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Abstract: Pinus massoniana is an important coniferous tree species for barren mountain afforestation
with enormous ecological and economic significance. It has strong adaptability to the environment.
TEOSINTE BRANCHED 1/CYCLOIDEA/PCF (TCP) transcription factors (TFs) play crucial roles in
plant stress response, hormone signal transduction, and development processes. At present, TCP
TFs have been widely studied in multiple plant species, but research in P. massoniana has not been
carried out. In this study, 13 PmTCP TFs were identified from the transcriptomes of P. massoniana. The
phylogenetic results revealed that these PmTCP members were divided into two categories: Class I
and Class II. Each PmTCP TF contained a conserved TCP domain, and the conserved motif types and
numbers were similar in the same subgroup. According to the transcriptional profiling analysis under
drought stress conditions, it was found that seven PmTCP genes responded to drought treatment to
varying degrees. The qRT-PCR results showed that the majority of PmTCP genes were significantly
expressed in the needles and may play a role in the developmental stage. Meanwhile, the PmTCPs
could respond to several stresses and hormone treatments at different levels, which may be important
for stress resistance. In addition, PmTCP7 and PmTCP12 were nuclear localization proteins, and
PmTCP7 was a transcriptional suppressor. These results will help to explore the regulatory factors
related to the growth and development of P. massoniana, enhance its stress resistance, and lay the
foundation for further exploration of the physiological effects on PmTCPs.
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1. Introduction

Transcriptional regulation is an important mechanism for regulating gene expression
during plant growth, development, and metabolism [1]. Transcription factors (TFs) are
regulatory proteins that can directly or indirectly interact with cis-acting elements in
promoters to regulate the expression of target genes, thereby regulating plant development
and responding to external stresses [2]. Previous studies have analyzed the conserved
regions of TEOSINTE BRANCHED 1 (TB1) protein of Zea mays, CYCLOIDEA (CYC)
protein of Antirrhinum majus, and PROLIFERATING CELL TRANSCRIPTION FACTORS
1/2 (PCF1/2) of Oryza sativa. It was found that they all contained the bHLH conserved
domain; therefore, the TEOSINTE BRANCHED 1/CYCLOIDEA/PCF (TCP) TF family
was defined [3]. Presently, TCP TFs have been studied in many species, for example,
Arabidopsis thaliana [4], Gossypium raimondii [5], and Malus domestica [6].

The structural characteristics of TCP TFs are that they have a basic Helix–Loop–
Helix (bHLH) structure, also known as the TCP domain, which mainly participates in
protein interactions and DNA binding [7,8]. TCP TFs can be divided into two categories:
Class I and Class II. The Class II protein members have four more conserved amino
acid residues than Class I protein members in the basic region of the TCP domain [9].
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Class I is also named the PCF subfamily. According to the differences in amino acid
sequences, especially the differences in the basic regions, the Class II members can be
further divided into CYC/TB1 and CIN subfamilies. In addition, a few members of the CIN
subfamily contain an arginine-rich motif (R domain), while the majority of members of the
CYC/TB1 subfamily contain the R domain [10,11]. The members of Class I can promote cell
differentiation and plant growth [12]. CYC/TB1 subfamily (Class II) members influence the
symmetry of plant floral patterns and inhibit the growth of axillary buds, thereby reducing
the number of branches [13,14]. The members of the CIN subfamily (Class II) can regulate
leaf development [4].

TCP TFs play important roles in various biological functions of plants, including seed
germination, organ differentiation, hormone regulation, signal transduction, and stress
response [15–17]. Relevant studies have shown that AtTCP4 can promote the biosynthesis
of auxin by regulating the expression of genes related to auxin biosynthesis enzymes [18].
AtTCP4 can induce the expression of lipoxygenase-related genes, which promotes the
synthesis of methyl jasmonate (MeJA) and the senescence of mature leaves [19]. PeTCP10
responds to abscisic acid (ABA) signals and enhances tolerance to drought stress [20]. Os-
PCF6 and OsTCP21 are target genes of microRNA319, which can significantly improve plant
resistance to low temperatures [21]. The AtTCP14 gene can directly activate the cis-acting
elements in vascular tissue that regulate axillary bud growth, thus mediating the expression
of germination-related genes and promoting plant growth [22]. After Ziziphus jujuba is
infected with phytoplasma, the expression levels of ZjTCP genes increase in leaves and
phloem, indicating that ZjTCPs have important roles in resistance to phytoplasma [23].

