alterations and biotic
stresses have been the off-putting reason for reaching the targeted, sustainable crop yield.
For example, biotic (pests, microbes, etc.) and abiotic (temperature variations, incidents
of drought, salinity, etc.) stressors adversely affect agriculture production [4,8–10]. There-
fore, feeding such a huge population will be a serious test along with creating livelihood
opportunities, limited resources, and various global challenges as aforementioned to gain
sustainable agriculture production (Figure 1).
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Therefore, humanity is under the threat of increasing world hunger, and the United
Nations commission has set a goal, which is the Zero-Hunger Target by 2030. It is obligatory
to achieve this goal by employing sustainable resources via safeguarding crop production
in extreme environments while decreasing the resources indispensable to nourish a bur-
geoning global population. To entail a comprehensive system-centered technology that
integrates innovative farming approaches, long-term sustainable agronomic practices, and
value-added climate-resilient crops, genomic-based technologies offer, for this task, solid
foundational tools and genetic tools insights for shaping the future agriculture [4]. The
whole-genome sequence (WGS) of Arabidopsis thaliana was developed 21 years ago, and
later on, rice was the first crop in 2002 with available WGS and so on [11–15] (Figure 2).
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Access to the sequenced genome of various plants has exploited the potential
genomic targets for improving the agronomic traits in crops. Genetic manipulations
for desirable variations permit crop production, improving flexibility against harsh
environments and pathogen stressors, and resulting in the generation of novel types of a
plant [16–18]. Moreover, genomic is vital for advances in the crop sciences to fulfill the
agriculture demands. Strategies related to genome sequencing have been improved to
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offer knowledge for crop enhancements during the last century [16]. Now, WGS data
of the complex/polyploidy crops can be generated using NGS strategies such as long-
read single-molecule sequencing strategy. For example, the wheat genome (hexaploid)
was generated through NGS [19–22]. It is the fruit of the advancement in technologies,
setting the stage to obtain elaborative information (info) by performing the genome-
based interpretation of epigenomic data, consisting of the 3-D validation of the nucleus
genome, the huge metabolome, transcriptome, and proteome [23–25]. Robot-based
technologies also help in gaining agriculture sustainability. For example, geosatellite
imaging can forecast heatwave, drought, etc., events, and high-throughput phenology
technologies and the involvement of drone technology have been used for planning a
better strategy to improve crop production. Recent developments in the computational
approaches to obtain detailed results about an individual or a big dataset by involving
artificial intelligence are further strengthening our understanding of sustainable crop
production [26–28].

For now, CRISPR/Cas9 technology is a valuable editing system to generate
modifications in genes and manipulate new genomes with precision to explore un-
known mechanisms and is also aimed at the de novo domestication of an important
crop to produce a high yield and short breeding cycle, etc. [29,30]. Progress in the
genomic techniques provides new dimensions and inspires prospects for crop im-
provement by implying the genomic resources in the upcoming years. Thus, the
assimilation among various streams of congruent and/or inconsistent data is key to
cultivating an innovative approach into crop science toward the practical application
in agriculture. Furthermore, these technologies have a broad spectrum applica-
tion in plant biology and other fields of life sciences, such as the biomedical field,
and will possibly affect the future of agriculture. Therefore, formulating the recent
advances related to the metabolome and sequencing approaches for sustainability
in production is crucial. It is also required to obtain a better understanding of a
crop and to define a strategy to solve the global issues associated with current and
past agriculture.

2. Progress in Sequencing

DNA sequences store a bulk quantity of genetic information of life. The strategies
that decode this genetic information can make a paradigm revolution in the multiscientific
disciplines. Frederick Sanger in 1977 elaborated on the DNA sequencing technology (DNA-
seq). DNA-seq was also called Sanger’s sequencing, which was established on the basis
of a chain termination system [31]. More improvements were introduced by Maxam and
Gilbert [32] using chemical amendments of DNA and following cleavage at a particular
nucleotide base(s).

2.1. First-Generation Sequencing

Sanger’s sequencing displayed high productiveness and less radioactivity. Later,
Sanger’s sequencing was termed first-generation sequencing (FGS). FGS was utilized at
the commercial level in many fields [33]. Sanger’s method has been used to generate small
and large sets of FGS data of organisms, such as bacteria and human, respectively [34–36].
Previously, sequencing was challenging and required radioactive reaction reagents. Other
constraints were limited output data using a single reaction, laborious work required
to sequence diploid/haploid DNA by performing subcloning. Subcloning produces a
specific template of DNA for sequencing. Despite many efforts to improve FGS, the
sequencing strategy had touched its ceiling due to time consumption and cost [37,38]. For
example, in the past, 10 million US dollars was invested to create an additional genome of
human [39]. The above-described limitations eventuated the exploration of new approaches
for sequencing.
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In the past, the sequencing field had relied on the induction of the first automatic
machine in 1987 by Applied Biosystems. This sequencing machine named AB370
contains capillary electrophoresis (CE). CE enhanced the speed of sequencing and
accuracy of the AB370. The reported detection of nucleotides at one time and a day
were 96 bases and 500 kilo bases, respectively, by AB370. Overall, AB370 can generate
a read-length up to 600 bases. An upgraded model (AB373xl) can produce 900 base
read-lengths by detecting 2.88 megabases per day since 1995. At that time, powerful
sequencing machines were developed to save time and the cost of consumption [38].
FGS had been utilized to determine the expressed-sequence tags (ESTs), and genomic
region related to the single-nucleotide-polymorphism (SNP) exploitation, and simple-
sequence repeat (SSR) markers. Molecular markers related to the agronomic traits
had been demonstrated among different plant species [40–42]. Further, the integra-
tion of automatic-sequencing machine, Sanger’s sequencing method, and linked data
analyzing software had laid the foundation for improvements in sequencing strate-
gies [37,38]. Since then, sequencing technology has revolutionized consistently from
the cottage business to the big production enterprise, which demands a sophisticated
and dedicated research setup comprising robots with upgrading artificial intelligence
and a strong integration with bioinformatics, database setup, up-to-date chemicals,
and instruments [43,44].

2.2. Next-Generation Sequencing

In 2007, DNA sequencing covered a marvelous milestone to achieve a great step for-
ward for understanding the genomic composition of an organism after the invention of new
sequencing strategies. These strategies are designated as next-generation sequencing (NGS)
using the high-throughput sequencing methods [43]. In this way, researchers can obtain
billions of sequenced DNA nucleotides simultaneously under millions of self-directed
chemical reactions by decoding a specific target with high quality and more detailed cov-
erage of short/long sequenced reads of plant species with time-saving and low expense
costs [43]. NGS has also been designated as deep sequencing, high-throughput sequencing,
or massively parallel sequencing [45,46].

Thus, NGS might require one or two devices or machine deployments to obtain
the sequence data during an experiment. It is flexible due to the lack of demand for
the precloned DNA region and highly competitive for conducting the genomic data
interpretation in contrast to the microarray strategy that depends on tailored arrays
of a subject [47]. NGS forums can create genome sequences using the libraries that
were constructed by fragmented as well as adapter-attached RNA/DNA/amplicon.
It is also better than the conventional vector-constructed approach of cloning and
resulting in avoiding or minimizing impurities that appeared due to cloned-DNA se-
quences under genome sequencing projects [48,49]. Particularly, sequencing strategies
follow an ordinary workflow irrespective of a sequencing research forum: such as,
(i) library construction using the nucleic acid, (ii) running sequencing machine and
aggregate sequenced data, and (iii) finally making data interpretation by bioinformat-
ics or software. Library construction during NGS is a vital step to define sequencing
technologies on the basis of the chemical composition of (i) synthesis reaction sys-
tem, (ii) single-molecule long read, and (iii) ligation chemistry [22,50]. Herein, we
briefly described the short-read sequencing and long-read sequencing, which are also
known as the second-generation sequencing (SGS) and third-generation sequencing
(TGS), respectively.

