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Abstract: Phenylpropanoids are crucial for the growth and development of plants and their inter-
action with the environment. As key transcriptional regulators of plant growth and development,
MYB-like transcription factors play a vital role in the biosynthesis of phenylpropanoid metabolites.
In this study, we functionally characterized PmMYB6, a Pinus massoniana gene that encodes an
R2R3-MYB transcription factor. It was confirmed by qPCR that PmMYB6 was highly expressed in
the flowers, xylem, and phloem of P. massoniana. By overexpressing PmMYB6 in tobacco and poplar,
we found that transgenic plants had enlarged xylem, increased content of lignin and flavonoids,
and up-regulated expression of several enzyme genes of the phenylpropane metabolism pathway
to different degrees. The above research results indicate that PmMYB6 is involved in the metabolic
flux distribution of different branches of the phenylpropane metabolic pathway, and the results may
provide clues for the regulation of metabolic fluxes between flavonoids and the lignin biosynthesis
pathways of P. massoniana, as well as provide a basis for the molecular breeding of P. massoniana.

Keywords: MYB transcription factor; PmMYB6; phenylpropane metabolic pathway; lignin; flavonoids;
Pinus massoniana

1. Introduction

Phenylpropanoids are essential secondary metabolites in plants that play a crucial role
in plant development, growth, and defense against biotic and abiotic stress [1–3]. Lignin,
flavonoids, and other compounds are produced in plants through the phenylpropane
metabolic pathway [4,5]. Lignin is widely found in the woody tissues of vascular plants,
where it hardens the cell wall by tightly adhering to cellulose and hemicellulose to form
an interwoven network. Flavonoids are secondary metabolites that accumulate widely
in vascular plants and are involved in physiological processes such as pest and disease
defense, ultraviolet protection, growth hormone transport, root development, seed and
pollen germination, and signaling by symbiotic microorganisms [3,4]. Flavonoid com-
pounds in plants mainly include anthocyanins, tannins, and flavonols. The phenylpropane
metabolic pathway is regulated by various internal factors such as structural genes and
transcription factors as well as external variables such as environmental stimuli. The
phenylpropane biosynthetic pathway starts with phenylalanine, and undergoes a series
of enzymatic reactions to produce lignin and flavonoids. It has been shown that varia-
tions in the expression levels of the genes phenylalanine ammonia-lyase (PAL), cinnamate
4-hydroxylase (C4H), and 4-coumarate-CoA ligase (4CL) affect both lignin and flavonoids
at the same time, but changes in the expression levels of the genes chalcone isomerase
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(CHI), dihydroflavonol 4-reductase (DFR), and chalcone synthase (CHS) primarily af-
fect the biosynthesis of flavonoids. The biosynthesis of lignin is principally influenced
by the expression levels of the genes cinnamoyl-CoA reductase (CCR), cinnamyl alco-
hol dehydrogenase (CAD), caffeic acid 3-O-methyltransferase (COMT), and caffeoyl CoA
3-O-methyltransferase (CCoAOMT) [4]. Research on the biosynthetic pathways of phe-
nolpropane analogs has revealed a close relationship between flavonoid compounds and
lignin biosynthesis [6].

The MYB family of transcription factors is a widely studied group in plants, playing
a critical role in the transcriptional regulation of different branches of the phenylpropane
metabolic pathway [7–9]. Extensive research has shown that several members of the
MYB transcription factor class act as essential transcriptional regulators of both flavonoid
metabolite production and lignin synthesis [10]. Overexpression of VvMYB5a in tobacco
and petunia induces the expression of key genes, including 4CL and CCoAOMT, involved in
regulating the different branches of the phenylpropane metabolic pathway. This induction,
in turn, impacts the entire pathway of phenylpropane synthesis and affects the metabolism
of phenylpropane compounds [11]. AtPAP1 (MYB75), initially identified as an activator of
anthocyanin biosynthesis, was later discovered to regulate secondary wall construction. It
interacts with the transcription factor KNAT7 and is involved in the transcriptional regula-
tion of the phenylpropane metabolic pathway [12,13]. Conversely, CmMYB1 and CmMYB8
in Chrysanthemum are negative regulators of lignin and flavonoid synthesis, resulting in
reduced lignin and flavonoid content in overexpressed plants by down-regulating many
genes encoding lignin and flavonoid synthesis and altering lignin composition [14,15].
Heterologous expression of ZmMYB42 in Arabidopsis has been reported to reduce lignin
content, alter lignin composition, and inhibit flavonoid biosynthesis [16]. Additionally,
overexpression of PtoMYB6 in poplar results in the accumulation of anthocyanin and
proanthocyanidin while negatively regulating lignin biosynthesis [17].

