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Abstract: The interactions with calf thymus DNA (CT-DNA) of three Schiff bases formed by the
condensation of hesperetin with benzohydrazide (HHSB or L1H3), isoniazid (HIN or L2H3), or
thiosemicarbazide (HTSC or L3H3) and their CuII complexes (CuHHSB, CuHIN, and CuHTSC with
the general formula [CuLnH2(AcO)]) were evaluated in aqueous solution both experimentally and
theoretically. UV–Vis studies indicate that the ligands and complexes exhibit hypochromism, which
suggests helical ordering in the DNA helix. The intrinsic binding constants (Kb) of the Cu compounds
with CT-DNA, in the range (2.3–9.2) × 106, from CuHTSC to CuHHSB, were higher than other copper-
based potential drugs, suggesting that π–π stacking interaction due to the presence of the aromatic
rings favors the binding. Thiazole orange (TO) assays confirmed that ligands and Cu complexes
displace TO from the DNA binding site, quenching the fluorescence emission. DFT calculations allow
for an assessment of the equilibrium between [Cu(LnH2)(AcO)] and [Cu(LnH2)(H2O)]+, the tautomer
that binds CuII, amido (am) and not imido (im), and the coordination mode of HTSC (O−, N, S),
instead of (O−, N, NH2). The docking studies indicate that the intercalative is preferred over the
minor groove binding to CT-DNA with the order [Cu(L1H2

am)(AcO)] > [Cu(L2H2
am)(AcO)] ≈ TO ≈

L1H3 > [Cu(L3H2
am)(AcO)], in line with the experimental Kb constants, obtained from the UV–Vis

spectroscopy. Moreover, dockings predict that the binding strength of [Cu(L1H2
am)(AcO)] is larger

than [Cu(L1H2
am)(H2O)]+. Overall, the results suggest that when different enantiomers, tautomers,

and donor sets are possible for a metal complex, a computational approach should be recommended
to predict the type and strength of binding to DNA and, in general, to macromolecules.

Keywords: copper complexes; hesperetin Schiff bases; DNA interaction; computational calculations

1. Introduction

Transition metals have a significant impact on the functioning of living organisms
due to their unique properties such as the interconversion of several oxidation states
and coordination geometries and the electrochemical behavior. Moreover, they are active
toward organic nucleophiles, enhancing the bioactivity of many organic ligands including
Schiff bases [1–8].

Copper (Cu) is a transition metal that deserves to be mentioned. Indeed, it is an
essential element that is involved in many biological processes such as heme synthesis,
cellular respiration, redox and oxygenation reactions, and electron transfer [9–13]; at
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relatively low intracellular concentrations, copper acts as a key catalytic cofactor in a wide
range of biological processes including mitochondrial respiration, antioxidant defense, and
the synthesis of various biocompounds [14]. Moreover, the interest in the potential uses of
copper in medicine has increased in the last twenty years, and several compounds have been
tested, both in vitro and in vivo, as potential anticancer drugs [15–21]. The observation that
tumor growth and metastasis require a higher demand for copper has given an extra boost
to the research of Cu-related diagnostics and treatments in the fight against cancer [22–25].
Today, copper is one of the most widely used metals of the first transition series to develop
anticancer drugs due to its redox nature, biocompatible properties, and high effectiveness
in inducing cancer cell death [22,26]. For instance, three novel Cu2+ complexes bearing
N,N,O-chelating salphen-like ligands affected HeLa cells to an extent similar to cisplatin and
significantly better than carboplatin [27]. The compound CuII–elesclomol, where elesclomol
is N-malonyl-bis(N-methyl-N-thiobenzoyl hydrazide) in its doubly deprotonated form, has
been proposed for metastatic melanoma [28], and the species Cu–triapine is active against
many types of tumors [28,29]. In addition to their use as potential anticancer agents, the
study of the properties of copper complexes has led to the development of non-steroidal
anti-inflammatory drugs [18].

Various Cu compounds have reached clinical trials. The combination of copper or
copper–gluconato with disulfiram (tetraethylthiuram disulfide) was proposed against
various tumors and for newly diagnosed glioblastoma multiform (phase 2, identifier
NCT03363659) [28,30], metastatic pancreatic cancer (phase 2, NCT03714555), and metastatic
breast cancer (phase 2, NCT03323346). The species Cu–ATSM, with ATSM being diacetyl-
bis(4-methyl-3-thiosemicarbazone), is not only under phase 2 of clinical trials for the
treatment of rectal cancer (NCT03951337) [25], but has also progressed to phase 2/3
(NCT04082832) for its use against the neurodegenerative disease amyotrophic lateral sclero-
sis [31]. The complex 64Cu–DOTA, where DOTA is 2,2′,2′′,2′′′-(1,4,7,10-tetraazacyclododecane-
1,4,7,10-tetrayl)tetraacetate, reached phase 1 (NCT02708511) for positron emission tomography-
computed tomography use in imaging patients with ovarian and breast cancer [32]. The
species Cu–histidinato is at phase 1/2 of the trials for its employment in the treatment of
Menkes disease (NCT00001262). Finally, Casiopeinas®, formed by CuII, 1,10-phenanthroline
or 2,2′-bipyridine or one their derivatives, plus a monoanionic non-toxic ligand like gly-
cinate or acetylacetonate, has been proposed for the treatment of breast and colon can-
cer [28,33–35]; the compound CasIII-ia, [CuII(Me2bipy)(acac)]+, where Me2bipy is 4,4′-
dimethyl-2,2′-bipyridine and acac is acetylacetonate, is currently undergoing phase 1 clini-
cal trials in Mexico [36].