2.2.1. Second-Generation Sequencing

SGS-short-read forums depend on the construction type of the nucleic acid libraries
generated by integrating the DNA strings with the help of adaptors and/or linkers
under a ligation reaction. Hence, these DNA regions are not inserted or cloned into a
vector or host cells before obtaining decoding sequence data [51,52]. Especially in plant



Int. J. Mol. Sci. 2022, 23, 651 6 of 33

species, the commonly utilized SGS-short-read-associated NGS technologies/models are;
(i) Roche 454 (pyrosequencing), (ii) Illumina (Solexa) such as HiSeq and MiSeq methods
of sequencing, (iii) oligonucleotide-ligation and detection (SOLiD) sequencing, (iv) BGI
Retrovolocity strategy for DNA-nanoball sequencing, and Ion-torrent sequencing. All
these formal NGS forums have advantages and disadvantages [53–56]. So far, several
plant species have been sequenced using SGS research forums. For example, the genetic
information relating to the several model plants such as Arabidopsis thaliana, rice (Oryza
sativa), maize (Zea mays), and papaya (Carica papaya) was generated using NGS [40,50].
The genome data can also be accessed by online websites, e.g., https://plabipd.de/
index.ep, http://planttfdb.gao-lab.org/, https://phytozome-next.jgi.doe.gov/, http:
//www.bamboogdb.org/#/, https://www.ncbi.nlm.nih.gov/, etc., which are the edible,
medicinal, ornamental, and so on.

The trademark of NGS is more turnout, with countless reactions as compared to the
Sanger’s sequencing (FGS), as well as the clonal sequencing. Sample multiplexing in
SGS forums can remarkably decrease the cost per sample. NGS also has the potential
to overcome the problem of sequencing the haploid fragments, which was a serious
problem during Sanger’s sequencing. Until the SGS-short-read has a wide range of
applications and dominates the present sequencing market. Many bioinformatic tools
are programmed according to the SGS-short-read data analysis and considered more
accurate as compared to the TGS-long-read sequencing. Major constraints of the SGS-
short-read are; (i) long running times, (ii) generation of de novo assembly is difficult,
(iii) structural variations, (iv) the determination of a true isoform of a transcript which is
also difficult, (v) haplotype phasing, and (vi) being unable to sequence long fragments
of DNA.

2.2.2. Third-Generation Sequencing

TGS-long-read forums have the potential to generate 5 kb (kilobases) to 30 kb read
lengths. Previously the longest read-length using the TGS forum is 2 Gb (gigabase
pairs) [21]. Thus, the TGS-long-read technology can sequence the single molecule to
produce a considerable overlapping read-length for sequence assembly by avoiding
the amplification bias [57]. Scientists encountered a persistent problem in dealing with
polyploidy genomes of crop plants due to the extensive DNA sequence repetition, a
huge genome size to create an assembly of a long chromosome through short-DNA
regions. The resulting sequenced DNA data are unable to be mapped according to
their genomic or/and chromosome positions [58–60]. The above-described reasons
created more curiosity among researchers and paved the way for the invention of TGS
technologies of NGS. After that, it was common practice to obtain the sequence of a
single molecule via TGS-long-read technology that can create the long-DNA sequences
or reads and/or scaffolds to encompass the whole chromosome or even genome of
an organism. TGS-long-read forum linked methods are (i) DNA dilution constructed,
(ii) optical mapping, and (iii) chromosomal-conformation arrest technologies. TGS-long-
read research forums are (i) the single-molecule real-time (SMART) sequenced data
generated by Pacific-Bioscience, (ii) nanopore sequenced data via Oxford-Nanopore plat-
form (such as MinION and PromethION), (iii) Helico-sequenced data by a genetic analy-
sis system (GAS), and (iv) electron microscopy to generate TGS-long-read data [61–64].
Currently, TGS-long-read technologies are rapidly taking the place of the SGS-short-read
technologies due to the more efficiency of the sequenced data and very low cost of
consumption in contrast to the past DNA sequencing technologies. The detailed descrip-
tion of each method, model, and cost of consumption per sample have been reviewed
elsewhere [21,65–68].

2.2.3. Challenges and Limitations of SGS and TGS Forums

The plant itself may cause hurdles for producing a continuous good quality as-
sembly of the genome due to the intrinsic factor(s) (IF). IF can be high heterozygosity,

https://plabipd.de/index.ep
https://plabipd.de/index.ep
http://planttfdb.gao-lab.org/
https://phytozome-next.jgi.doe.gov/
http://www.bamboogdb.org/#/
http://www.bamboogdb.org/#/
https://www.ncbi.nlm.nih.gov/
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whole-genome duplication (WGD), and polyploidy episodes in organisms under chang-
ing climate [69]. The projects relating to the SGS and TGS were executed, numerous
polymorphic molecular markers consisting of SNPs were determined, while swiftly
creating de-novo genome maps, genotyping-by-sequencing, and transcriptomes, which
help to assess the genetic diversity and investigate the traits in plants that can be do-
mesticated [15,49,62,70]. Several isoforms of the transcripts may result from alternative
splicing that leads to compositional and functional modifications in protein [71,72].
For example, SGS-short-reads forums possess inherent read-length restrictions that can
cause positional genetic information loss and may also undervalue the diversity of an
isoform of the transcript [68,73]. Transcripts-isoforms, which possess a different start-
ing transcriptional site and respective RNA processing forms, may require extensive
bioinformatic work to precisely process SGS-short-reads into the complete whole-length
transcripts [74]. The SGS-short-read technology may be unable to generate the whole-
transcriptome annotation due to the WGD event that produces highly similar isoforms of
transcripts [74]. While the quantification and identification of transcripts can be possible
using SGS-short-read (RNA sequencing) by transcriptome mapping, the novel isoforms
cannot be discovered because of the spanning fragments of a transcript [75]. Another
challenge of the SGS-short-read RNA sequencing during workflow is the RNA conver-
sion to cDNA that can possibly introduce several library constructions linked biases, i.e.,
(i) reverse transcription and (ii) amplification and sequence target bias (GC contents) [76].
All the above limitations can be managed using the TGS-long-read technology that can
create high-quality whole-length transcripts using a single-RNA molecule by lower
coverage-depth. The whole-transcriptome annotation may require full-length sequences,
which can be generated by TGS-long-read technology [74,77]. Extrinsic factors (EF)
that can affect TGS-long-read are (i) poor quality sample preparations, (ii) sequencing
technology (read-length, sequencing coverage, and depth), and (iii) assembly avenues.
It also has the potential to resolve the problem of isoform determinations from the long
reads or the whole transcripts.

3. NGS and Its Promising Aspects

Sequencing technologies have always been the foundation of genomics, and during
the last 20 years, whole genome or draft of several plant species has been characterized
after sequencing or refining by resequencing through various NGS forums/technologies
(Figure 3).

Significance of the NGS

Progress in the NGS technologies has delivered a wide range of research forums with
enriched genomic information of the plant species by decoding more complex genomes, e.g.,
maize, barley, pea, cotton (allotetraploid), wheat (hexaploid), and sugarcane (octoploid),
etc., producing long-reads rather than short-reads with limited decoding facts [78]. This
progress has also saved time and the cost of expenses and upgraded genome assemblies,
leading to normally managing WGS (whole-genome-wide sequencing) tasks using NGS
technologies [79].

Currently, it is feasible to generate the high-quality reference genome sequences (RGS)
of a plant [65,79]. Another unique advantage of sequencing is to explore the biological
niche, local abundance of a species, orphan, or minor crops, which are crucial for national
or international ecosystems and participate in the food system. Moreover, the relative of
the major crops such as past and current genetic diversity, including wild types, have a
special status and genetic information (Table 1). Now, plant scientists can access this genetic
information with more detail to find the possibilities or solutions of the current ongoing
problems among domesticated plants [66,67]. This acquired knowledge could be more
useful in developing climate-resilient crops in the future.
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Figure 3. Sequencing forums/technologies, metabolome data generating methods, and plant
growth under stressors. In the figure, second-generation sequencing short-read forum—SGS-SR;
third-generation sequencing long-read forum—TGS-LR; single-molecule real-time sequencing—
SMART; thin-layer chromatography—TLC; gas/liquid chromatography mass spectrometry—
GC/LC-MS; LC-electrochemistry-MS—LC-EC-MS; nuclear magnetic resonance—NMR; direct
infusion mass spectrometry—DIMS; Fourier-transform infrared—FT-IR; capillary electrophoresis-
LC-MS—CE-MS.