Pinus massoniana Lamb., an important pulp tree species in China, occupies a pivotal
position in the development of the wood industry [18]. Current research on MYB-like
transcription factors in P. massoniana is mainly focused on lignin regulation. In this regard,
PmMYB7 promotes lignin synthesis in P. massoniana by interacting with PmCCoAOMT2,
a key enzyme gene for lignin synthesis [19]. Moreover, studies show that overexpression
of PmMYB4 in tobacco is beneficial for lignin and cellulose content. The transgenic plants
showed an increase in cell wall thickness, and up-regulation of lignin biosynthesis genes
such as CCoAOMT and HCT, thereby positively affecting lignin levels [20]. However,
transcription factors that regulate both lignans and flavonoids have rarely been reported in
P. massoniana.

In a previously reported study, we identified 57 MYB proteins from P. massoniana, but
only a few of them were functionally characterized [21]. PmMYB6 belongs to the fifth
subfamily with PtrMYB086/087/134/183/101/97, and the members of this subfamily are
closely related to the biosynthesis of flavonoids. Based on these findings, we decided
to investigate the function of PmMYB6 and further characterize PmMYB6 to enrich our
understanding of the function of MYB transcription factors in P. massoniana.

2. Results
2.1. Isolation and Characterization of PmMYB6

Based on the 57 MYB proteins identified from the four P. massoniana transcriptome
data [21], one of the coding sequences was named PmMYB6 (GenBank: MW579322.1) after
comparison with the PrMYB6 (GenBank: AQW79622.1) coding sequence of Pinus radiata, a
closely related species of P. massoniana. The full-length cDNA of the PmMYB6 gene was
1287 bp in length, with a presumed open reading frame (ORF) length of 1125 bp, encoding
374 amino acids (Supplementary Figure S1 and Table S1). The estimated molecular weight
of the protein and its theoretical isoelectric point (pI) were 41.87 kDa and 5.56, respectively.
Using the NCBI conserved domain database, we found that the conserved structural
domains of this protein include the MYB binding domain at 67-112aa and the SANT
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structural domain at 72-114aa, and that PmMYB6 belongs to the SANT protein superfamily
(Figure 1A). Protein hydrophobicity was analyzed using the online software ProtScale 3.0,
the protein transmembrane region was predicted and analyzed using TMHMM 2.0, and the
protein signal peptide was predicted using SignalP 4.1. The results showed that PmMYB6 is
a hydrophilic protein, which does not have a transmembrane structure and signal peptide
(Figure 1B–D).
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PtrMYB086/087/134/183/101/97 [21], and this subfamily is associated with anthocyanin bi-
osynthesis [22]. To further explore the phylogenetic relationships of the PmMYB6 protein, 

Figure 1. Structural characterization and phylogenetic analysis of the PmMYB6 protein. (A) Structure
of the PmMYB6 protein. (B) Predictive analysis of the hydrophobicity of the PmMYB6 protein.
(C) Predictive analysis of the signal peptide of the PmMYB6 protein. (D) Predictive analysis of the
transmembrane region of the PmMYB6 protein. (E) Phylogenetic analysis of PmMYB6 and other
R2R3−MYB proteins, with the blue region associated with phenylpropane synthesis, the yellow
region associated with flavonoid synthesis, and the green region associated with lignin synthesis.
(F) Amino acid comparison of PmMYB6 in P. massoniana with MYB proteins from other species; black
boxes mark the R2 and R3 structural domains, and red dashed boxes indicate motifs interacting with
bHLH−type proteins.