The exact mode of action of copper-based potential drugs is not always clear. They act
with different mechanisms such as the inhibition of proteasome activity [37,38], telomerase
activity [39], the formation of reactive oxygen species (ROS) [40,41], and, in particular, DNA
interaction [42,43]. For this reason, the research on the interactions of copper complexes
with DNA could be very important in biotechnology, pharmacology, and medicine for
discovering and developing new potential drugs.

For a metallocompound, binding to DNA can occur in a variety of ways. Over-
all, they can be classified into two general categories that comprise covalent and non-
covalent binding [44]; in this last case, intercalation between base pairs and minor or major
DNA groove-binding interactions are involved [45,46]. Copper complexes give mostly
non-covalent interactions, either by intercalation, electrostatic attraction, and/or groove
binding [47]. DNA intercalation has been reported in many studies [48–51], and this re-
sults in an inhibitory action on topoisomerases [20] and in a nuclease activity with the
break of the double-strand of DNA [47,48]. In particular, the capability of copper com-
plexes to behave as artificial nuclease can be utilized to design new potential anticancer
therapeutics, and numerous cases of Cu complexes with outstanding anticancer activity
and a lower toxicity profile than conventional Pt drugs have been reported in the litera-
ture [17,47,52]. Such behavior is shown, for example, by the family of Casiopeines® [53].
For example, the aforementioned CasIII-ia and CasII-gly ([CuII(Me2phen)(Gly)]+ with
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Me2phen = 4,7-dimethyl-1,10-phenanthroline and Gly = glycinate) exhibit higher activity
and lower toxicity compared to cisplatin. CasIII-Ea, with formula [CuII(Me2phen)(acac)]+,
shows IC50 values of 4.9 and 2.1 µM on MCF-7 (breast cancer) and HCT-15 (colon cancer)
cell lines, respectively, compared with 5.6 and 21.8 µM measured for cisplatin [54]; on the
other hand, low toxicity is observed in non-tumor cells with accelerated growth like 3T3-L1
(healthy mice fibroblasts), treated with the CasIII-Ea compound [55]. As a final comment, it
must be observed that binding between DNA and a metal complex can constitute hybrid
catalysts in which transition metal complexes are embedded in a biomolecular scaffold
represented by DNA; as a result of the formation of the new catalytic system, the reaction
will proceed enantioselectively, and will optimally result in an additional acceleration [56].

Among the copper complexes, those formed by Schiff bases have been the object of
extensive study. These compounds have attracted considerable interest in the scientific
community due to their interesting properties, particularly those related to their biological
and pharmacological action and possible use in medicine [1–8,57–63]. For example, hes-
peretin Schiff bases containing benzohydrazide (HHSB or L1H3), isoniazid (HIN or L2H3),
and thiosemicarbazide (HTSC or L3H3) and their complexes with copper(II) have been
investigated in analytical/spectral studies, and biological action in vitro such as cytotoxic-
ity against human cancer cells, genotoxicity, and antimicrobial activity was ascertained by
this and other groups [64–66]. Hesperetin (HESP) and its copper complex, CuHESP, were
studied in some cases for comparison. The CuHHSB complex acts as a chemical nuclease
during the cleavage of plasmid DNA in aqueous solution and is more effective than the free
ligand HHSB against HeLa and K562 (human erythroleukemia) cells. In addition, among
the tested bacterial strains, CuHHSB is very active toward Staphylococcus aureus [65]. All
three copper complexes (CuHHSB, CuHIN, and CuHTSC) have an oxidative damaging
effect greater than the ligands, with CuHIN showing the most prominent oxidative ac-
tivity [66]. From our previous studies, it was found that modification of the structure of
hesperetin increases its biological activity, for example, antioxidant activity, and for this
reason, in the present work, we decided to perform another series of investigations to verify
whether other properties of the modified ligands depended on the structural features. In
this study, to allow for a better understanding of their potential biological effects, the inter-
actions with DNA of the three hesperetin Schiff bases (HHSB, HTSC, and HIN) and their
CuII compounds (CuHHSB, CuHIN, and CuHTSC) were screened in an aqueous solution
both experimentally and theoretically. HESP and CuHESP were evaluated for comparison.
UV–Vis and fluorescence spectra were carried out to obtain the binding characteristics; DFT
methods were implemented to determine the structure of the most abundant species in
solution, considering the exchange equilibrium between the monodentate equatorial ligand
(AcO−) and solvent (H2O), the amido–imido tautomerism of the Schiff base ligands and
the donor set (which may be (O−, N, S) or (O−, N, NH2) for L3H3); docking calculations
allowed us to assess the binding to DNA and the effect of the nature of the substituents,
unveiling new insights on the action of the copper complexes. The results could be useful
for accelerating the development of this class of Cu-based drugs.