Pinus massoniana is the pioneer tree of afforestation in barren mountains in south
China. It is the main coniferous tree species and is generally used in construction, timber,
and papermaking; it also plays crucial roles in environmental regulation and increasing
carbon sequestration [24]. P. massoniana can secrete pine resin, which is a secondary
metabolite mainly composed of terpenoids. Its components have significant functions
on the defense systems [25–27]. However, P. massoniana is always affected by various
unfavorable factors throughout its entire growth process. The distribution environment
of P. massoniana is complex, and the uneven distribution of rainfall limits the growth of
P. massoniana and limits its expansion in area [28]. Drought stress leads to stomatal closure
of P. massoniana, which seriously reduces its photosynthetic activity [29]. To adjust to
complex and changeable conditions, plants have evolved various regulatory mechanisms.
Moreover, TCP TFs play crucial roles in numerous biological processes in plants [30,31].
For example, the AtTCP10 gene is involved in cell differentiation, leaf morphogenesis,
and other biological processes [32]. Under bright light conditions, AtTCP15 can regulate
anthocyanin accumulation and protect plant cells from damage [33]. Therefore, it is of great
significance to study the functions of TCP TFs of P. massoniana. At present, there are still no
available genome resources for P. massoniana. Therefore, we identified the members of the
PmTCP TF family based on the transcriptomes, namely, CO2 stress transcriptome, tender
shoots transcriptome, and drought stress transcriptome. Furthermore, identification and
analysis of 13 PmTCP TFs using bioinformatics methods. In addition, PmTCP genes were
used for expression pattern analysis under different conditions. These results not only laid
a theoretical foundation for the study of PmTCP TFs but also provided a reference for the
response mechanism to external stress of P. massoniana.

2. Results
2.1. Identification of TCP Family Proteins in P. massoniana

A total of 13 TCP proteins were identified from the P. massoniana transcriptomes after
removing sequences without conserved structural domain and duplicate sequences. Then,
the 13 PmTCP TFs were named PmTCP1 to PmTCP13, and their protein sequences were
used for physicochemical properties analysis (Table S1). These protein sequences varied
from 182 (PmTCP4) to 626 (PmTCP10) amino acids (aa) in length, with the molecular
weight (MW) varying from 19,932.49 (PmTCP4) to 68,110.09 (PmTCP10) Da. The isoelectric
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point (pI) values ranged from 6.69 (PmTCP2) to 9.49 (PmTCP7), and the aliphatic index
varied from 52.27 (PmTCP11) to 74.07 (PmTCP4). In addition, the instability index (II) of
PmTCP TFs was all higher than 40, indicating that they were unstable proteins. The grand
average of hydropathicity (GRAVY) values were all negative, indicating that PmTCPs were
hydrophilic proteins.

2.2. Phylogenetic Analysis of the TCP Proteins

A phylogenetic evolutionary tree was constructed comprising 13 TCP protein se-
quences from P. massoniana, 24 TCP protein sequences from A. thaliana, 13 TCP protein
sequences from Picea abies, and 4 TCP protein sequences from Pinus taeda. The clustering
results (Figure 1) showed that all TCP TFs were classified into Class I PCF, Class II CIN, and
Class II CYC/TB1. According to the evolutionary classification of TCP TFs in A. thaliana,
the TCP TFs of the species were divided into two groups, namely, Class I and Class II.
Class I—also known as the PCF subfamily—and Class II could be further divided into
CYC/TB1 and CIN subfamilies (Figure 1). 7 PmTCP TF members were distributed in
the PCF subfamily. The CIN subfamily contained six PmTCP TF members. In addition,
Arabidopsis TCP members were observed in all subfamilies, while three gymnospermic
TCP members were only found in PCF and CIN subfamilies, indicating that TCP TFs of
P. massoniana were more closely related to P. abies and P. taeda in a phylogenetic relationship.
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Figure 1. Phylogenetic tree of the TCP protein family members of P. massoniana, A. thaliana, P. abies,
and P. taeda. The different color backgrounds and surrounding letters denote different groups. The
magenta circles, purple circles, yellow circles, and cyan circles represent TCP TFs of P. massoniana, A.
thaliana, P. abies, and P. taeda, respectively.

2.3. Conserved Structural Domain Analysis of PmTCP TFs

To confirm the conserved domain of the PmTCP TFs, multiple sequence alignments of
conserved domains were performed using DNAMAN 6.0 software. The result is shown in
Figure 2. All PmTCP proteins contained a complete TCP domain, including a Helix–Loop–
Helix domain and a basic domain. In the basic domain, Class I members PmTCP2, PmTCP3,
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PmTCP4, PmTCP5, PmTCP6, PmTCP11, and PmTCP12 lacked four amino acid residues
compared to Class II members. In the HLH region, conservative characteristic sites were
also present with lines. The results indicated that PmTCP proteins were highly conserved.
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Figure 2. Multiple sequence alignments of conserved domains of 13 TCP family proteins in P. masso-
niana. The brown, light red, light blue, and dark blue backgrounds imply protein identities of 33%,
50%, 75%, and 100%, respectively. The HLH region and basic region are marked with black lines.