Additionally, NGS has the potential to generate massive data to dissect the novel
genes or fragments. Expression profiles among various parts or organs of a plant are
determined using NGS to facilitate more specific improvement in plants. For exam-
ple, the identified genomic maps or regions can be used in developing the potential
marker under marker-assisted breeding. A determined expression pattern also helps
in uncovering the molecular regulatory processes in a plant under certain stress or nor-
mal environments [80]. Thus, NGS provides a research forum along with improving
analyzing tools/software or methods [81–83] to understand the evolutionary aspects
and functions of plants that are taking place under normal or stressed environments
by conducting a detailed characterization of a desirable gene or fragment to reveal the
complex regulatory mechanism.
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Table 1. Information of the sequenced species provides a source of genetic manipulation and
understanding of the domestication process.

Family Name Organism GS NPTs Online Accessible Links

Amaranthaceae

Beta vulgaris (sugar beet), spp.
vulgaris var. cicla) 604 Mbp 34,521 https://bvseq.boku.ac.at/

Suaeda aralocaspica
(shrubby sea-blite) 467 Mbp 29,604 https://www.ncbi.nlm.nih.gov/

bioproject/?term=PRJNA428881

Arecaceae

Elaeis guineensis (African
oil palm) 1800 Mbp 25,405

https://www.ncbi.nlm.nih.gov/
genome/?term=txid51953

{[}orgn{]}

Phoenis dactylifera (date palm),
an elite variety (Khalas) 605.4 Mbp ~41,660 https://pubmed.ncbi.nlm.nih.

gov/23917264/

Brassicaceae

Arabidopsis thaliana
(Arabidopsis) 125 Mbp ~27,025

https://www.arabidopsis.org/
and https://www.nature.com/

articles/ng.807

Arabidopsis lyrata (Arabidopsis) 207 Mbp ~32,670
https://www.arabidopsis.org/
and https://www.nature.com/

articles/ng.807

Capsella rubella (pink
shepherd’s-purse) 134.8 Mbp ~28,447 https://www.nature.com/

articles/ng.2669

Eruca sativa (salad rocket) ∼851 Mbp 45,438
https:

//www.frontiersin.org/articles/
10.3389/fpls.2020.525102/full

Eutrema salsugineum
(saltwater cress) 241 Mbp 26,531

https:
//www.frontiersin.org/articles/

10.3389/fpls.2013.00046/full

Cannabaceae Cannabis sativa (hemp) 808 Mbp 38,828 https://www.nature.com/
articles/s41438-020-0295-3

Cactaceae Carnegiea gigantea (saguaro) 1.40 GB 28,292 https://www.pnas.org/content/
114/45/12003

Cucurbitaceae

Cucumis melo (musk melon),
doubled-haploid line DHL92 375 Mbp 27,427 https://www.pnas.org/content/

109/29/11872#abstract-1

Cucumis sativus (cucumber),
‘Chinese long’ inbred line 9930 226.2 Mbp 26,682

https://academic.oup.com/
gigascience/article/8/6/giz072/5

520540

Dioscoreaceae Dioscorea rotundata (Yam) 594 Mbp 26,198
https://bmcbiol.biomedcentral.

com/articles/10.1186/s12915-017
-0419-x

Euphorbiaceae Manihot esculenta (cassava),
domesticated KU50 495 Mbp 37,592 https://www.nature.com/

articles/ncomms6110#Sec8

Fabaceae

Cajanus cajan (pigeon pea) 833.07 Mbp 48,680 https://www.nature.com/
articles/nbt.2022

Cicer arietinum (chickpea) ∼738 Mbp 28,269 https://www.nature.com/
articles/nbt.2491

Glycine max (soybean),
cultivar Williams 82 969.6 Mbp 46,430 https://www.nature.com/

articles/nature08670#Sec9

Medicago turncatula (medick
or burclover) ~330 Mbp 50,894 http://europepmc.org/article/

MED/24767513

Vigna unguiculata (cowpea) 640.6 Mbp 29,773 https://onlinelibrary.wiley.com/
doi/full/10.1111/tpj.14349
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Table 1. Cont.

Family Name Organism GS NPTs Online Accessible Links

Ginkgoaceae Ginkgo biloba (ginkgo) 10.61 Gb 41,840
https://gigascience.

biomedcentral.com/articles/10.1
186/s13742-016-0154-1

Musaceae Musa acuminata (Banana)
spp. Malaccensis 523 Mbp 36,542 https://www.nature.com/

articles/nature11241

Pinaceae Picea abies (Norway spruce) 20 GB 28,354 https://www.nature.com/
articles/nature12211

Poaceae

Hordeum vulgare (barley) 5.1 GB 26,159 https://www.nature.com/
articles/nature11543

Oryza sativa (rice) 373.2 Mbp 3475 https://www.ncbi.nlm.nih.gov/
pmc/articles/PMC5395016/

Phyllostachys heterocycla
var. pubescens 2.05 Gb 31,987 https://www.nature.com/

articles/ng.2569

Phyllostachys edulis 1.91 GB 51,074
https://academic.oup.com/

gigascience/article/7/10/giy115
/5092772

Raddia distichophylla (Schrad. ex
Nees) Chase 589 Mbp 30,763

https:
//academic.oup.com/g3journal/

article/11/2/jkaa049/6066164

Sorghum bicolor (sorghum), Rio
genetic material 729.4 Mbp 35,467

https://bmcgenomics.
biomedcentral.com/articles/10.1

186/s12864-019-5734-x#Sec6

Triticum urartu (einkorn wheat),
accession G1812 (PI428198) ~4.94 GB 34,879 https://www.nature.com/

articles/nature11997

Zea mays (maize), B73 inbred
maize line 2.3 GB >32,000 https://pubmed.ncbi.nlm.nih.

gov/19965430/

Salicaceae Populus tricchocarpa (poplar) 380 Mbp 37,238 https://www.pnas.org/content/
115/46/E10970#sec-1

Solanaceae

Capsicum annuum (pepper) 3.06 GB 34,903 https://www.nature.com/
articles/ng.2877#Sec10

Nicotiana benthamiana (tobacco) 3.1 GB 42,855 https://www.biorxiv.org/
content/10.1101/373506v2

Solanum lycopersicum (tomato),
cv. Heinz 1706 799.09 Mbp 34,384

https:
//www.biorxiv.org/content/10.1
101/2021.05.04.441887v1.full.pdf

Solanum tuberosum (potato) 844 Mbp 39,031 https://www.nature.com/
articles/nature10158/

Arecaceae

Elaeis guineensis (African
oil palm) 1.8 GB ~34,802 https://www.nature.com/

articles/nature12309

Phoenis dactylifera (date palm),
an elite variety (Khalas) 605.4 Mbp ~41,660 https://europepmc.org/article/

PMC/3741641

Rosaceae Prumus persica (peach) 247.33 Mbp 26,335 https://onlinelibrary.wiley.com/
doi/10.1111/tpj.15439?af=R

Vitaceae Vitis sylvestris (grape),
accession of Sylvestris C1-2 469 Mbp 39,031

https://genomebiology.
biomedcentral.com/articles/10.1

186/s13059-020-02131-y#Sec2

Genome size—GS; number of predicted transcripts/proteins—NPTs.
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4. NGS Can Promote Sustainable Crop Production

NGS technologies have now been applied at a large scale in searching for the ge-
netic resources that can pave the path and promise to eradicate food hunger across
the world by helping produce or improve crop yield to gain self-sufficiency in food re-
sources. These technologies are creating the genome recourses, improving specificity and
efficiency in predicting and designing targeted ESTs, SSR, and SNP markers, genome
editing or gene engineering strategies in plants to attain sustainability in production by
accurately determining the cause of an appeared trait and/or phenotype under harsh
environments [70,84].