2. Results
2.1. Experimental Studies

2.1.1. Behavior of CuII Complexes in Aqueous Solution

The rationale for the interaction of Schiff base ligands HHSB, HTSC, and HIN with
Cu2+ ions was presented in a previous publication [66]. Spectral data (FTIR, UV–Vis, EPR,
ESI-MS) and electrochemical techniques showed that, in the acetate complexes, the tested
Schiff bases act as neutral tridentate ligand coordinating to Cu2+ through two oxygens or
oxygen/sulfur plus a nitrogen donor atom. EPR measurements indicated that, in solution,
the complexes keep their structures, with the ligands remaining bound to Cu2+ ions in a
tridentate fashion with the (O−, N, Oket) or (O−, N, S) donor set.

The three tridentate Schiff base chelating ligands in the fully protonated form can be
indicated as LnH3, with n = 1–3. These were obtained from the functionalization of the
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hesperetin with three different hydrazides, benzohydrazide (HHSB or L1H3) [65], isoniazid
or pyridine-4-carbohydrazide (HIN or L2H3), and thiosemicarbazide (HTSC or L3H3) [67]
(Figure 1). The three titratable protons in aqueous solution were those on the OH groups in
positions 5 and 7 of the ring A and 3′ of the flavonoid moiety (ring B).
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Figure 1. Structural formula of the free hesperetin Schiff base ligands: benzohydrazide (L1H3);
isoniazid (L2H3); thiosemicarbazide (L3H3). A different color is used for the molecular moiety
deriving from hesperetin (blue) and hydrazides (red). The asterisk indicates the stereogenic carbon
atom in position 2 of the C ring of hesperetin.

With CuII, they form different complexes in aqueous solutions, from [Cu(LH2)]+

to [Cu(LnH)], [Cu(Ln)]−, and [Cu(LnH–1)]2−. When starting from Cu(AcO)2·H2O, one
solid compound is formed, [Cu(LnH2)(AcO)], around pH 6–7. They are also indicated as
CuHHSB, CuHIN, and CuHTSC (Figure 2).
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group is the ring B of hesperetin with OH and OCH3 substituents on the 3′ and 4′ positions.

Using EPR spectroscopy, it was demonstrated that the equilibrium [Cu(LnH2)(AcO)] +
H2O/Solv
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[Cu(LnH2)(H2O/Solv)]+ + AcO− is established in water-containing mix-
tures or in an organic solvent (Solv) like DMSO or DMF. From [Cu(LnH2)(AcO)] to
[Cu(LnH2)(H2O/Solv)]+, the value of gz increases and Az(Cu) decreases by about
(6–10) × 10−4 cm−1 [66]. The different steric hindrance of acetato and aqua ligand and the
charge of the species could result in a different interaction with DNA.

Moreover, the coordination of LnH2
− ligands can occur in the amido (am) or imido

(im) form (Figure 3). In this case, the presence of a negative charge on the CO group and of
NH instead of N atom in the five-membered chelate ring could also yield a different type
of interaction with the double strand of DNA.

Finally, both R and S enantiomers of the HHSB, HIN, and HTSC ligands, due to
the stereogenic carbon in position 2 of the C ring of hesperetin (indicated with an aster-
isk in Figure 1), could interact with DNA with significant differences in the structural
complementarity, and hence in terms of energy binding.
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Figure 3. Structure for the amido (a) and imido (b) coordination for the CuHHSB, CuHIN, and
CuHTSC complexes. X represents a water or a AcO– ligand. The R group is the ring B of hesperetin
with OH and OCH3 substituents on the 3′ and 4′ positions, while R’ stands for benzohydrazide,
isoniazid, or thiosemicarbazide moieties of the HHSB, HIN, and HTSC ligands.

2.1.2. UV–Vis Studies on the DNA Binding

Absorption titrations were carried out to determine the DNA binding of the ligands
and their CuII complexes in tris(hydroxymethyl)aminomethane (Tris) buffer. The UV–
Vis absorption spectra of compounds in the absence and presence of calf thymus DNA
(CT-DNA) are shown in Figure 4.

If the interaction of a metal species with DNA is by intercalation, the π*- and π-orbital
of the base pairs may couple, resulting in a decrease of the π–π* transition energy and
giving rise to a red shift (bathochromic effect) and a decrease in absorption (hypochromic
effect). The hypochromism of the π–π* transition is often employed to find the binding
constant between a metal species and CT-DNA, according to Equation (1).

[CT − DNA]

εa − εf
=

[CT − DNA]

εb − εf
+

1
Kb(εb − εf)

(1)

In Equation (1), [CT-DNA] is the base pairs concentration, εa is the apparent extinction
coefficient at a given concentration, while εf and εb are the coefficients of free and fully
bound metal species, respectively [68,69].