Previous studies have shown that PmMYB6 belongs to subfamily 5 as PtrMYB086/087/
134/183/101/97 [21], and this subfamily is associated with anthocyanin biosynthesis [22].
To further explore the phylogenetic relationships of the PmMYB6 protein, we constructed
a phylogenetic tree of it with some known R2R3 MYBs from other species. Among the
selected R2R3−MYB proteins, PmMYB6 clustered with PtMYB6, which is related to phenyl-
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propane synthesis (Figure 1E, Supplementary Table S2). By using DNAMAN 6.0.3.48
software, we found that PmMYB6 has intact R2 and R3 containing regions. The R2 struc-
ture includes three highly conserved tryptophans (W) with 19 amino acid residues between
each pair of tryptophans. The R3 structure has a (−F/I/L/M− (X18) −w−(X18) −w−)
structure that contains 2 extremely conserved tryptophan (W). The conserved motif found
in the R3 region of the PmMYB6−encoded protein interacts with bHLH−type proteins and
is associated with flavonoid biosynthesis. ([DE]Lx2[RK]x3Lx6Lx3R, indicated by the red
dashed box) (Figure 1F).

2.2. Transcriptional Activation of PmMYB6

To determine the transcriptional activity of PmMYB6, the GAL4 DNA-binding domain
fusion PmMYB6 protein was constructed. It was co-transformed with the pGADT7 vector
in a yeast strain. The results showed that PmMYB6 could grow with the bait vector on
the defective medium and showed a blue color after the addition of X−α−Gal, indicating
that PmMYB6 has transcriptional self-activating activity and can activate the expression of
downstream reporter genes (Figure 2).
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Figure 2. Analysis of the transcriptional activity of PmMYB6. pGADT7-LargeT + pGBKT7-LaminC
served as a negative control and pGADT7-LargeT + pGBKT7-p53 served as a positive control. SD/-TL:
SD/-Leu/-Trp; SD/-TLHA: SD/-Trp/-Leu/-His/-Ade.

2.3. The Expression Patterns of PmMYB6 in P. massoniana

In order to investigate the tissue specificity of PmMYB6, the expression levels of the
PmMYB6 gene in 15-year-old P. massoniana flowers (F), xylem (X), old stems (OS), young
stems (YS), old needles (ON), young needles (YN), roots (R), and phloem (P) were examined
by qRT−PCR (Figure 3). The highest expression of PmMYB6 was found in flowers, followed
by that in xylem and phloem. The expression in young needles, young stems, and old
stems decreased sequentially, and the expression in old needles and roots was weak.
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Figure 3. Expression patterns of PmMYB6 in different tissues of P. massoniana. The expression level
in flowers was set to value 1. X-axis: F, flowers; X, xylem; OS, old stems; YS, young stems; ON,
old needles; YN, young needles; R, roots; P, phloem; Y-axis: relative expression. Data in the figure
are presented as mean ± standard deviation (n = 3). The different letters above the bars represent
significant differences (p < 0.05).