2.4. Conserved Motif Identification of PmTCP TFs

A total of 10 conserved motifs were determined in the 13 PmTCP family TFs by the
MEME 5.5.4 software, and they were named motifs 1–10. The sequences of motifs are
listed in Table S2. The number of amino acids in the 10 motifs ranged from 11 to 50, and
motif 1 was the characteristic domain of TCP TFs. The distribution pattern of the motifs
is shown in Figure 3. All PmTCP proteins contain the conserved motif 1, indicating that
the structures of PmTCP TFs were complete. In addition, members of the same subfamily
generally contained similar motif types. For instance, all members of Class I contained
motifs 1 and 2. In addition, there were some differences in the motif types of different
subfamilies. For example, motifs 2, 3, and 10 only exist in Class I members; motifs 5, 7,
and 4 were only found in Class II members. The results suggested that the distribution of
motifs was consistent with the evolutionary classification, and the differences in motifs of
different members may imply the differences in protein structure.
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2.5. Subcellular Localization of PmTCP TFs

The Cell-PLoc 2.0 software predicted that all PmTCP TFs were nuclear localization
proteins (Table S3). To further verify the subcellular localization characteristics of PmTCP
TFs, PmTCP7, and PmTCP12 were randomly selected from the Class II (CIN) and Class
I (PCF) subfamilies for instantaneous transformation experiments, respectively. They
were highly expressed in the drought-stressed transcriptome. The fluorescence signal was
observed in the instantaneously transformed tobacco leaves (Figure 4). The GFP signal
was found to be distributed throughout the whole cell in the control; however, GFP fused
with PmTCP7 and PmTCP12 only observed fluorescence signals in the nucleus. The results
showed that PmTCP proteins were localized in the nucleus.
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of GFP is 50 µM, the scale bar in the images of PmTCP7-GFP is 5 µM, and the scale bar in the images
of PmTCP12-GFP is 20 µM.

2.6. Transcriptional Analysis of PmTCPs Using Drought Transcriptome Data

To study the potential function of PmTCP genes in drought stress, the heatmap
of PmTCP genes was constructed based on the drought stress transcriptome data (PR-
JNA595650). Under drought stress conditions, the expressions of several genes were too
low to be detected, so only the expression levels of PmTCP6–PmTCP13 genes were given
(Figure 5). The results demonstrated that the expression patterns of PmTCP genes were
different. For example, the expression level of the PmTCP7 gene increased whether it was
mild drought, moderate drought, or severe drought. The expression patterns of PmTCP8,
PmTCP11, and PmTCP12 genes were similar; their expression levels slightly decreased
under mild drought but increased under moderate and severe drought. The expression
of PmTCP10 only significantly increased under moderate drought conditions. However,
the expression levels of PmTCP6 and PmTCP13 genes were significantly down-regulated
after moderate and severe drought treatment. PmTCP9 expression significantly decreased
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throughout the drought treatment. These results indicated that PmTCP genes could be
responsive to drought and may play vital roles in drought conditions.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 6 of 17 
 

 

Figure 4. Subcellular localization experiments of PmTCP7 and PmTCP12 proteins. Transient expres-
sion of GFP (control), PmTCP7-GFP, and PmTCP12-GFP in tobacco leaves. The scale bar in the im-
ages of GFP is 50 µM, the scale bar in the images of PmTCP7-GFP is 5 µM, and the scale bar in the 
images of PmTCP12-GFP is 20 µM. 

2.6. Transcriptional Analysis of PmTCPs Using Drought Transcriptome Data 
To study the potential function of PmTCP genes in drought stress, the heatmap of 

PmTCP genes was constructed based on the drought stress transcriptome data 
(PRJNA595650). Under drought stress conditions, the expressions of several genes were 
too low to be detected, so only the expression levels of PmTCP6–PmTCP13 genes were 
given (Figure 5). The results demonstrated that the expression patterns of PmTCP genes 
were different. For example, the expression level of the PmTCP7 gene increased whether 
it was mild drought, moderate drought, or severe drought. The expression patterns of 
PmTCP8, PmTCP11, and PmTCP12 genes were similar; their expression levels slightly de-
creased under mild drought but increased under moderate and severe drought. The ex-
pression of PmTCP10 only significantly increased under moderate drought conditions. 
However, the expression levels of PmTCP6 and PmTCP13 genes were significantly down-
regulated after moderate and severe drought treatment. PmTCP9 expression significantly 
decreased throughout the drought treatment. These results indicated that PmTCP genes 
could be responsive to drought and may play vital roles in drought conditions. 