4.1. Exploiting the Molecular Markers, Genetic Maps, and Phylogenetic Relationships Using
NGS Technologies

The genome of an organism retains altering nucleic acid sequences, which could
control the phenome or a specific necessary feature as behaving molecular markers,
e.g., SNPs are naturally existing several nucleotide or point mutations in the genome of
a plant species and resulting to enhance genetic manipulation possibilities to fine-tune
a desirable character [38]. Before the creation of molecular markers, it was very diffi-
cult to construct a library, perform many cloning works, and finally to sequence [85].
Since then, ESTs have been utilized to discover the SNPs and/or SSRs (microsatellite
markers) in the genome, but technologies related to the ESTs also need more funds
to generate sequenced data with low genetic coverage [86]. Molecular markers are
important in exploring variations among various genomes and determining the quality
trait loci (QTLs) in plants to reveal plant traits [87]. For example, QTLs responsi-
ble for the grain weight and numbers, yield, sugar accretion, flowering induction or
timing, contents of the proline, and other stress-related proteins to increase plant resis-
tance against harsh environments are the key agronomic aspects for sustainable crop
yield [88].

Previously, many types of research were carried out to create high-density genetic
linkage maps to determine the important QTLs associated with agronomic characters,
pinpointing, and isolating the key candidate genes, as well as map-associated gene engi-
neering. Breeders faced several problems as genetic maps with very little information
related to the QTLs/molecular markers and low-density by laborious molecular work
and higher cost of consumption [89–91]. Specifying a molecular marker and respective
candidate genes for improving the agronomic traits was not easy in crops before the
application of SGS technologies. That said, the accumulating data related to the molecu-
lar markers (e.g., in rice QTLs related to the tiller number, etc.) are useful for drawing
genetic maps in plant species [91]. SGS technologies have been utilized to generate
transcriptome data in various crops [92,93]. Now, researchers can define a particular
fragment and/or molecular markers (SNPs and SSRs) by selecting the region(s) of a can-
didate gene or genome to improve agronomic features of the crop [94]. NGS technologies
have transformed the identifications and established the genetic maps by interpreting
data associated with the SNPs, SSRs, and QTLs by conducting genome-wide integrated
investigations in plant species [95].

Importantly, NGS technologies provide a delightful research forum for scientists
to reveal many markers by improving genetic maps with more information about
agronomic traits. In this way, these makers participate in genomic selection (GS) for
stress-related traits in crops. The genetic tools that have been employed by several
plant breeders remain vital for finding the solution of the causes that are drastically in-
fluencing plant health, e.g., biotic and abiotic stressors, climate change, etc. [20,96–99].
Furthermore, these genetic tools can also assist scientists to boost plant yield by de-
termining the desirable traits in crops for improvement. Now, researchers have ac-
cess to the unique treasure of genome information that can display an important
method of genetic manipulation to enhance crop production, after the invention of
NGS. For example, genome-assisted breeding (GAB) is forecasted to permit precise
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and efficient plant breeding to create superior quality cultivars, promoting crop sus-
tainability [80]. Most recently, NGS technologies are fast, less expensive, and have the
capacity to sequence many samples within a short time [55]. These salient features
promote genotyping technologies such as GAB, marker-assisted selection (MAS; to
associate a marker with an appeared trait in a plant), and breeding-assisted genomics
(BAG) in an ultrahigh-throughput manner by NGS to determine several molecular
markers [17,24,28,86,87]. For example, transcriptome data were generated using NGS
technology in lentils and recruited 376 out of 50,960 SNPs, which represent potential
targets to control plant traits, e.g., resistance against ascochyta blight, flowering time
and color, pigmentation of the stem, seed coat and size, etc. [100,101]. These study
outcomes were utilized to construct high-density molecular maps and other markers
such as SSRs and ISSR. By analyzing NGS-based transcriptome data, the average space
and total coverage distance were improved among two molecular markers, such as
1.11 cM [101,102].

NGS constructed markers permitted a comprehensive phylogenetic genetic anal-
ysis of intraspecies and/or interspecies and estimated the divergence time of plants
following the wild types and cultivated landraces among various geographic back-
grounds. For example, the speciation divergence gaps among L. culinaris and M.
truncatula, as well as L. ervoides and L. culinaris, were 38 million years ago (MYA)
and 0.0677 MYA, respectively [103,104]. Genotyping based on the NGS data revealed
geographic distribution and gene pool associated with a specific trait that helps un-
derstand the postdomestication pattern and assortment of the improved current mor-
phology of the plant cultivars or species [70,105]. Such outcomes of the past studies
laid the foundation for determining the diverse and suitable plant types to perform
hybridization during breeding projects to improve genetic resources [106]. Precise
divergence analysis can be improved more by generating genome data through NGS
technologies in the future. The development in markers (SNPs/SSRs) using NGS could
allow the tremendous advancement in designing a plant fingerprinting and forensic
science, GS, evolutionary studies, phylogenetic networks, gene flow, genetic maps,
etc. [107–116]. Furthermore, the generation of WGS information of a plant species
can lead to more development associated the maker breeding among no-reference
available plants.

The noticeable limits to crop breeding evolvement are very slow genetic progress
using the crossing, multifaceted characters, and ignored minor or clash crops, which
were affected due to the lack of reference genome and/or genetic information until
the commencement of NGS technologies. Developing genome data or databases and
integrating with the developing analytic tools participate in technology advancement
to augment the understanding of genetic resources to respond against several envi-
ronments by adjusting multi-agronomic traits. Nowadays, formulating quick and
precise genotyping strategies to link genome information with phenomes is the pivotal
aspect of desirable genetic improvements with the normal affordable expenditure of
high-throughput accurate phenotyping. Hence, NGS technologies fuel up the phe-
notyping strategies with more accuracy to explore genetic or heritable variations in
plants under varying environments and decrease the cost of traits’ determinations.
More efficiency in NGS technologies is achieved through artificial-intelligence-based
robotic ways, standardizing protocols for screening, and launching phenotyping cen-
ters for biotic (hotspots for the disease spreading pathogens, insects, pests, etc.) and
abiotic (heat waves, drought, land erosion, salinity, and nutrient uptake efficiency)
stressors [49,105,116–119], which are really important factors in formulating precise
phenome system to dissect the genomics of quantifiable traits. In the future, portable
devices integrated with advanced technologies (ATech) can promote sustainable
crop production.
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4.2. Creating the Pan- or Super-Pan-Genome Based on NGS Technology

Precise genetic manipulation requires more effects to analyze the genomic variations
of a population to choose a suitable novel gene to improve agronomic traits and help
dissect evolutionary relationships between the species. Researchers cannot only rely
on the reference genome of a plant to explore the genetic variations and determine the
most suitable population for cultivation. Additionally, sequence coverage or quality
of the assembled and annotated reference genomes can also allow the comprehensive
understanding of a genome. Generally, the pan-genome describes the genome of a
plant/species acquired using the comparative analysis of the huge resequenced genomes,
usually the genus [15,18,19,29,44,60,115,116,120]. Such genes can be categorized among
various fundamental and rudimentary genes. The fundamental genes are conserved
crosswise between various plants and designated as the housekeeping that participate in
the key cellular functions, which can be ubiquitin (UBQ), β-actin (ACT), α-tubulin (TUA),
ribosomal RNA (subunits such as 18S or 26S) elongation factors (EF), and glyceraldehyde-
3-phosphate-dehydrogenase (GAPDH), etc., in different plants. These housekeeping
genes can serve as an internal control during validating the expression profile of the
targeted genes in the plants under an imposed or naturally occurring stress [121–125].
The rudimentary genes determined using the pan-genome can be conserved within
the genome of a particular species or just in some members, however not in the whole
genus. By contrast, intercontrol acting essential genes are conserved and integrated
with several characters that can be adjustable under stressors in plants, e.g., tolerance
to stressors, the activity of the antioxidants and receptors, signal transduction, gene
regulation, etc. [126–128]. These genes actively shape the diversity of a species and aid in
the fast evolution among plants to cope with stressors [129]. Now, targeted resequencing
of particular tissues of plants such as mitochondria, plastids (whole plastomes), or even
a few regions permits one to establish more precise phylogenetic relationships at the
species or subspecies level to reveal genetic diversity and understand the domestication
in crops and find ways to boost yield [130,131].