2.4. Overexpression of PmMYB6 in Tobacco Promotes the Accumulation of LIGNIN Content

To investigate the function of PmMYB6, we initially constructed the p35S::PmMYB6
vector. It was overexpressed in tobacco, and three independent transgenic strains were ob-
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tained by PCR using gene-specific primers and qRT−PCR to confirm the transgenic strains
(Supplementary Figure S2, Figure 4A), all of which exhibited high levels of transcription.
The three transgenic strains were shorter in height and had thicker basal stems than the
wild type (Figure 4B, and Supplementary Figures S3 and S4). When scanning electron
microscopy was used to characterize lignification, it was found that the xylem was thicker
in the stems of tobacco OE lines than in the wild type (Figure 4C,D). We examined the
secondary wall composition in 3-month-old transgenic and wild-type tobacco to further
ascertain the impact of PmMYB6 on lignin synthesis. The results showed that the lignin
content of the transgenic tobacco strains increased by 0.15% and 2.54% compared to the
wild type. Among them, OE6 reached a highly significant level. Both transgenic strains
showed a highly significant decrease in cellulose content compared to the wild type, while
the hemicellulose content increased significantly (Figure 4E–G).
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Figure 4. Overexpression of PmMYB6 in tobacco promotes the accumulation of lignin content.
(A) Relative expression assay of transgenic tobacco. WT: wild type; OE3, OE4, and OE6: three
independent transgenic lines. * The mean performances of the transgenes were significantly different
from those of the wild type (p < 0.05). ** The mean performance of the transgenes was extremely
significantly different from that of the wild type (p < 0.01). (B) Growth performance of wild type and
three PmMYB6 transgenic lines. (C) Scanning electron micrograph of the fourth internode stem of
wild-type tobacco. The yellow text indicates the xylem thickness of the wild type and the transgenic
type of tobacco. Scale bar = 1 mm. (D) Scanning electron micrograph of a fourth internode stem of
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transgenic tobacco. The yellow text indicates the xylem thickness of the wild type and the transgenic
type of tobacco. Scale bar = 1 mm. (E–G). Secondary wall fractions in wild-type and transgenic
tobacco stalks. Each data point represents the mean ± SE (n = 3). ** The mean performance of the
transgenes was extremely significantly different from that of the wild type (p < 0.01).

2.5. Overexpression of PmMYB6 in Poplar Promotes the Accumulation of Flavonoid Content

To investigate the function of PmMYB6 in woody plants, we expressed the p35S::PmMYB6
vector in poplar. Three independent transgenic strains were obtained by identifying positive
plants using PCR with gene-specific primers and RT−qPCR (Supplementary Figure S5,
Figure 5A,B). We found that transgenic poplars were shorter in height and had thicker
basal stems than the wild type (Supplementary Figures S6 and S7). The terminal buds,
petioles, and two or three surrounding leaves of the transgenic poplars were significantly
redder under the same growing conditions. When we used the tannin-specific stain
4-dimethylaminocinnamaldehyde (DMACA) to stain the third leaves of wild-type and
overexpression poplar trees, we were able to notice that the wild-type leaves did not stain
while the overexpression poplar leaves displayed a considerable concentration of tannins
(Figure 5A).

The content of various types of tannins and anthocyanins varied according to the pres-
ence of the transgene. We measured the anthocyanin and tannin content in wild-type and
overexpressed poplar samples. Among them, the contents of 21-epicatechin, 22-catechin
catechin, and 13-gallic acid gallate all increased, but the content of 78-epicatechin gallate
fell by 347.989 ng/g (Table 1). In comparison to the wild type, all four types revealed a sub-
stantial difference in tannin concentration. In terms of anthocyanin content, all components
were significantly elevated, except for petunidin, which was not significantly different from
the wild type (Table 2).

Table 1. Tannin fraction content of wild-type and overexpressed PmMYB6 poplar leaves.

WT (ng/g) PmMYB6-OE (ng/g)

13-Gallic acid 120.177 ± 2.483 157.650 ± 2.730 **
22-Catechin 5465.054 ± 54.855 34,525.780 ± 111.787 **

21-Epicatechin 375.651 ± 6.638 1862.982 ± 41.593 **
78-Epicatechin Gallate 1048.251 ± 1.191 700.262 ± 13.386 **

The values shown in the graph are mean ± SE (n = 3). ** Mean performance of transgenes significantly different
from the wild type (p < 0.01).

Table 2. Anthocyanin fraction content of wild-type and overexpressed PmMYB6 poplar leaves.

WT (ng/g) PmMYB6-OE (ng/g)

Pelargonidin 0.031 ± 0.005 0.685 ± 0.087 **
Cyanidin 16.170 ± 0.200 67.260 ± 7.330 **

Delphinidin 3.272 ± 0.045 4.023 ± 0.258 *
Petunidin 0.349 ± 0.003 0.364 ± 0.034
Malvidin 0.085 ± 0.004 0.162 ± 0.005 **

The values shown in the graph are mean ± SE (n = 3). * The mean performance of the transgenes differed from
the wild type (p < 0.05). ** Mean performance of transgenes significantly different from the wild type (p < 0.01).