The results obtained in this study indicate that the spectral profiles of the ligands and
complexes are very different. After the addition of CT-DNA, the absorption bands of HHSB,
HIN, HTSC and the corresponding copper complexes exhibited hypochromism, of which
the highest one was for HHSB, but to a lower extent for the HIN, HTSC, and Cu species.
Red shift was not observed. Hypochromic shift in the spectra of the compounds suggests
helical ordering of both ligands and Cu compounds in the DNA helix. The absorption
spectra of HHSB and HTSC when titrated with CT-DNA also showed an isosbestic point.
The intrinsic binding constants (Kb) of the compounds with CT-DNA are reported in Table 1.
Notably, the values found for CuII complexes, in the range (2.3–9.2) × 106, were higher
than other copper-based compounds, for example, those formed by amidino-O-methylurea
derivatives ((0.6–1.2) × 105, ref. [70]), non-steroidal anti-inflammatory drugs piroxicam
and lornoxicam ((2.7–3.4) × 104, refs. [71,72]), Schiff base salicylaldehyde or 2-hydroxy-1-
naphthalidene and L-valine and plus 1,10-phenanthroline ((5.7–6.5) × 103, refs. [73,74]),
and N-salicyl-β-amino alcohol Schiff bases ((0.04–2.4) × 106, ref. [75]). The possibility of
π–π stacking interaction due to the presence of aromatic rings and extended electronic
delocalization favors the binding of CuHHSB, CuHIN, and CuHTSC, as confirmed by the
high Kb values of the ligands ((3.7–6.9) × 106, Table 1). Notably, the values determined for
the ligands and Cu complexes were higher than the Kb of the adduct EB–DNA (1.2 × 105,
ref. [76]), where EB is ethidium bromide, a compound known for its capability to behave as
an intercalative agent in the DNA double strand.
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The results of the UV–Vis measurements and emission spectra presented in this
study indicate the pro-oxidant activity of the tested compounds, which we previously
demonstrated using the alkaline comet test to assess DNA breakage in HeLa cells exposed to
various concentrations of HHSB, HTSC, HIN, CuHHSB, CuHIN, and CuHTSC [66]. Among
the ligands, the most pronounced oxidative activity was revealed for HTSC, and, among
the complexes, for CuHIN. Generally, CuII species have a greater oxidative damaging
effect than the ligands. Moreover, both hesperetin azomethine derivatives and their copper
complexes disclosed significantly lower impact on DNA damage compared to cisplatin [66].

The standard binding free energy G was estimated using the equation ∆G◦ = −RTlnKb,
where R is the universal gas constant (8.314 J·mol−1·K−1) and T is the temperature in
Kelvins [77]. From this equation, it follows that the higher the binding constant Kb between
CT-DNA and the ligand or Cu complexes, the more negative the standard free energy.
Based on the data in Table 1, all processes were spontaneous under our experimental
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conditions with constant pressure and temperature. The reactions with CT-DNA that
occurred most spontaneously were those observed for HHSB and CuHHSB.

Table 1. Experimental data on the interaction of the HTSC, HHSB, and HIN ligands and their CuII

complexes with DNA.

Compound Kb
1 R2 ∆G◦ 2 DSBs 3 Oxidative DNA

Damage (Endo III) 4 Kapp
1

HTSC 4.23 × 106 0.994 −37.8 13.5 ± 0.7 10.2 ± 2.0 3.30 × 105

HHSB 6.88 × 106 0.980 −39.0 23.3 ± 1.0 7.5 ± 3.9 4.30 × 105

HIN 3.70 × 106 0.991 −37.5 19.5 ± 0.7 5.3 ± 3.5 7.94 × 105

CuHTSC 2.25 × 106 0.940 −36.2 6.4 ± 2.3 11.6 ± 1.9 1.60 × 106

CuHHSB 9.21 × 106 0.989 −39.7 14.4 ± 0.7 8.3 ± 2.7 1.36 × 106

CuHIN 4.86 × 106 0.992 −38.1 7.7 ± 3.6 12.2 ± 4.2 1.38 × 106

EB 5 1.23 × 105 6 −34.7 6 6 6

1 Values in M–1. 2 Values in kcal mol–1. 3 DNA double strand breaks (DSBs), taken from ref. [66]. 4 Oxidative
DNA damage evaluated with the DNA repair enzyme–endonuclease III (Endo III), taken from ref. [66]. 5 From
ref. [76]. 6 No data available.

For the complexes but not for the ligands, a linear correlation was found between
the values of the Kb binding constants and the DNA double strain breaks (DNA-DSBs)
(Figure 5). This phenomenon suggests a different mechanism of interaction of Cu complexes
and ligands with DNA.
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Figure 5. Relationship between the values of Kb and DNA-DSBs (DNA double-strain breaks) for CuII

complexes. Data taken from ref. [66]. The linear equation to fit the experimental points is y = a + bx,
with a = (−2.14 ± 1.88) × 106 and b = (7.98 ± 1.85) × 105. The value of R2 is 0.90.

2.1.3. Thiazole Orange (TO) Displacement Assay

Thiazole orange (TO) is a good intercalating dye, and the structure of the DNA–TO
intercalation complex has been studied by many authors [78–80]. The fluorescence of TO
increases after intercalating with DNA; hence, if a compound intercalates into the helix of
DNA, it would compete with TO for the DNA intercalation sites, leading to a significant
decrease in fluorescence intensity [81,82].