 
Figure 5. Transcriptional analysis of PmTCP genes in P. massoniana under four drought stresses: CK (80 
± 5)%, T1 (65 ± 5)%, T2 (50 ± 5)%, and T3 (35 ± 5)%. A heatmap was generated using the log2(FPKM+1) 
value, and the color scale denotes the relative expression level. 

2.7. Expression Patterns of PmTCPs in Various Tissues 
The expression levels of four selected PmTCP (PmTCP7, PmTCP8, PmTCP11, 

PmTCP12) genes were analyzed by the quantitative reverse transcription PCR (qRT-PCR) 
in eight tissues: terminal bud (TB), young stems (YS), old stems (OS), young needles (YN), 

Figure 5. Transcriptional analysis of PmTCP genes in P. massoniana under four drought stresses: CK
(80 ± 5)%, T1 (65 ± 5)%, T2 (50 ± 5)%, and T3 (35 ± 5)%. A heatmap was generated using the
log2(FPKM+1) value, and the color scale denotes the relative expression level.

2.7. Expression Patterns of PmTCPs in Various Tissues

The expression levels of four selected PmTCP (PmTCP7, PmTCP8, PmTCP11, PmTCP12)
genes were analyzed by the quantitative reverse transcription PCR (qRT-PCR) in eight
tissues: terminal bud (TB), young stems (YS), old stems (OS), young needles (YN), old
needles (ON), phloem (P), xylem (X), and roots (R). These genes were selected based on
their high expression levels in the drought-stressed transcriptome. The results (Figure 6)
indicated that PmTCP genes were expressed differently in these eight tissues. PmTCP7
was found to be expressed at higher levels in young and old needles than in other tissues.
The expression levels in young needles and old needles were 46.2 and 29.7 times those in
terminal buds, respectively. The expression of PmTCP8 in young needles, old needles, and
roots was significantly higher than that in other tissues, which was 12.2, 13.5, and 12.9 times
that in terminal buds, respectively. PmTCP11 was also highly expressed in young and old
needles; its expression level was 3.1–3.7 times that of the terminal buds. The expression
levels in young stems, old stems, and phloem were approximately 2.4–2.9 times that in
terminal buds. PmTCP12 had the highest expression level in roots, approximately 4.1-fold
of that in terminal bud. The expression levels in young stems, old stems, phloem, and
xylem were about 2.4, 2.7, 2.6, and 3.0 times those in terminal buds, respectively. The
expression level of PmTCP12 in young needles and old needles was relatively consistent
with those in terminal buds.
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2.8. Expression Levels of PmTCP Genes Respond to Different Treatments

The expression patterns of these four PmTCP genes under eight distinct treatments are
presented in Figure 7. Under drought conditions, the expression of PmTCP7 and PmTCP8
significantly increased at 20 d. PmTCP11 expression increased at 12 d and 20 d and reached
the highest expression level at 20 d. There was no significant difference in the expression
of PmTCP12 throughout the process. Under PEG treatment conditions, the expression
of PmTCP7 and PmTCP12 slightly decreased during the process. The expression level
of PmTCP8 increased at 3 h and then decreased. The expression level of PmTCP11 also
increased throughout the process. Under mechanical injury treatment, the expression
level of PmTCP7 decreased at 3 h and 6 h, indicating that the expression of PmTCP7 was
inhibited under mechanical injury treatment. The expression of PmTCP8 was upregulated
at 3 h and 24 h. PmTCP11 reached the highest expression level at 6 h. PmTCP12 expression
slightly decreased. After SA treatment, the expression level of PmTCP7 slightly decreased
at 3 h. PmTCP8 expression increased at 3 h and then showed a decreased trend. The
expression profile of PmTCP11 was higher than that of the control at 6 h and 24 h. The
expression level of PmTCP12 decreased during the process. Under MeJA treatment, the
expression of PmTCP7 decreased at 6 h, and the results showed that PmTCP7 expression
was suppressed at a certain time point during MeJA treatment. PmTCP8 and PmTCP11
had the highest expression levels at 3 h and 12 h, respectively. The expression of PmTCP12
was downregulated. After ETH treatment, the expression pattern of PmTCP7 was lower
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than that of control at 6 h and reached its peak at 24 h. The expression levels of PmTCP8
and PmTCP12 were downregulated throughout the process. PmTCP11 expression pattern
tended to increase slightly at 6 h. Under H2O2 treatment, the expression trends of PmTCP7
and PmTCP8 first increased, subsequently decreased, and then increased. The expression of
PmTCP11 was upregulated at 12 h and 24 h. PmTCP12 expression pattern tends to stabilize,
and the response to H2O2 was not significant. Under ABA treatment, the expression
levels of PmTCP7 and PmTCP12 were downregulated and suppressed throughout the ABA
process. The expression of PmTCP8 increased at 3 h. There was no significant difference in
the expression of PmTCP11 throughout the whole process.