Toluidine blue staining of the petiole of the sixth leaf and the stem of the fourth intern-
ode was used to identify the degree of lignification in wild-type and transgenic poplars. In
comparison to the wild type, the poplar OE lines had thicker stems and significantly more
layers of xylem cells in their petioles, according to the results. (Figure 5C–F).
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Figure 5. Overexpression of PmMYB6 in poplar promotes the accumulation of flavonoids and
lignin content. (A) Apical, third leaf, and DMACA staining of wild-type and transgenic poplars.
WT: wild type; L1 and L2: two independent transgenic lines. Scale bar = 1 cm. (B) Relative ex-
pression in transgenic poplars. ** The mean performance of the transgenes was extremely sig-
nificantly different from that of the wild type (p < 0.01). (C) Fourth internode stem of wild-type
poplar. xy: xylem. Scale bar = 200 µm. (D) The fourth internode stems from PmMYB6-OE trans-
genic poplar. xy: xylem. Scale bar = 200 µm. (E) Petiole of the sixth leaf of wild-type poplar. xy:
xylem. Scale bar = 100 µm. (F) Petiole of the sixth leaf of PmMYB6-OE transgenic poplar. xy: xylem.
Scale bar = 100 µm. (G) Transcriptional profiles of selected genes in the biosynthesis of phenyl-
propanoids. The values shown in the graph are mean ± SE (n = 3). * The mean performance of
the transgenes differed from that of the wild type (p < 0.05). ** Mean performance of transgenes
significantly different from the wild type (p < 0.01).

By using qPCR, the expression levels of the key upstream enzyme genes PAL1, PAL2,
PAL3, PAL5, C4H2, 4CL3, and 4CL5 in the phenylpropanoid metabolic pathway, the key
enzyme genes HCT1, HCT6, C3H3, and COMT1 in the lignin synthesis pathway, and the
key enzyme genes CHI1, DFR2, FLS1, ANS1, LAR3, and UFGT1 in the flavonoid synthesis
pathway were examined in transgenic poplars. The results showed that the expression of a
few key enzyme genes in the lignin and flavonoid synthesis pathways was up-regulated to
varying degrees in the transgenic plants compared to the wild type, which is consistent
with the observed increase in the transgenic plants’ capacity to synthesize tannins and
anthocyanins (Figure 5G).
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3. Discussion

Phenylpropanoids are widespread secondary metabolites in plants, including metabo-
lites such as lignin, flavonoids, and various phenolic acids. Phenylpropanoids are essential
for the growth and development of plants and their interaction with the environment [23,24].
Flavonoids, including tannins and anthocyanins, are actively involved in plant responses
to adversity as antioxidants or signaling molecules [25]. Lignin is a component of the
secondary plant wall. The xylem cell wall is hydrophobic due to lignin’s insolubility in
water and the chemical characteristics of phenolic compounds, which helps the plant’s
ability to transport water, minerals, and organic matter over long distances and increases
its resistance to disease [26]. The exploration of synergistic metabolism and co-regulation of
lignin and flavonoid compounds offers potential promise for improving the accumulation
of both compounds. It has been shown that MYB transcription factors are involved in plant
secondary metabolism, and MYB transcription factors that directly control the synthesis
of phenylpropanoid substances are now known to have been isolated and identified in a
variety of plants. For instance, it is believed that PtMYB8 is a component of a conserved
transcriptional regulatory network that controls the biosynthesis of lignin and flavonoids,
positively controlling lignin synthesis and also affecting the expression levels of genes that
are involved in the flavonoid biosynthetic pathway [27].

In this study, we analyzed and identified the PmMYB6 transcription factor of P. masso-
niana. The presence of an intact R2R3 structure for the P. massoniana transcription factor
PmMYB6 is consistent with the reported characteristics of R2R3-MYB-like transcription
factors [28]. Studies have shown that the function and structure of transcription factors are
closely related, as is the case with MYB-like transcription factors [7].