The emission spectra of the DNA-TO system decreased after the separate addition
of each of the compounds studied (Figure 6). This result indicates that they are able to
replace TO in the DNA−TO adduct, resulting in the dissociation of TO and in a decrease in
the emission intensity. In other words, all of the studied compounds, HHSB, HIN, HTSC,
and their corresponding CuII complexes, can compete with TO for the intercalation sites of
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DNA, suggesting that they may intercalate into the helix of DNA. For these measurements,
HESP and CuHESP were studied for comparison.
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Figure 6. Fluorescence spectra of the DNA–TO adduct upon the addition of HESP, HHSB, HIN, HTSC,
and their corresponding complexes, CuHESP, CuHHSB, CuHIN, and CuHTSC. The concentration of
CT-DNA was 2.5 × 10−5 M, and that of TO was 1.0 × 10−5 M, while the concentrations of the ligands
and complexes were in the range (0.5–7.5) × 10−5 M. Insets represent Stern–Volmer relationships. The
arrows show the changes in the fluorescence after the addition of increasing amounts of CT-DNA.



Int. J. Mol. Sci. 2024, 25, 5283 9 of 21

An analysis of the emission spectra of the DNA-TO system in the presence of an
increasing concentration of the studied ligands and copper compounds was carried out in
order to estimate the quenching % upon their addition, their quenching constant KSV, and
apparent binding constant Kapp to DNA (Table 2). The data were analyzed using the Stern–
Volmer equation, which puts in relationship the fluorescence with and without the quencher
(F and F0), respectively, the concentration of the quencher [Q] (in this case, the hesperetin
Schiff base ligands or the Cu complexes) and the Stern–Volmer quenching constant (KSV,
in M−1): (F0/F) = 1 + KSV[Q]. The value of the apparent binding constant (Kapp) can be
found with the equation Kapp = KTO × [TO]/[C50%], where KTO is 3.0 × 106 M−1, [TO] is
the experimental concentration of TO, and [C50%] is the concentration of the quencher that
produces a fluorescence decrease of 50%.

Table 2. Thiazole orange (TO) quenching assay results for hesperetin Schiff base ligands and CuII

complexes.

Compound KSV
1 R2 Quenching 2 C50% Kapp

1

HESP (3.63 ± 0.04) × 103 0.996 83 2.56 × 10–4 1.17 × 105

HTSC (1.08 ± 0.07) × 104 0.994 69 9.10 × 10–5 3.30 × 105

HHSB (1.46 ± 0.05) × 104 0.983 59 6.97 × 10–5 4.30 × 105

HIN (2.59 ± 0.07) × 104 0.996 46 3.78 × 10–5 7.94 × 105

CuHESP (7.11 ± 0.05) × 104 0.970 9 1.97 × 10–5 1.51 × 106

CuHTSC (6.01 ± 0.03) × 104 0.960 5 1.87 × 10–5 1.60 × 106

CuHHSB (4.31 ± 0.08) × 104 0.996 20 2.21 × 10–5 1.36 × 106

CuHIN (5.65 ± 0.03) × 104 0.992 20 2.18 × 10–5 1.38 × 106

1 Values in M–1. 2 %F0.

All of tested compounds reduced the fluorescence intensity, indicating that they are
able to compete with TO for the same binding sites, or that they interact with DNA at
different sites, but close to TO. Among the ligands and complexes, HIN and CuHTSC
possessed the most quenching ability. From the values of KSV, quenching, and Kapp
presented in Table 2, the order of increasing quenching and binding strength of the studied
compounds is as follows: CuHTSC > CuHESP > CuHIN > CuHHSB > HIN > HHSB
> HTSC > HESP. The order of the apparent binding constants suggests that Cu2+ ions
have a distinct effect on quenching compared to the ligands themselves. This is probably
related to the influence of the type of substituent inserted into the hesperetin moiety and
to the interaction of the modified molecule with Cu2+. In fact, it must be observed that
the electronic density of the HOMO in HESP is mainly localized over the rings A and B,
while it is on ring A on the =N–NH group and the O atom of ring C in the remaining
hesperetin derivatives [67]; therefore, the existence of electron-withdrawing substituents in
HIN, HHSB, and HTSC enhances the electronic delocalization and conjugation, possibly
influencing the process of quenching and binding of the ligands and metal species to DNA.

The apparent binding constants increased in the order opposite to DNA oxidative
damage or DNA double strain breaks (DSBs) from the comet assay [66]; these observations
may indicate that the free ligands and CuII species interact with slightly different mecha-
nisms of action depending on the chemical environment. The values of Kapp (around 106)
point to a preferential interaction with DNA through intercalation, but other pathways
(electrostatic and/or minor/major groove) could occur.

Finally, it should be noted that the values of the Kapp constants of CuHIN and CuHHSB
were very close to each other. This suggests that the isoniazid moiety affects in a negligible
mode the binding strength of the CuII complexes.

2.2. Computational Studies
2.2.1. Geometry Optimization and Speciation Analysis of the Copper Complexes

Previously published spectroscopic results suggest that, in solution, [Cu(LnH2)(AcO)]
has a square planar geometry around Cu2+ ion with donors (O−, N, O/S) and the fourth
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coordination position filled by the co-ligand (i.e., acetate AcO−) or a solvent molecule in
[Cu(LnH2)(H2O)]+, with the protons on the OH groups in positions 7 and 3′ [66]. The
DFT-characterized structures agree with the experimental outcomes, as shown in Figure 7.
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Figure 7. DFT-optimized geometry structures of the complexes: (a) [Cu(L1H2)(AcO)], (b) [Cu(L2H2)(AcO)],
and (c) [Cu(L3H2)(AcO)].