2.9. Transcriptional Activity Analysis of PmTCP7

Moreover, transcriptional activity of PmTCP7 was detected and analyzed (Figure 8).
The PmTCP7 gene was successfully cloned. This gene had the highest expression in the
drought-stressed transcriptome and responded to several hormonal treatments. In addition,
its expression level is high in tissues, especially in needles. Yeast cells carrying the fusion
expression vector of pGBKT7-PmTCP7 could grow on SD/-Trp yeast medium; however, it
was unable to grow on yeast SD/-Trp/-Ade/-His selective media and did not display blue
spots on SD/-Trp/-Ade/-His yeast media containing X-α-gal. This is depicted in various
graphics. The findings indicated that PmTCP7 was a transcriptional inhibitor; this study
laid the groundwork for further research on gene regulation.
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Figure 7. The expression patterns of PmTCP genes under different treatments. (a) drought; (b) PEG;
(c) mechanical injury; (d) H2O2; (e) ABA; (f) SA; (g) MeJA; (h) ETH. The relative expression is
indicated as the mean ± standard deviation (SD). Asterisks show significant differences in the
expression level between the treated groups and the control group (0 h) (* p < 0.05, ** p < 0.01,
*** p < 0.001, **** p < 0.0001).
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3. Discussion

TCP TFs have been identified in many species, for example, 24 TCP TFs in A. thaliana [4],
22 TCP TFs in O. sativa [4], 33 TCP TFs in Populus euphratica [34], 9 TCP TF members in
pineapple [35], and 18 VvTCPs were identified in Vitis vinifera [36]. The TCP family is
widely involved in multiple biological processes in plants that have important effects on
regulating plant growth, defense responses, and hormone signal transduction. Increasingly,
studies have shown that TCP genes are promising candidates with regard to plant resis-
tance and development [37–39]. In addition, P. massoniana has strong adaptability to the
environment. Therefore, reports on the correlation between TCP TFs and P. massoniana
stress and growth are meaningful. Therefore, this study provides a comprehensive analysis
of the TCP TF members of P. massoniana, which combines PmTCPs with the aspects related
to growth and stress, providing a basis for further understanding the biological functions
of PmTCP TFs.

Thirteen PmTCP TF members were identified from the transcriptomes of P. massoniana
and named PmTCP1–PmTCP13. According to the classification of A. thaliana TCP TFs,
The 13 PmTCP members were divided into Class I and Class II, where Class I contained
7 PmTCP proteins and Class II contained 6 PmTCP TF members, with a ratio of about
1:1. Relevant studies have shown that there were 10 VvTCP TFs in Class I and 8 VvTCPs
in Class II of V. vinifera [36]. In Prunus mume, Class I contained 10 TCP members, and
Class II contained 9 TCP members [40], which was also close to 1:1. These results were
consistent with the current results. Multiple sequence alignment analysis showed that these
PmTCP TFs had bHLH functional conserved domains. The conserved domains of Class I
proteins lacked four amino acid residues compared to Class II proteins, which may lead to
differences in function. This phenomenon has also been observed in tobacco [41]. Motif
1, a characteristic motif of TCP protein, exists in all PmTCP amino acid sequences and is
an important basis for identifying TCP members. In the same subgroup members, the
number and type of conserved motifs were similar, and the distribution order was the same.
However, different subgroup members had their own representative motifs, which strongly
supported the phylogenetic relationship and classification of PmTCPs. The difference and
consistency of motif distribution provided a foundation for the functional diversity and
consistency of PmTCP TFs. This pattern was also observed in Cucumis sativus [42]. Overall,
these results suggested that PmTCP TFs were structurally conservative.

The results of tobacco transient expression experiments and subcellular localization
prediction implied that PmTCP TFs are nuclear localization proteins, which is consistent
with the localization characteristics of TFs and the theory that TFs normally play roles in
the nucleus.