In some plants, high homozygosity and heterozygosity among the candidate genes
creates more genetic variations by influencing molecular markers. Therefore, the idea of
pan-genome relies on catching variations within or among genomes of different or same
species by knowing the genomic structure of the genes [38,116,128]. The NGS has made
possible the sequencing or resequencing of many accessions that indicate a plant or species
to display structural modifications or variations, varying copy numbers, and including
many alterations such as interchromosomal and/or intrachromosomal re-arrangements,
transversion, and inversions [43,124,130]. Progress in pan-genome analysis can show the
conserved or nonconserved regions between many accessions of a planting species, whereas
genomic variations of the accessions belonging to a specific species can be examined by
analyzing the super pan-genome [132]. Importantly, super-pan-genome analysis of wild-
type plants can present the novel treasure of information relating to the genomic structural
variation that can be deployed to mend the agronomic traits in crops by exploring the
whole genome of a genus [92]. Both pan- and super-pan-genomes can allow scientists to
enhance crop production by creating climate-tolerant plants.

4.3. Sustainability by Exploiting the World Genetic Resources

Globally, genetic resources or gene banks are important assets with broad nutritional
prospects and safeguarding food security by preserving the vital information that can be
utilized to tackle an outbreak of the disease in plants and/or determining the keys genetic
factors, which can permit us to create harsh-environment-resilient crops. These genetic
resources consist of primitive landraces and plant species, new, extinct, and vanishing
plant types, germplasm/lines under breeding programs, wild species of crops and weeds,
etc. [16,129], and the articulated evidence about germplasm provision for research purposes
by gene stock and other national or international organizations across the world is very
limited. Thus, the world’s huge population is deprived of the benefits of the latest innova-
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tions relating to the genomic fields due to slow development in developing countries and
lack of advanced research bodies.

Although agriculture future relies on crop production within the limited land re-
sources to produce sufficient food to feed the ever-increasing population, it requires more
uniformity among genetic materials to cultivate the large-scale area with the same type of
crop or species, which can be planted to tackle the increasing events of crop damage by
stressors (biotic and abiotic) [8,123]. Even preserved genetic variations can enlighten us to
find the cause of an outbreak of disease by exploring the genomic data of the wild or par-
ents’ plants. Many vulnerable, endangered plant species worldwide can show new ways to
improve the agriculture future by benefiting from the recent advances in DNA sequencing
technologies, especially NGS. Consequently, NGS can also allow scientists to reclassify
the bulk of misleading accessions or duplicated by improving identification methods that
permit breeders to enhance gene bank management and overcome the common challenges
to differentiate the mislabeled genotypes [60,133–137]. The precise assessment of genetic
diversity through NGS can lead the researchers to mine the desirable genetic pool, defining
the grouping of genetic material, also designating the main or minor target germplasm
for research, which could offer the novel cultivars with high resistance to environmental
alteration and assist in boosting the sustainability in crop yield.

The generation of sequencing data from the accessions (gene banks) using NGS
technologies and the improvements in the bioinformatic tools is the key to determining or
choosing the suitable or climate-resilient plants to combat the devastating events forecasted
by several researchers [62,83,133]. This sequenced data strengthen more understanding in
designing the molecular markers and enhance the accuracy in shaping the allelic variations
or detailed genotyping–phenotyping that can improve trait-specific breeding programs.
However, gene pools are the treasure that needs to be exploited by NGS around the world,
which would develop a clear understanding of inter- or intra-species evolution and reveal
the association between wild types and current cultivars that can expand germplasm
knowledge to attain sustainable production.

4.4. Mining the Novel Genes and Regularity Pathways Using NGS to Generate Transcriptome

Rapid progress in the genomic field has laid the foundation in mining the desirable
candidate genes that can help in developing climate-resilient plants, and the utilization of
the NGS technologies can lead researchers to adjust or modify the key agronomic traits in
crops [62,109,114,135]. The latest developments in technologies have also been employed
to obtain sequenced data at a particular stage or time frame of a crop. The acquired data
have been submitted or annotated with the determined regularity function to display the
information relating to the candidate genes or metabolic pathways integrated with the
phenome of a plant. Now, it is relatively easy to find the up-/down-regulated genes or path-
ways under stress by analyzing the transcriptome generated using the NGS. Studies have
revealed several influenced genes or metabolites under abiotic stress at the most critical
stage of a crop, e.g., plant reproduction, grain filling, assimilate storage, etc. [138]. Multiple
genes or proteins have also been recognized by performing transcriptome analysis such as
glycerol-3-phosphate acyltransferase-2 (GPAT2), O-acyltransferase, phosphatidylinositol,
or/and phosphatidylcholine transfer protein (SFH13), phosphatidylcholine-diacylglycerol-
choline-phosphotransferase (PDCP), plasmodesmata-callose-binding-protein 3 (PDCB),
etc. [93]. Under stress, the genes mentioned above were activated, and a few of them
encode pyruvate-di-phosphate that participates in shikimate pathways, and this pathway
is responsible for producing secondary metabolites in plants under stress [139].

However, such studies reveal more detail about plants’ response to external stimuli by
deploying the transcripts to influence the molecular functions and biological and cellular
processes that improve the plant tolerance against harsh environments [140]. Synthesized
transcriptome data also allow the finding of variations or novel genes among the cultivated
cultivars or reference genome of a plant to know altering genetic factors and metabolite
under stress. Transcriptome generated by NGS has been employed to unveil the role of
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genetic material (susceptible and resistant) to resist disease by proving the candidate genes,
e.g., NPR1, NPR2, calcium-transporting ATPase (CT-ATPase), glutamate-receptor 3.2, etc., and
many genes related to the phytohormones (jasmonic acid, abscisic acid, and gibberellic
acid) that participate in augmenting the plant immunity against pathogen attack [141,142].
Thus, such investigations can be utilized for the genetic manipulation of the desirable crops
or plants to create climate-resilient plants that could withstand adverse growth conditions
to meet future demands of more food.

5. Role of Metabolomics in the Sustainable Crop Production

Metabolome refers to the extensive study of plant-secondary metabolites that regu-
late various cellular functions in the alive system. This field designates the wide-range
set of plant metabolites produced through metabolic pathways in the plant [143–145].
Metabolome studies have been largely implicated in the genomic field, which allows us to
exploit various phases of the ongoing biomolecular and physiological alteration triggered
by climate-change or genetic unrest [146]. Metabolic modifications are directly suggested
as the postgenomic changes among plants and facilitate determining the plant phenome
or phenotype. Thus, the metabolites are becoming the emerging and the most reliable
tools in the plants to unravel stress tolerance or resistance mechanism [147]. For example,
respiratory amino acids such as glycine and serine, branched-chain amino-acids (BCAAs),
and the few intermediates of the tricarboxylic acid cycle, are found to be assembled in
various plants such as barley (Hordeum vulgare), (Oryza sativa), and Arabidopsis thaliana in
response to harsh conditions [148–150]. Similarly, alterations among levels or numbers of
proteins or metabolites such as proline, glycine-butane, tryptophan, phenolic, organic acids,
sulpher-responsible metabolites including methionine, cysteine, and glutathione as well as
phytohormones (Table 2) have also been affected in plants under stress [151–154].

Table 2. Different plants produce various kinds of plant metabolites at varying developmental stages
under stress conditions by regulating primary and/or secondary metabolism.

Plant E Stage and Specific Organ Metabolites Refs.

Avena sativa (oats)
E1 Not specified using grains PM **: malic, gluconic, and galacturonic acids,

fatty acids (FAs), palmitic acid and linoleic acid. [155]

E2 Seedling stage (three weeks
old) Leaves PMS **: Ascorbate, aldarate phenylpropanoids. [156]

Hordeum vulgare
(barley)

E1 Germination using seeds
PM *: glycero(phospho)lipids, prenol lipids,

sterol lipids, methylation.
SM *: polyketides.

[157]

E2 Two-leaf stage seedlings
using leaves

PM **: organic acids (OAs), amino acids (AAs),
nucleotides, and derivatives.

SM *: flavonoids, absiscic acid.
[158]

E3 Three-leaf stage
using leaves

SM **: chlorogenic acids, hydrocinnamic acid
derivatives, and hordatines and their glycosides. [119]

E4 Three-leaf stage and flag
leaf stage using leaves

SM *: flavonoids, hydroxycinnamic acid,
phenolics, glycosides, esters, and amides. [159]

E5 During grain filling
using seeds

PM *: Tricarboxylic acid (TCA), OAs, aldehydes,
alcohols, polyols, FAs,

carbohydrates, mevalonate.
SM **: phenolic compounds, flavonoids.