Previous studies have shown that PmMYB6 belongs to the same subclade as PtrMYB086/
087/134/183/101/97 [21]. Overexpression of the transcription factor MYB134 from this sub-
clade in poplar regulates proanthocyanidin synthesis, and it binds to promoter fragments
containing AC elements, which are present in the promoters of many phenylpropanoid
biosynthesis genes [29,30]. On this basis, we constructed a phylogenetic tree together with
some phenylpropanoid-related R2R3 MYBs from other species and showed that PmMYB6
clustered with PtMYB6, which up-regulates flavonoid biosynthesis and inhibits lignin
accumulation. Therefore, it is postulated that PmMYB6 is capable of participating in the
process of phenylpropane metabolism.

We found that PmMYB6 is a transcriptional activator, and also that the relative expres-
sion of the PmMYB6 gene was highest in the flowers of P. massoniana, followed by the xylem
and phloem, suggesting that PmMYB6 may be involved in the regulation of flavonoid and
lignin biosynthesis in P. massoniana.

Overexpression of PmMYB6 in tobacco promoted xylem development and increased
lignin content in stems. In poplar, overexpression of PmMYB6 increased the expression
of genes for most of the important enzymes in the phenylalanine metabolic pathway and
increased the content of several types of flavonoids. At the same time, the xylem of poplar
OE strains was thickened, and the xylem cell layer increased significantly. Therefore,
PmMYB6 can be considered an activator of the phenylalanine metabolic pathway. This
is similar to the performance of PtoMYB6, the homolog of PmMYB6 in poplar, which
directly activates flavonoid structural genes, leading to increased levels of proanthocyanins
and anthocyanins, and is involved in the regulation of different branches of the poplar
phenylpropane biosynthesis pathway [17]. By contrast, PtoMYB6 inhibits secondary cell
wall formation, which is explained by the functional specificity of these homologs in
poplar and P. massoniana. Furthermore, the phenylpropane metabolic pathway produces
a variety of compounds, and it is possible that PmMYB6 inhibits the synthesis of other
phenylpropane metabolites. In the flavonoid biosynthetic pathway, PmMYB6 may directly
or indirectly activate the expression of key enzyme genes in the pathway, resulting in
increased synthesis of tannins and anthocyanins. In addition, the R2R3 domain of the
PmMYB6 transcription factor contains a conserved sequence that interacts with the bHLH
protein. This suggests that PmMYB6 may interact with the bHLH protein in plants and use
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the bHLH protein as a bridge to form the MBW protein complex that specifically regulates
flavonoid biosynthesis with the WDR protein, which in turn enhances the effect of MYB6
on downstream gene expression. This phenomenon is common among other plants [31–33].
For example, PtoMYB6, a homolog of PmMYB6 in poplar, can interact directly with TT8, a
bHLH protein, leading to transcriptional activation of flavonoid structural genes [17]. In
Solanum lycopersicum, the Aft (MYB) protein interacts with SlJAF13 (bHLH) and SlAN11
(WDR) to form the MBW activation complex and activate the expression of SlAN1 (bHLH).
With the formation of the core MBW activation complex of SlAN1, Aft, and SlAN11, the
expression of the SlAN1 gene and most of the anthocyanin structural genes was activated
and anthocyanin pigments in the fruit were enhanced [34].

In P. massoniana, lignin and flavonoids are two important phenylpropane metabolites
whose biosynthesis requires the rational coordination of metabolic fluxes by the phenyl-
propane metabolic pathway. However, the mechanisms of the transcriptional regulation
of metabolic flux allocation in different branches are largely unknown. How MYB-like
transcription factors coordinate the metabolic allocation of the phenol propane metabolic
pathway in response to various external environmental conditions to meet the plant’s
own growth requirements becomes a key question to be answered. Therefore, further
investigation of the regulation of flavonoids and lignin biosynthesis by the transcrip-
tion factor PmMYB6 in P. massoniana and the distribution of metabolic fluxes in different
branches of the phenylpropane metabolic pathway are important questions that need to be
further explored.