To some extent, the expression patterns of genes are related to their functions. It has
been reported that TCP TFs are involved in many aspects of plant biological processes.
Drought resistance is an important response mechanism for plants to adapt to external
stresses [28]. Therefore, the expression profile of PmTCP TFs was analyzed using the
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drought stress transcriptome data of P. massoniana. It was found that the expression levels
of PmTCP7, PmTCP8, PmTCP11, and PmTCP12 genes significantly increased after moderate
and severe drought treatments. The expression of the PmTCP10 gene was significantly
upregulated after moderate drought stress. The expressions of PmTCP6, PmTCP9, and
PmTCP13 genes were significantly downregulated after drought stress treatment. Addition-
ally, there was no significant difference in the expression of most PmTCP genes compared
to the control under mild drought, while the expression levels were obviously increased or
decreased under moderate and severe drought conditions. It is speculated that PmTCPs
could be responsive to drought stress, but their response mechanisms were complex and
different. These findings laid a foundation for further research on the function of PmTCP
genes in drought stress.

It has been observed that the function of the TCP genes can regulate the growth process
of many tissues in plants, such as stems, leaves, flowers, and roots [32,43]. To investigate
the expression characteristics of PmTCP genes in tissues, the expression of PmTCP members
in different tissues of P. massoniana was analyzed. The results indicated that PmTCP genes
could be expressed in various tissues. The expression levels of PmTCP7 and PmTCP8 genes
in young needles and old needles were significantly higher than those in other tissues;
in addition, PmTCP8 was also highly expressed in roots. According to the phylogenetic
evolutionary relationships, PmTCP7 and PmTCP8 belong to Class II members. It has been
reported that Class II members are specifically expressed in plant tissues and participate in
the formation of leaf trichosomes and roots [44]. These results suggested that PmTCP7 and
PmTCP8 may have regulation roles in needles and roots.

Relevant studies have shown that TCP TFs can respond to a variety of hormone and
abiotic stresses [45,46]. The expression patterns of PmTCP genes were determined under
different treatments. The expression of PmTCP7, PmTCP8, and PmTCP11 significantly
increased under drought stress, and the expression of PmTCP8 and PmTCP11 was upregu-
lated after PEG treatment. The results indicated that these genes had a positive response to
drought and PEG stress, which may induce an increase in POD and SOD enzyme activities,
as well as MDA and Pro contents, thereby enhancing osmotic regulation and reducing
damage to P. massoniana [47]. The increased expression levels of PmTCP8 and PmTCP11
under mechanical injury suggested that they may be involved in biological processes, such
as preventing the invasion of pathogens. SA, MeJA, ETH, H2O2, and ABA are important
exogenous exciters that are induced by external stimuli and have an important role in re-
sponse to stress [48]. Through gene expression levels, it was found that PmTCP7, PmTCP8,
and PmTCP11 positively responded to H2O2. Meanwhile, PmTCP8 and PmTCP11 had a
positive response to MeJA and SA. PmTCP8 and PmTCP7 could respond to ABA and ETH,
respectively. The results showed that these genes were involved in signal transduction and
stress perception, resulting in the adaptation changes of P. massoniana. The expression of
TCP genes has been analyzed in many plants under these treatments; for example, AtTCP20
is involved in the biosynthesis of jasmonic acid [19]. Overexpression of the OsTCP19 gene
can significantly improve drought resistance in mature plants and seedlings [49]. In general,
TCP genes are widely involved in stress resistance and hormone signaling pathways in
plants. However, further functional research is needed to determine how the TCP genes
accurately respond to these signaling.

By observing the growth conditions of yeast cells containing pGBKT7–PmTCP7 fusion
expression vector on the selected medium, it was impossible to detect the transcriptional
self-activation activity of these cells. This study provides a basis for studying the regulatory
network associated with TCP proteins.

In summary, this study comprehensively analyzed the TCP TFs family of P. massoniana.
It not only contributes to screening suitable candidate genes for further investigation
but also contributes to understanding the molecular regulatory mechanism and signal
transduction of TCP genes in plant resistance and development. In the meantime, the
functional characterization of PmTCPs provides insights into the function of TCP TFs in
P. massoniana.



Int. J. Mol. Sci. 2023, 24, 15938 12 of 16

4. Materials and Methods
4.1. Identification and Sequence Analysis of TCP Family Members of P. massoniana

A hidden Markov model (HMM) of the TCP conserved domain (PF03634) was acquired
through the Pfam database (http://pfam.xfam.org/ (accessed on 17 April 2023)) [50], and
TCP protein members were searched using the HMMER 3.0 software from the P. massoniana
transcriptomes with its defined threshold of E < 10−5. The transcriptomes of P. massoniana
originated from the previously determined drought stress transcriptome (PRJNA595650),
CO2 stress transcriptome (PRJNA561037), and tender shoots transcriptome (PRJNA655997).
PmTCP proteins were identified from these transcriptomes. The SMART online website
(http://smart.embl-heidelberg.de/, accessed on 18 April 2023) was used to predict the
conserved domain, and proteins without structural domain were deleted. Then, the
protein sequences were aligned, and sequences with similarity exceeding 97% were deleted.
The protein sequences are listed in Table S4. The physicochemical properties, such as
instability index (II), grand average of hydropathicity (GRAVY), isoelectric point (pI),
and molecular weight (MW) of the screened TCP proteins were analyzed with ExPASy
(http://web.expasy.org/protparam/ (accessed on 19 April 2023)).