[10]

E6 Four weeks old
using leaves

PM *: carbohydrates, free AAs, carboxylates,
phosphorylated intermediates,

antioxidants, carotenoids.
[160]

E7 1–3 weeks old using leaves
and roots

PM **: AAs, sugars, OAs as fumaric acid, malic
acid, glyceric acid [161]
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Table 2. Cont.

Plant E Stage and Specific Organ Metabolites Refs.

Oryza sativa L. (rice)

E1
Flowering and early grain
filling stages using leaves,

spikelets, seeds

PSM **: isoleucine, 3-cyano-alanine,
phenylalanine, spermidine, polyamine, ornithine [161]

E2
At reproductive stage

using leaves and grains
ripe stages

PM **: saturated and unsaturated FAs, AAs,
sugars, and OAs. [162]

E3 24 months old seeds used PM **: sugar synthesis related compounds, AAs,
free FAs, TCA cycle intermediates. [163]

E4 Not specified using grain
PM *: aromatic AAs, carbohydrates, cofactors

and vitamins, lipids, oxylipins, nucleotides.
SM *: benzenoids.

[164]

E5 Maturation using
mature seed

PM *: carbohydrates, lipids, cofactors, prosthetic
groups, electron carriers, nucleotides.

SM *: benzenoids.
[165]

E6 Maturation using
mature seed

PM *: carbohydrates and lipids.
SM *: α-carotene, β-carotene, and lutein. [166]

E7 Six weeks old using leaves

PM *: AAs (arginine, ornithine, citrulline,
tyrosine, phenylalanine and lysine), FAs and

lipids, glutathione, carbohydrates.
SM *: rutin, acetophenone, alkaloids.

[157]

Setaria italica
(foxtail millet)

E1 60 days using shoots

PM *: fructose, glucose, gluconate, formate,
threonine, 4-aminobutyrate, 2-hydroxyvalerate,
sarcosine, betaine, choline, isovalerate, acetate,

pyruvate, TCA-OAs, and uridine.

[167]

E2 3–5 leaves stages
using leaves

PM *: glycerophospholipids, AAs, OAs.
SM: flavonoids, hydroxycinnamic acids,

phenolamides, and vitamin-related compounds.
[167]

Sorghum bicolor
(sorghum)

E1 Four-leaf stage
using leaves

PM *: AAs, carboxylic acids, FAs.
SM: cyanogenic glycosides, flavonoids,

hydroxycinnamic acids, indoles, benzoates,
phytohormones, and shikimates.

[168]

E2 Four-leaf stage
using leaves

SM *: 3-Deoxyanthocyanidins, phenolics,
flavonoids, phytohormones, luteolinidin,

apigeninidin, riboflavin.
[169]

E3 Around 26 days using
roots and leaves PM *: sugars, sugar alcohols, AAs, and OAs. [170]

E4 Four weeks old using grain
and biomass

PM **: OAs.
SM **: phenylpropanoids. [146]

Triticum aestivum
(wheat)

E1 NAS using leaves

PM *: sugars, glycolysis and gluconeogenesis
intermediates, AAs, nucleic acid precursors,

and intermediates.
SM *: chorismate, polyamines, L-pipecolate,

amino-adipic acid, phenylpropanoids, terpene
skeleton, and ubiquinone.

[171]

E2 Physiological maturity
using leaves

PM *: AAs metabolism, sugar alcohols, purine
metabolism, glycerolipids, and guanine.

SM *: shikimates, anthranilate, absiscic acid.
[172]

E3 Maturation using
matured kernels

PM *: FAs, sugar, nucleic acids and derivatives.
SM *: phenolamides, flavonoids, polyphenols,

vitamins, OAs, AAs, phytohormones,
and derivatives.

[173]
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Table 2. Cont.

Plant E Stage and Specific Organ Metabolites Refs.

E4 Not specified using grain PM *: osmolytes, glycine betaine, choline,
and asparagine. [174]

E5 Not specified using seeds
PM *: sterols, FAs, long chain FAs derivatives,

glycerol (phospho) lipids.
SM *: polyketides.

[175]

Zea mays (maize)

E1 R6 stage using grains PM **: sugars, sucrose, glucose, and fructose. [176]

E2 Physiological maturity
using kernels

PM *: glycolysis, TCA cycle, starch, amino acids.
SM: alkaloids, benzenoids, fatty acid and sugar

derivatives, flavonoids, phenylpropanoids,
and terpenoids.

[177]

E3 8 months using kernels
PM *: glucose, fructose, sucrose, tocopherol,

phytosterol, inositol, asparagine, glutamic acid,
pyroglutamic acid.

[178]

E4 Eight-visible-leaf stage
using leaves

PM *: choline, inositol, sugars, raffinose,
rhamnose, TCA cycle, AAs, trigonelline,

putrescine, quinate, shikimate.
SM *: flavonoids, and benzoxazinoids.

[179]

E5 Seedling stage using
entire seedling

PM *: amino acids, lipids, carboxylic acid.
SM *: alkaloids, terpenoids, flavonoids, alkaloids,

and benzenoids.
[180]

E6 Physiological maturity
using kernels

SM *: flavanones, flavones, anthocyanins, and
methoxylated flavonoids. [181]

E—experiment; **—upregulation/significant contents; *—difference examined as compare to control/mock;
primary and secondary metabolism/metabolites—PSM; primary metabolism/metabolites—PM; secondary
metabolism/metabolites—SM; not available stage—NAS.

Generation of knowledge about specific metabolites related to the critical stage or
varying time points to examine the stress response can permit precise genetic manipula-
tion by targeting the particular transcripts in a plant. However, NGS technologies have
appeared to be promising breeding tools to describe the regulatory mechanisms and/or
cellular reactions against the environmental stimuli that can be the biotic and abiotic
stress [108,153]. Moreover, the association between the NGS and metabolomics has
enhanced the forecasting abilities of the researchers to find the preliminary metabolic
co-networks using the sequenced data of an organism. In this way, the fabricated
information generated using NGS technologies and quantification (Figure 3) of the
targeted metabolites helps create the most suitable strategy with more precision to in-
crease crop yield. These technologies can speed up the genetic manipulation programs
or projects to create climate-resilient smart crops that can be a source of nutritious
food as well as the key to eradicating hunger across the world by safeguarding food
security [143]. There is no doubt that phenotypic or phenome-directed genetic ma-
nipulation has been witnessed to improve the performance of a crop by performing
metabolic engineering in the same manner as the genomic fields have demonstrated
the substantial participation in accomplishing more advances in genomic research
gains [144,145,182].

6. Diagnosis and Monitoring of the Disease-Causing Pathogens Using NGS
and Metabolites

Multiple pathogens are casual disease agents including the vast diversity of bac-
teria, protozoa, mollicutes, fungi, virods, and viruses [183,184]. Researchers have
employed several molecular techniques to diagnose and monitor the aforementioned
pathogens to design control strategies and improve crop production. Previous tech-
niques were not efficient enough to determine the minute residues of an organism,
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especially viruses and evolving pathogens. Then, the advent of genomic science as-
sisted scientists to reveal the genetic composition of crops and the disease-causing
pathogens and provided the key clues to monitor plant and pathogen interaction for
crop improvements by employing the NGS and metabolomics to determine the host ge-
netic factors that the disease-causing agent engineers during attack or infection and the
ability to gain defense through reprogramming the genetic makeup [185]. For exam-
ple, the sugarcane mosaic virus (SCMV) is a major threat to the maize-cultivating
farming community in China’s maize-cultivating farming community; it was re-
vealed by analyzing transcriptomic data that SCMV actively participates in downreg-
ulating the photosynthesis-responsible genes, leading to the phenotype of chlorotic
lesions [186].