According to what was experimentally observed in solution [65,66], the three com-
plexes can undergo ligand exchange of the acetate co-ligand with a solvent molecule and,
additionally, both the amido and imido tautomers of the three ligands can be in equilibrium,
each of them potentially chelating the Cu2+ ion. Therefore, a plethora of species must be
considered when questioning which interacts with DNA.

In this work, the behavior of the CuII species in solution, particularly co-ligand/solvent
replacement and tautomerism, were studied, aiming at the determination of the active
species in the systems with DNA. For this purpose, the complex with L1H3 was selected as
a model of the whole set of ligands.

The replacement of the acetato ligand by a water molecule was modeled as shown in
Equation (2), and the Cartesian coordinates for the DFT-optimized structure are reported in
Section S1 of the Supplementary Materials (Tables S1.1–S1.4).

[Cu(L1H2)(AcO)]aq + (H2O)8 aq
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Using EPR spectroscopy, it was demonstrated that the equilibrium [Cu(LnH2)(AcO)] 

+ H2O/Solv ⇄ [Cu(LnH2)(H2O/Solv)]+ + AcO− is established in water-containing mixtures 
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Moreover, the coordination of LnH2− ligands can occur in the amido (am) or imido 

(im) form (Figure 3). In this case, the presence of a negative charge on the CO group and 

of NH instead of N atom in the five-membered chelate ring could also yield a different 

type of interaction with the double strand of DNA.  

[Cu(L1H2)(H2O)]+
aq + [(H2O)7·AcO]−aq (2)

For the sake of accuracy, the two exchanging partners in this equilibrium (i.e., H2O and
AcO−) were solvated using a mixed explicit/continuum method, according to Bryantsev
et al. [83]. The calculated ∆Gaq was 2.0 kcal mol−1, suggesting that the species are in
equilibrium in solution at room temperature.

The study of the tautomerism of the Schiff bases (Figure 8) was assessed by considering
the relative stability of the CuII complexes of the respective amido or imido tautomers
(Equation (3)) and assuming the exchange of a proton with the solvent.
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stereogenic carbon atom in position 2 of the C ring of hesperetin.

The following reaction was studied:

[Cu(L1H2
am)(H2O)]+

aq + (H2O)14 aq
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The Cartesian coordinates for the species involved in Equation (3), optimized by
DFT methods, are reported in Section S2 (Tables S2.1–S2.3). The calculated ∆Gaq of
7.8 kcal mol−1 allowed us to exclude the presence of the imido form of the CuII com-
plex in aqueous solution. This is in line with the characterization in the solid state and with
the experimental EPR results (Table 3 and ref. [66]).

Table 3. Calculated and experimental EPR parameters, gz and Az, of the species.

Compound gz
calcd (gz

exptl) 1 Az
calcd (Az

exptl) 1,2 Error/% 3

[Cu(L3H2
am)(AcO)]aq 2.204 (2.243) 187.9 (188.8) –1.7; –0.5

[Cu(L3H2
am)(H2O)]+

aq 2.183 (2.243) 195.6 (188.8) –2.7; +3.6
[Cu(L3H2

am)(H2O)]+
aq 2.165 (2.243) 201.7 (188.8) –3.5; +6.9

[Cu(L3H2-κSam)(AcO)]aq 2.191 (2.200) 189.7 (185.0) –0.4; +2.5
[Cu(L3H2-κSam)(H2O)]+

aq 2.176 (2.200) 169.2 (185.0) –1.1; +8.6
1 Calculated and experimental values (in parenthesis). 2 Values reported in 10–4 cm–1. 3 Relative error of gz (on
the left) and of Az (on the right) calculated with the formula: [(Calcd. − Exptl.)/Exptl.] × 100.

The ligand L3H3 deserves a deeper consideration compared to the other ones. Indeed,
its coordination mode is ambiguous, (O−, N, S) or (O−, N, NH2), as shown in Figure 9. The
computed ∆Gaq for the two conformational isomers was 2.1 kcal·mol−1 with an energy
barrier of 14.8 kcal·mol−1, ensuring their equilibrium at room temperature (Figure 9).
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The S-coordination is preferred over the N-coordination with a ∆Gaq for Equation (4)
of 9.3 kcal mol−1, suggesting that the equilibrium between the two linkage isomers
can be considered totally shifted toward the S-coordinated species. The Cartesian co-
ordinates for [Cu(L3H2-κS)(AcO)]aq and [Cu(L3H2-κN)(AcO)]aq are listed in Section S3
(Tables S3.1 and S3.2).

[Cu(L3H2-κS)(AcO)]aq
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[Cu(L3H2-κN)(AcO)]aq (4)

The computed spin Hamiltonian EPR parameters are in line with the experimental
outcomes that suggested the S-coordination to be the favored in solution [66]. The predicted
parameters are listed in Table 3.

Regarding the fourth coordination position, our DFT simulations confirmed the mon-
odentate coordination of the acetato co-ligand with the non-coordinating oxygen perpen-
dicular to the plane of the complex. The low energy barrier related to the flipping of the
acetate, 2.9 kcal·mol−1, also ensures an equilibrium between two isoenergetic conforma-
tional isomers (Figures 10 and S1). The coordinates for the two conformers are presented in
Section S4 (Tables S1.1 and S4.1).
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am)(AcO)] and the

relative energies. The values of ∆G and of the energy barrier ∆E‡ for the flipping of the acetato ligand
are also shown.