4.2. Phylogenetic Evolutionary of TCP TFs

The TCP protein sequences of A. thaliana, P. taeda, and P. abies were downloaded from
the Plant Transcription Factor Database (http://planttfdb.cbi.pku.edu.cn/ (accessed on
23 April 2023)). Their protein sequences and those of P. massoniana were aligned with
the ClustalW 2.1 program. A phylogenetic evolutionary tree was constructed using the
Neighbor-Joining (NJ) method with MEGA 7.0 software; the bootstrap value was 1000,
and other parameters were default values [51]. Subsequently, the Evolview online tool
(http://evolgenius.info//evolview-v2/ (accessed on 27 April 2023)) was used to embellish
the phylogenetic tree.

4.3. Multiple Sequence Alignments and Motif Analysis

DNAMAN 6.0 software was used to align the protein sequences of PmTCP members
and coTBtools their conserved domains. The Multiple Em for Motif Elicitation (MEME)
(http://meme.nbcr.net/meme/intro.html (accessed on 30 April 2023)) online website was
used to obtain the conserved motifs organization of the 13 PmTCP proteins, and 10 motifs
were searched using default parameters [52]. Then, the TBtools-II v2.019 platform was used
to analyze their conserved structures and produce diagrams [53].

4.4. Subcellular Localization Analysis

The Cell-PLoc 2.0 (http://www.csbio.sjtu.edu.cn/bioinf/Cell-PLoc-2/ (accessed on
1 July 2023)) online software was used to predict subcellular localization of PmTCP proteins.
PmTCP7 and PmTCP12 were randomly selected for transient transformation experiments.
The primers for constructing vectors are shown in Table S5. The open reading frame (ORF)
regions of PmTCP7 and PmTCP12 without stop codon were linked with pBI121-GFP vector,
the 35S::PmTCP7-GFP and 35S::PmTCP12-GFP expression vectors were constructed by
recombinase. Then, the vectors were transferred to Agrobacterium GV3101. These strains,
along with P19 (RNA Silencing Inhibitor) Agrobacterium strains, were cultured in LB media
for 48 h at 28 ◦C. Then, they were suspended in a solution containing 150 µM acetosy-
ringone, 10 mM MgCl2, and 10 mM 2-(N-morpholino)ethanesulfonic acid (MES). The
suspension cells were mixed with p19 at a ratio of 1:1, and the Nicotiana benthamiana leaves
were injected with the mixed solution. Subsequently, the infiltrated N. benthamiana plants
were maintained for 3 d under the conditions of 16 h light and 8 h dark photoperiod. The
LSM710 confocal microscope (Zeiss, Jena, Germany) was used to capture the GFP signal.

4.5. Transcriptional Profile Analysis of the PmTCP Genes

To study the expression of PmTCP genes, we utilized the original drought-stressed
transcriptome (PRJNA595650) of P. massoniana to obtain the RNA sequencing (RNA-seq)

http://pfam.xfam.org/
http://smart.embl-heidelberg.de/
http://web.expasy.org/protparam/
http://planttfdb.cbi.pku.edu.cn/
http://evolgenius.info//evolview-v2/
http://meme.nbcr.net/meme/intro.html
http://www.csbio.sjtu.edu.cn/bioinf/Cell-PLoc-2/
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data. The soil moisture content for the growth of P. massoniana was set to four gradients:
normal (CK), mild (T1), medium (T2), and serious (T3). The corresponding water holding
capacity was CK (80 ± 5)%, T1 (65 ± 5)%, T2 (50 ± 5)% and T3 (35 ± 5)%, respectively.
They were placed at 75% humidity for 60 d and subsequently sequenced. Fragments per
kilobase of exon model per million mapped fragments (FPKM) values (Table S6) were
computed to assess the expression level of PmTCPs. Then, a heat map was generated based
on log2(FPKM+1) values using TBtools-II v2.019 software.

4.6. Plant Materials and Treatments

Two-year-old P. massoniana seedlings were planted in pots containing a soil mixture.
The volume ratio of vermiculite, perlite, and peat of the soil mixture was 3:1:1. Then,
seedlings were placed under the conditions with a temperature of 24 ◦C and photoperiod
of 16 h light and 8 h dark for growth. When P. massoniana seedlings grew for about a
month and remained in stable conditions, the seedlings with consistent growth status were
selected for subsequent treatments.