Recent NGS-based deep-sequencing technologies generated reliable sequenced genomes
to carry out genomic analysis using the developed bioinformatic resources to improve
disease control approaches by accurately diagnosing plant pathogens [112,155–157]. These
ATech can be employed to produce metagenomics and estimate the infecting or developing
microbial population in a crop [187]. Moreover, exploring the small RNA (sRNA) families
such as interfering RNAs (siRNAs) might be utilized to perform identification as well as
reconstruction of multiple virus genome (DNA or/and RNA) and belonging microvariants
using the latest bioinformatics approaches. NGS technologies are also applicable to find
harboring pathogens by insect vectors, crop certification, and quarantine programs by
diagnosis techniques. Nowadays, it is possible to detect plant metabolites (Table 2), e.g.,
flavonoids, cyanogenic glycosides, benzoxazinoids, saponins, terpenes, and terpenoids,
which are produced under a pathogen attack in various crops such as rice, maize, rye,
barley, oat, millet, sorghum, etc. [146,151,153,154]. Therefore, a combined strategy based
on the genomic and metabolomics analysis can stabilize the declining plant yield across
the world.

7. Integration between the Transcriptome and Metabolome to Achieve
Crop Sustainability

Integrated networks have been established by analyzing the transcriptome and
metabolome data to pave the path for a more accurate engineering of the metabolites
through genomics in plants [188,189]. This aspect enlightens us to reveal the importance
of metabolites and transcripts in plants to acquire stress tolerance and provide more
evidence to develop a comprehensive strategy to increase crop yield. Both metabolome
and transcriptome also have the potential to show the key metabolites and/or cellular
processes that can affect the plant architecture and biomass production and participate
in plant adjustments by regulating the physiological state of an organism [146]. Further-
more, recent advances in technologies have displayed novel metabolic networks and
have pinpointed the key regulatory genes by dissecting the genetic of transgene lines or
mutants [139,190,191].

In addition, these techniques display the role of a gene to influence the metabolic
pathways and unmask the underlying sophisticated mechanisms and coordination that
are established among various pathways, which are hardly obtainable through con-
ventional techniques such as microarray [192]. Successfully, these techniques have
been employed to conduct metabolic engineering in various crops, e.g., anthocyanin
production altered in tomato, and the nutritional reserved of rice’s endosperm has
also improved by increasing the accumulation of β-carotene [193]. The availability of
advanced genetic manipulation technology such as CRISPR/Cas9 may improve the
metabolome and transcriptome related studies in plants. CRISPR/Cas9 has been used
to create the germplasm with superior quality and traits in plants [194–197]. Moreover,
development in bioinformatics fields can participate in a better assembly of the WGS of
a plant. In this way, the strategies to reveal the genome-wide genetic alterations and the
genotyping approaches will be improved in a cost-effective manner. Then, researchers
will be able to precisely build integration among various technologies to bring a rev-
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olution in plant breeding and/or engineering. These efforts may facilitate attaining
sustainability objectives without degrading our environment to feed the expanding
population of the world.

8. Understanding the Bamboos’ Tolerance Using NGS and Metabolome

Climate variations are badly affecting food security in all continents. According
to a prediction, more than 50% of agriculture losses occurred due to stressors that
are considered a big future challenge to fulfill the demands of the ever-increasing
population by producing enough resources [198,199]. Forests have significant potential
to aid the mitigation of anthropogenic activities of climate disturbance and offer several
co-benefits by building a healthy society [200]. Unfortunately, prevalent climate-
persuaded forest die-off has also been estimated among forests worldwide. It forms an
unsafe carbon-cycle feedback, discharging a huge quantity of stored carbon from the
forest ecosystem to the atmosphere, as well as declining the volume of carbon sink for
future forests. Plant mortality occasions have been witnessed across the world during
the last decades due to climate change [118,201]. The direct impacts of climate on plants,
such as drought, salt, high-temperature incidences, including other affecting agents
such as wildfire and pathogen/insect epidemics, are vulnerable to climate alterations
and have a major influence on forests [117,202,203]. Therefore, forests of bamboos have
a significant role in sustainable agriculture production. Especially, Phyllostachys edulis
belongs to a novel forest resource with an extraordinarily fast growth, monopodial-
rhizome network, and immense significance in the ecosystem, restoring degraded
lands, being a source of income for ~2.5 billion people, a raw material for industrial
use, and a fighting weapon against climate alterations in several American, African,
and Asian countries [204,205]. Internationally, bamboo trade accounts for at least
$2.5 billion per year, and a consistent increase in trade has been observed [204]. Forests
of moso bamboo cover approximately 73.8% of the total bamboo forest area in China
and have a great cultural impact [206]. Bamboo is utilized in decorating recreational
places, manufacturing furniture, musical instruments, houses, and food dishes, with
the shoots being especially very popular as nutrient-enriched tasty food (bamboo
shoots) in Southern China [207,208].

Recently, high-quality genome data of moso bamboo (Phyllostachys edulis) were
reported; they can be the key to identifying the various TFs/genes having more simi-
larity with the reported Arabidopsis’s genes. These identified targets in bamboo may
perform similar or different functions upon functional characterization in homolo-
gous or heterologous systems. More duplication events are also found in bamboo’s
genome to display more copies of a gene than Arabidopsis. For example, NAC TFs
related to the fiber development in rice, Arabidopsis, and moso bamboo are different
in numbers such as 6, 8, and 16, respectively. Similarly, the homologous genes of
OsNAP and OsNAC10 are six and three in moso bamboo [209–211]. It is also noted
that moso bamboo presented more duplication events during genome evolution than
rice; many genes display a specific function such as floral organ development-related
genes in bamboo, and their respective high homology genes in rice, lignin, jasmonic
acid, and stress-responsive genes [212] have been reported in bamboo (Figure 4). Bam-
boo growth requires indispensable energy resources and the integrity of the cell wall
to perform normal physiochemical processes for maintaining bamboo’s fast growth
(Figure 4) [211]. Furthermore, abiotic stresses create a serious impact on bamboo
growth and development [213]. Access to the moso bamboo genome [210,211] provides
a chance to many researchers for genome-wide classifications of TFs such as aquaporin,
AAAP, UBP, IQD, HD-Zip, Hexokinase, Aux/IAA and ARF, NAC, PeUGE, HSF, and
CONSTANS-like in moso bamboo [188,214–223].
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Figure 4. Various Growth and development phases and stress tolerance mechanism in bamboos.
Different genes/TFs and non-coding RNAs participate in functional regulation during the growth
and development phase I to perform the specific or multiple roles. The biochemical alteration also
defines the growth transition (e.g., culm development under an altering gradient of hormones as the
GA, IAA, ABA, zeatin (ZT). Genes-responsible for the lignin (PvNST1/2–1, PvC3H-2/3, PvC4H-2/4,
PvCADs, PvCCR-2/4, PvHCT-2/5/8, PvPAL-2/4/6) and JA (PvOPR2, PvPEX5, PvJAZ-4) synthesis;
early flowering (PeMADS2), etc. During phase II, plants regulate internal adjustments to cope
with stressors such as hormone alterations (e.g., rhizome generates new shoot under an altering
gradient of hormones), RNA metabolism, epigenetic modifications, and accumulation of various plant
metabolites. Phase III is considered acclimatization and evolution; many evolution events take place
during evolving plants to produce multiple copies of transcripts as compared to the ancestral donors
to flourish new generations of plants under consistent overwhelming environments. Abbreviations
in figure: regulation—reg.; jasmonic acid—JA; gibberellic acid—GA; indole-3-acetic acid—IAA;
abscisic acid—ABA; zeatin—ZT; long-noncoding ribonucleic acid—lnc RNAs, small noncoding
RNAs—sRNAs; short interfering RNAs—siRNAs; microRNAs—miRNAs; transfer RNAs—tRNAs;
RNA-directed DNA methylation—RdDM; gibberellic acid—GA; indole-3-acetic acid—IAA; abscisic
acid—ABA; zeatin—ZT; low-temperature—LT; peroxidase—POD; phenylalanine-ammonia-lyase-
PAL; and 4-coumarate responsive ligase—4CL.
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Genome-wide classifications of TFs’ families in moso bamboo have been carried out
and have demonstrated a limited molecular characterization in model plants by exogenous
gene transfer in rice and Arabidopsis and the expression profile against stresses [224–226].
The expression of PeLAC was high in stem and its promoter sequence contains ABRE
cisregulatory element that responds to ABA and GA treatments by upregulating and down-
regulating the transcript of PeLAC, respectively [227]. Stress tolerance in bamboo (Phyl-
lostachys edulis) was investigated by characterizing the tonoplast-intrinsic proteins (TIPs).
Results suggested that PeTIPs may improve abiotic stress in bamboo [228]. PheWRKY86
coordinates with NCED1 by binding the W-box within the promoter region and improve
stress tolerance in transgenic rice and Arabidopsis [229]. Osmotic adjustment participates
in plant stress tolerance and development mechanism; e.g., Ca2+ translocation in and out
from the vacuole, cell wall, and intercellular compartments regulate the development of
phloem ganglion in P. edulis during the active early growth phase. Later, at the maturation
stage of phloem, more accumulation of vacuolar Ca2+ was observed as compared to mature
cells of cytoplast. Results suggested the important role of Ca2+ in generating cells and
the osmatic actions of phloem ganglion in P. edulis [230]. PeNAC-1 has been suggested to
regulate Na+ across the cellular membrane and may affect the Na+/K+ homeostasis [206]
in the heterologous systems as several other phytohormones and ion transporters perform
the function in plants under normal and stressed condition plants (Figure 5) [231,232].
Many TFs/genes and transporters have been identified in bamboo, e.g., genes responsive
to multiple hormones (cytokinins, gibberellic acid, jasmonic acid, abscisic acid, ethylene,
and auxin), and auxin biosynthesis-related transporters (PhIAA, PhPIN, PhPILS, PhAFB,
PhLAX, etc.) have been identified in bamboo [233].