In general, the overall calculations allow us to discriminate which species are signifi-
cantly present in solution. On the one hand, the amido–imido tautomerism of each complex
and the linkage isomerism (–S or –NH2 donor) in the case of L3H3 were both significantly
shifted toward only one of the two species (i.e., the amido tautomer and the –S donor,
respectively). Thus, every imido tautomer as well as the coordination set (O−, N, NH2)
for L3H3 can be ruled out from the docking calculations. On the other hand, the ∆G for
the exchange of AcO– with solvent indicates that the two species [Cu(LnH2

am)(AcO)] and
[Cu(LnH2

am)(H2O)]+ have comparable concentrations in solution. Torsional freedom for
the Cu–OAc and Cu–OH2 bonds was accounted for.

2.2.2. Docking with DNA

For hesperetin acting as a stereogenic unit in all the complexes due to its asym-
metric C2 atom on the ring C (see Figure 1), docking calculations for the L1H3 ligand
and complexes were run with both the R and S enantiomers as the benchmark. Table 4
summarizes the species docked with DNA. In Section S5, the MOL2 files of each ligand
structure implemented for the docking calculations are reported. In Section S5.1, the MOL2
files of each ligand structure implemented for the docking calculations are listed (from
Tables S5.1–S5.11), while Section S5.2 contains the tables displaying the whole solutions
and clusters for each calculation (from Tables S5.12–S5.33).

Table 4. Species selected as ligands for the docking calculations.

Ligand AcO−/H2O Exchange Chirality

L1H3

L1H3
am

(R)-L1H3
am

(S)-L1H3
am

[Cu(L1H2
am)(AcO)]

[Cu((R)-L1H2
am)(AcO)]

[Cu((S)-L1H2
am)(AcO)]

[Cu(L1H2
am)(H2O)]+

[Cu((R)-L1H2
am)(H2O)]+

[Cu((S)-L1H2
am)(H2O)]+

L2H3
[Cu(L2H2

am)(AcO)] [Cu((R)-L2H2
am)(AcO)]

[Cu(L2H2
am)(H2O)]+ [Cu((R)-L2H2

am)(H2O)]+

L3H3
[Cu(L3H2-κSam)(AcO)] [Cu((R)-L3H2-κSam)(AcO)]

[Cu(L3H2-κSam)(H2O)]+ [Cu((R)-L3H2-κSam)(H2O)]+

TO TO TO

For our systems, the interaction with DNA could occur in several modes: intercalative
binding occurs through the insertion of a Cu complex, possibly positively charged, with
aromatic ring(s) between two adjacent base pairs, stabilized by π–π stacking between the
ring and the base pairs; groove binding with the reversible interaction of the copper species
with a structure complementary to DNA major; and minor groove, which can vary with
the size and shape of the groove [45].
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We set up two different docking assays for the study of groove and intercalative bind-
ing modes. The structures of DNA crystallized with the pyrrolo[2,1-c][1,4]benzodiazepines
derivative (PDB code 2K4L [84]) and intercalated by a dimeric derivative of the thiazole
orange cation, TO (PDB code 108D [85]), were used as model receptors for the groove and
intercalative binding assays, respectively. For the purpose of comparison, docking was
additionally assessed for TO and the free ligand L1H3.

The results, gathered in Table 5, suggest that both the binding modes displayed high
Fitness values, with intercalation favored for all species. The intercalative affinity order was
[Cu(L1H2

am)(AcO)] > [Cu(L2H2
am)(AcO)] ≈ TO ≈ L1H3 > [Cu(L3H2

am)(AcO)], in line with
the experimental binding constants, Kb, obtained from the UV–Vis spectroscopy (Table 1).

Table 5. Best GoldScore solutions for all of the CuII complexes and ligands with DNA for minor
groove and intercalative binding. Fitness scores are sorted in order of decreasing values.

Interaction Mode Ligand Fmax
1 Shb_ext

2 Svdw_ext
3 Sint

4 Pop. 5

Intercalation [Cu((R)-L2H2
am)(AcO)] 92.7 1.3 92.0 −0.6 85

Intercalation [Cu((R)-L1H2
am)(AcO)] 92.4 1.7 91.0 −0.3 83

Intercalation [Cu((R)-L1H2
am)(H2O)]+ 89.5 0.0 89.7 −0.2 94

Intercalation [Cu((R)-L2H2
am)(H2O)]+ 89.2 0.0 89.5 −0.3 89

Intercalation [Cu((S)-L1H2
am)(AcO)] 88.2 4.6 86.3 −2.7 10

Intercalation TO 88.1 0.0 90.9 −2.8 5
Intercalation (R)-L1H3 88.0 0.0 88.3 −0.3 51
Intercalation (S)-L1H3 87.0 1.7 89.5 −4.3 40
Intercalation [Cu((S)-L1H2