To investigate the expression levels of PmTCP genes, eight tissues were sampled from
the seedlings, including young needles, old needles, young stems, old stems, phloem,
xylem, terminal buds, and roots. Furthermore, the seedlings were treated with these
treatments: 1 mM salicylic acid (SA), 10 mM methyl jasmonate (MeJA), 50 µM ethephon
(ETH), 100 µM abscisic acid (ABA), 10 mM hydrogen peroxide (H2O2), 15% polyethylene
glycol (PEG6000), mechanical injury, and drought. The mechanical injury was carried
out by cutting off the upper half of the seedling; 15%PEG treatment involved immersing
seedlings in this solution, causing osmotic stress. Drought treatment was performed with
watering at 0 d and then naturally evaporated for 20 d. The remaining treatments were all
sprayed on the surface of the seedlings. Afterward, samples were collected at 0 h, 3 h, 6 h,
12 h, and 24 h, except for drought. The drought-treated samples were collected at 0 d, 3 d,
7 d, 12 d and 20 d. The expression levels of the untreated samples were used as controls.
Three biological replicates were used for each treatment.

4.7. RNA Extraction and qRT-PCR Analysis

Total RNA was extracted using a FastPure Plant Total RNA Isolation Kit (RC401-
01, Vazyme Biotech, Nanjing, China). Then, a NanoDrop2000 (Thermo Fisher Scientific,
Waltham, MA, USA) was used to detect the purity and concentration of RNA. Afterward,
1000 ng total RNA was reverse-transcribed to synthesize 20 µL of cDNA using the first-
strand cDNA synthesis kit (AT311, TransGen Biotech, Beijing, China). Primers for qRT-PCR
were designed by Primer 5.0, and α-tubulin (TUA) was used as an internal reference
gene [54]. These primers are displayed in Table S6. qRT-PCR was carried out under the
StepOne Plus program (Applied Biosystems, Foster City, CA, USA) using SYBR Green
Real-time PCR Master Mix (QPK-201, Toyobo Bio-Technology, Shanghai, China). Each
PCR mixture was a 10 µL system that contained 5 µL of SYBR Green Real-time PCR
Master Mix, 1 µL of 20-fold diluted cDNA, 3.2 µL of sterile water, and 0.4 µL of each
primer. The amplification procedure was as follows: predenaturation at 95 ◦C for 2 min,
denaturation at 95 ◦C for 10 s, annealing and extension at 60 ◦C for 30 s; this process was
repeated 40 times. The remaining procedures were the program default parameters. Each
reaction was detected with three independent replicates. The relative expression levels of
PmTCP genes were computed according to the 2−∆∆CT method [55]. One-way ANOVA and
multiple comparison tests were analyzed by GraphPad Prism 8.0 software.

4.8. Transcription Self-Activation Detection

The open reading frame (ORF) of the PmTCP7 gene was fused with the pGBKT7 vector
cut by EcoRI and BamHI double enzymes. The primers for vector construction are provided
in Table S5. Then, the correctly sequenced recombinant vector was transformed into AH109
yeast strains (YC1010, Weidi Biotech, Shanghai, China), which were subsequently cultured
on the SD/-Trp medium at 28 ◦C for 3 d. Single yeast colonies were selected for PCR
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validation, the successfully transformed yeast single colonies were collected in SD/-Trp
liquid medium, and 5 µL of diluent was inoculated onto the surface of yeast medium
SD/-Trp and SD/-Trp/-Ade/-His, respectively. Meanwhile, 5 µL of diluent was inoculated
on the SD/-Trp/-Ade/-His solid medium containing X-α-gal. Subsequently, the growth
status of yeast cells was observed and recorded.

5. Conclusions

In this study, we identified 13 PmTCP TFs from transcriptomes of P. massoniana. These
PmTCPs were divided into Class I and Class II categories, and different subgroup members
had different motif compositions. Members of the same subgroup had similar conserved
motif composition, indicating that they may perform similar functions. According to the
transcriptome of drought stress, seven PmTCPs were found to be responsive to drought
stress. Meanwhile, the expression patterns of the selected four PmTCP genes under different
conditions suggested that they may have important functions on several stress responses
and play multiple roles in different stages of plant growth and development. These findings
provide a theoretical basis for the study of TCP TFs, are conducive to further understanding
the functions of PmTCPs, supply potential strategies for breeding in P. massoniana, and
contribute to the study of the mechanism resistance ability of other plants.
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