The accumulation of metabolites also helps plants to encounter stress conditions. An
increase in anthocyanin contents was examined in Ma bamboo in the overexpressing leaf-
color-related gene, which improved stress resilience against cold and drought conditions
by enhancing stress-related antioxidant activity [225]. Very limited research is available on
the heterologous system investigations of genes retrieved using transcriptome data of bam-
boo [228,234,235]. For example, the high expression of PeUGE was validated in shoots [228].
Later on, PeUGE investigations in overexpressing Arabidopsis plants suggested it regulates
cell wall biosynthesis and improves stress tolerance. A significant expression alteration of
Phehdz1 was induced by drought, salinity, and ABA treatments, but the high expression was
in roots. Overexpressing transgene rice (OE-Phehdz1) displayed improved DS tolerance
and altered secondary metabolism [225]. The lignification of tissues in bamboo is a unique
character that contains monolignol glucosides (i.e., syringin, coniferin, p-glucocoumaryl
alcohol, and guaiacyl) that have been examined as the key storage components of lignin
precursors, which are transported to the outer cells [236,237]. ATP-binding cassette trans-
porters have been suggested to regulate translocation of lignifying agents using vascular
cation transporters by establishing a gradient across and within cellular membrane and
cytoplasm [237] that needs to be exploited in detail.

Furthermore, investigations related to cutin and suberin biosynthesis in bamboo can
promote a clear understanding of the stress tolerance mechanism in bamboo [238–243].
Despite advances in technology, the enhancement of agricultural resources requires con-
sistent improvements in genome editing and metabolome technologies. During the last
decade, several scientists used the CRISPR/Cas9 genome editing tool to obtain desirable
traits in plant species [244]. However, very limited research revealed successful genome
editing by CRISPR/Cas9 after selecting a desirable gene in ma bamboo [245]. Reports have
been demonstrated that in ma bamboo, plantlets can be regenerated by callus induction in
germinating embryos [246]. This literature review supports further development in gaining
a better understanding through NGS and metabolome knowledge to manipulate bamboo’s
genome to meet the future demands of sustainable forest resources across the globe.
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Figure 5. Regulation of plant tolerance through transporters and/or transcription factors. Osmatic
regulation is attained in plants by opening and closing of channels using transporters (Trptrs) related
to the cations (Ca2+, Na+, and H+). Furthermore transcription factors (TFs) play a crucial role in
operating plant tolerance (e.g., SnRKs interact with other TFs and/or genes by phosphorylating and
activating more genetic factors to help plants build food reverse that can be utilized under the stress
condition. In the figure, HKT: high affinity K+ transporters; SOS: salt overly sensitive 1; (X): various
transporters/genes such as 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, and 20; CNGC: cyclic-nucleotide-
gated channels; MOCA1: monocation-induced Ca2+ enhancer 1; ANN: Annexin; IPUT: inositol-
phosphorylceramide glucuronosyltransferase; GlyIPC: glycosyl-inositol-phosphorylceramide; CA:
cation exchanger; NH: Na+/H+ exchangers; cNMP: cyclic-nucleotide monophosphate; and
CaM: calmodulin.

9. Concluding Remarks and Promising Future Perspectives

Currently, crop production is unable to feed the growing world population due to
deteriorating natural resources or mismanagement of the available genetic resources
rather than other agriculture challenges. Under a perfect scenario, the pure wild-type
progenitor individuals are necessary for the marking out crop domestication informa-
tion and the clear identification of crop or a plant desirable sweep fragments or genes
among the genome. Therefore, the improvements of genetic makeup are heralded as
the prominent aspect to boost crop yield, generate climate-resilient plants/crops, and
enhance nutritional value. The application of advanced bioinformatics and genetic tools
grasp the considerable assurance for more agriculture output, increased livelihoods,
and multiple prospects for food security by exploring the potential of the cash and
orphan crops.
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Improved genome information of plants will allow one to carry out effective
and accurate genetic engineering in crops by revealing the mechanism of the most
important agronomic traits. However, NGS technologies are evolving rapidly and
claim to generate long-length strings of genomic reads, within less time and lower
cost per sample or unit. Now, scientists can produce whole-genome assembly, de-
novo assembly metagenomics, transcriptome, methylome sequencing, etc. Hence, NGS
application is very important in many fields related to agriculture to find targets for
genetic manipulation, evolution studies, exploring the bionetworks, and understanding
the fundamental principles of functional genomics. Improved molecular markers
will speed up breeding programs. Furthermore, metabolome studies are vital for
producing knowledge about physiological mechanisms and/or metabolic pathways
regulated in a crop under a stress condition to allow plant adaptation against harsh
environments, to build integrated networks among genomic and metabolomics and
to help the researcher to accomplish enriched information to estimate phenotype and
manipulate the agronomic trait by genome and/or metabolite engineering in plants.
However, a broad-spectrum application of the super- and pan-genome remains to be
exploited to attain more precision in determining the phenotypes in plants related to
the agronomic traits.

Particularly, developing countries are lagging to obtain benefits from the advanced
technologies (ATech) due to very few investments to establish the state-of-the-art sequenc-
ing genomic center and large-scale or even small-scale robotic laboratories and provide
services to the farming communities for the pathogen identification to design a better con-
trol strategy. Lack of funds for establishing infrastructure, less awareness about advanced
technologies, training workshops, or increasing corruption may be the causes of decline in
agriculture production. Now, the government and private sectors are actively participating
in transfer-technology collaborative programs to disseminate the ATech among farming
communities and open Hi-Technology centers to provide services and utilize bioinformat-
ics and biotechnological tools to enhance crop production. Universities are also training
students and producing the researchers that can construct NGS libraries and generate
sequence data to interpret a better understanding of stress regulation mechanism in a crop.
People can visit the online-accessible portal to acquire more information related to crop
diseases or pathogens using artificial-intelligence-equipped devices or smart phones due to
high-speed internet availability.

Additionally, it is necessary to refine genome assemblies by resequencing reference
genomes with advanced NGS technologies and determining metabolites among cultivated
and wild plants. Integration among various fields such as transcriptomes, epigenomes,
proteomes, phenomes, genomes, and metabolomes, also demands advanced programming
language and database creation to build a network that can assist in understanding the
molecular mechanism of an appeared phenotype in plants. Bulk data generation requires
an automated pipeline or operating systems that can perform routine tasks such as the
generation of sequence data and interpretation of the results using the developed build-
in bioinformatic tools. Consequently, comprehensive knowledge in ATech will facilitate
comparative genomics to explore unmined genomes of plants and improve or find new
ways of sustainable crop production.
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