4. Materials and Methods
4.1. Plant Materials

Hybrid poplar (Populus davidiana × P. bolleana) and tobacco (Nicotiana sanderae) were
grown on MS solid medium, and then rooted plants (approximately 20 days) were trans-
ferred to pots containing nutrient soil (pH 5.5–7.0, organic matter content ≥ 35%, pots
of 12.2 cm diameter). Rooted plants were grown in the greenhouse at 24 ◦C under a
16 h/8 h light/dark cycle with supplemental light (4500 lx). The P. massoniana material was
15 years old, from Nanjing Forestry University.

4.2. RNA Isolation and First-Strand cDNA Synthesis

RNA was extracted from P. massoniana, tobacco, and poplar using the FastPure Plant
Total RNA Isolation Kit (Vazyme Biotech, Nanjing, China). First-strand cDNA was syn-
thesized using the One-step gDNA Removal and cDNA Synthesis Kit (TransGen Biotech,
Beijing, China).

4.3. RT-qPCR

Each PCR mixture (10 µL) contained 1 µL of diluted cDNA (20× dilution), 5 µL of
SYBR Green Real-time PCR Master Mix, 0.4 µL of each primer (10 µM), and 3.2 µL of
ddH2O. Relative transcript abundances were calculated using the 2−∆∆Ct method. All
primers used for RT-qPCR are shown in Table S1 of the Supplementary Materials. Each
qRT-PCR result was based on the mean performance of three biological replicates.

4.4. Agrobacterium Transformation

The p35::PmMYB6 construct was transferred into Agrobacterium tumefaciens EHA105
using the freezing transformation method and then into tobacco and poplar using the
Agrobacterium-mediated transformation method.

Young leaves from the top of sterile seedlings were cut into 1 cm2 squares and cultured
for 3 days on cured MS medium containing 1 mg/L 6-benzyl aminopurine (6BA) and
0.5 mg/L 1-naphthylacetic acid (NAA). Agrobacterium cells carrying p35::PmMYB6 were
grown in vitro until they reached an OD of 0.5–0.6, harvested by centrifugation, and then
resuspended in an equal volume of liquid MS medium supplemented with acetosyringone
(As). Leaf squares were immersed in the cell suspension for 10 min, then blotted dry
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and incubated in darkness for 3 days on cured MS medium containing 0.4 mg/L 6BA,
0.1 mg/L NAA, 0.01 mg/L thidiazuron (TDZ), and 100 mmol/L As. Afterward, they were
transferred to cured MS medium containing 0.4 mg/L 6BA, 0.1 mg/L NAA, 0.01 mg/L TDZ,
and 200 mg/L timentin (Tim) for another 7 days. Subsequently, these explants were reinocu-
lated onto cured MS medium containing 0.4 mg/L 6BA, 0.1 mg/L NAA, 0.01 mg/L TDZ,
200 mg/L Tim, and 50 mg/L kanamycin (Kana). The medium was changed every 7 days
during this period until after small green shoots had grown. The shoots were transferred to
cured MS medium containing 0.4 mg/L 6BA, 0.1 mg/L NAA, 200 mg/L Tim, and 50 mg/L
Kana. After approximately 20 days, shoots with Kan resistance were cut and transferred to
MS medium containing 0.3 mg/L indole-3-butyric acid (IBA) and 200 mg/L Tim.

The method of genetic modification of tobacco is similar to that of poplar. The leaves
were cut into 2 cm squares and placed on MS medium containing 0.2 mg/L NAA and
2 mg/L 6-BA, and incubated in the dark for 3 days. The prepared Agrobacterium was
resuspended in MS liquid medium supplemented with As, infiltrated for 20 min, placed on
MS curing medium containing 0.2 mg/L NAA and 2 mg/L 6-BA, and incubated in the dark
for 3 d. The leaves were transferred to MS medium containing 0.2 mg/L NAA, 2 mg/L
6-BA, 250 mg/L cefotaxime sodium salt (Cef), and 50 mg/L Kana. When the leaves had
differentiated and formed buds, they were transferred to cured MS medium containing
250 mg/L Cef, 50 mg/L Kan, 0.15 mg/L NAA, and 1.5 mg/L 6-BA. After about 15 d, the
shoots were cut and transferred to MS rooting medium containing 100 mg/L Cef, 25 mg/L
Kan, and 0.3 mg/L IBA.

When the rooted seedlings had grown to about 8 cm and had a well-developed root
system, they were then removed, washed with water to remove the agar from the roots,
transplanted into the soil, and placed in the greenhouse for cultivation.

4.5. Scanning Electron Microscope

Fifth stem nodes of 2-month-old wild-type and transgenic tobacco were quickly placed
in a container with fixative, fixed for more than 24 h, dried, and sectioned. Xylem thickness
was quantified according to the experimental method of Yu et al. [35], using the image anal-
ysis software IMAGEJ 1.52a and scanning electron microscopy (FEI Quanta 200, Hillsboro,
WA, USA).

4.6. Histological Sectioning

Sections were made from stem segments of the fourth stem node and sixth leaf petioles
of transgenic and wild-type poplars, stained with toluidine blue, and observed with upright
microscopy (Nikon Eclipse E100, Tokyo, Japan).

4.7. Determination of Secondary Wall Fraction Content

Intact stems of wild-type and transgenic tobacco grown for 2 months were used
as material for the determination of hemicellulose content using the hydrochloric acid
hydrolysis method [36], lignin content using the concentrated sulfuric acid method on
the same principle as the Klason method [37,38], and cellulose content according to the
anthranilic sulfate colorimetric method [39]. Three biological replicates and three technical
replicates were taken for each strain.

4.8. DMACA Staining of Poplar Leaves

DMACA staining methods are described in reference to Li et al. [17,40,41]. Poplar
leaves were placed in a Petri dish and 100 mL of a pre-prepared 30% (v/v) glacial acetic acid-
methanol solution was added for decolorization. The leaves were placed on filter paper
for a few moments, and after the excess liquid had been completely absorbed, DMACA
staining solution was added for 5 min, and observations were made.
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4.9. Analysis of Flavonoid Composition

To analyze the tannin content, 2-month-old transgenic and wild-type poplar leaves
were ground in liquid nitrogen until crushed, referring to the method of Lihu Yao [42]. An
amount of 1 g of the crushed sample was weighed into a 50 mL conical flask with a stopper,
25 mL of acetone solution was added, and the extraction was performed by ultrasonication
for 30 min; the supernatant was removed, the residue was added to 25 mL of acetone
solution, and the extraction was repeated. After adding 5 mL of water, it was mixed
thoroughly, passed through a 0.22 µm organic phase filter membrane, and separated by
HPLC (Agilent 1260, CA, USA).

For the analysis of anthocyanin composition, referring to the method of Abdollah
Yari [43], the leaves of genetically modified and wild-type poplars grown for 2 months
were ground to powder in liquid nitrogen, and about 1 g of the sample was weighed into a
test tube. After natural cooling, 1 mL was centrifuged with acetonitrile solution to 10 mL,
passed through a 0.22 µm filter membrane, and detected by HPLC-MS/MS.

4.10. Statistical Analysis

All experimental data were obtained from at least three replicates, and statistical
analysis was performed with Student’s t-test. In all experiments, significant differences in
the data were evaluated by one-way ANOVA. * p < 0.05 and ** p < 0.01.

5. Conclusions

In this study, we cloned the ORF of PmMYB6 from P. massoniana. We found that
the transcription factor PmMYB6 belongs to the group of R2R3-MYB transcription factors
involved in regulating the phenylpropane metabolism pathway in P. massoniana. PmMYB6
is self-activating and is highly expressed in the flowers, xylem, and phloem of P. massoniana.
Heterologous expression of PmMYB6 in tobacco resulted in enlarged xylem, increased
hemicellulose and lignin content, and decreased cellulose content in transgenic tobacco.
Heterologous expression of PmMYB6 in poplar was phenotypically consistent with that
of tobacco, both showing shorter plant height, thicker basal stems, and enlarged xylem.
In addition, transgenic poplar showed increased flavonoid content and up-regulation of
several enzyme genes in the phenylpropane metabolic pathway to varying degrees. All
these results suggest that PmMYB6 is a key factor involved in the regulation of several
branches of the phenylpropane metabolic pathway.
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