am)(H2O)]+ 84.5 0.0 87.7 −3.1 12
Intercalation [Cu((R)-L3H2

am)(AcO)] 83.2 0.4 83.4 −0.6 2
Minor groove binding [Cu((S)-L1H2

am)(AcO)] 75.9 6.6 71.7 −2.4 88
Minor groove binding [Cu((S)-L1H2

am)(H2O)]+ 75.1 2.7 74.5 −2.2 2
Intercalation [Cu((R)-L3H2

am)(H2O)]+ 75.5 2.0 80.0 −6.4 25
Minor groove binding [Cu((R)-L3H2

am)(AcO)] 74.5 1.8 74.7 −1.9 66
Minor groove binding [Cu((R)-L1H2

am)(AcO)] 72.8 7.1 73.4 −7.7 83
Minor groove binding [Cu((R)-L2H2

am)(AcO)] 70.3 0.1 72.0 −1.8 11
Minor groove binding [Cu((R)-L1H2

am)(H2O)]+ 70.2 0.2 72.3 −2.2 42
Minor groove binding [Cu((R)-L2H2

am)(H2O)]+ 69.0 3.5 67.7 −2.2 25
Minor groove binding [Cu((R)-L3H2

am)(H2O)]+ 68.6 8.8 62.9 −3.0 9
1 Highest Fitness score. 2 Term accounting for hydrogen bonds between the ligand (in this study the hesperetin
Schiff base or metal moiety) and receptor (in this study the CT-DNA). 3 Term accounting for van del Waals
interactions between the ligand and receptor. 4 Term accounting for the intramolecular van der Waals forces of the
ligand and its torsional strain energy. 5 Cluster population: number of solutions of the cluster with the highest
Fitness scores. Clustering was performed using a root-mean-square-deviation (RMSD) with a threshold of 2.5 Å.

The main type of interactions found with the docking results for minor groove and
intercalative binding modes were van der Waals contacts. These are more effective in
the intercalative binding model because the DNA structure allows the ligand or metal
species to enter the cavity between the base pairs (C3T4:G14A13 or A5G6:T12C11) to max-
imize these interactions, which can be described in terms of π–π contacts between the
base pairs and the aromatic moieties of the hesperetin Schiff base ligands. In the groove
binding model, ligands and metal moieties are not allowed to intercalate, and smaller
F were observed. From the analysis of the four additive terms constituting the scoring
function (see Equation (5) in Section 3.4), it is clear that the most important term among
the four is Svdw_ext (i.e., the one accounting for van der Waals interactions between the
ligand and CT-DNA) (Tables 5 and S5.34). Conversely, the terms accounting for the hydro-
gen bonds, Shb_ext, and the intramolecular van der Waals forces plus the torsional strain
energy, Sint, provides a minor contribution or are not relevant. The term that considers the
intramolecular hydrogen bonds, Shb_int, is zero in all cases. From a structural point of view,
the extent of the aromaticity seems to play a major role in binding stabilization, with the
more extended aromatic systems (i.e., L1H3 and L2H3) being favored to the smaller (i.e.,
L3H3). Moreover, the R enantiomers were slightly favored in all cases.
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Comparing the two AcO–-and H2O-containing complexes, the respective order of
affinity was [Cu(L1H2

am)(AcO)] > [Cu(L1H2
am)(H2O)]+, highlighting the relevance of the

co-ligand in adduct stabilization.
The formation of DNA adducts can be rationalized as a multistep process, in which

minor groove binding is the first step. From this intermediate, the adduct evolves toward
the more stable intercalated adduct. This is described in Figure 11.

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 14 of 21 
 

 

aromaticity seems to play a major role in binding stabilization, with the more extended 

aromatic systems (i.e., L1H3 and L2H3) being favored to the smaller (i.e., L3H3). Moreover, 

the R enantiomers were slightly favored in all cases. 

Comparing the two AcO–-and H2O-containing complexes, the respective order of 

affinity was [Cu(L1H2am)(AcO)] > [Cu(L1H2am)(H2O)]+, highlighting the relevance of the 

co-ligand in adduct stabilization. 

The formation of DNA adducts can be rationalized as a multistep process, in which 

minor groove binding is the first step. From this intermediate, the adduct evolves toward 

the more stable intercalated adduct. This is described in Figure 11. 

 

Figure 11. Schematized multistep binding process between DNA and [Cu(LnH2am)(AcO)], along 

with the Fitness values of the docking assays of the formed adducts. The symbols “⋯” and “⊃“ in-

dicate, respectively, the minor groove and intercalative binding. 

3. Materials and Methods 

3.1. Synthesis 

The synthesis and characterization of the CuHHSB complex have been presented in 

ref. [65], while the synthesis and description of the complexes CuHIN and CuHTSC were 

reported in ref. [66]. CuHESP was synthesized according to ref. [86]. All ligands (HHSB, 

HIN, and HTSC) were prepared according to the literature procedure [64]. The racemic 

hesperetin, benzohydrazide, 2-aminobenzohydrazide, isoniazid, thiosemicarbazide, and 

copper(II) acetate monohydrate (Cu(AcO)2·H2O) were purchased from Sigma-Aldrich 

Co. (Poznań, Poland). Thiazole orange and calf thymus DNA were purchased from Sig-

ma-Aldrich Co. (St. Louis, MO, USA). All reagents were of analytical quality and used 

without further purification. 

3.2. Spectroscopic Measurements 

All absorption spectra were recorded at room temperature (25 °C) using matched 

quartz cells of 1.0 cm path length with a Varian UV–Visible Perkin-Elmer Lambda 11 

spectrophotometer. Absorption spectra of 25 μM HHSB, HIN, HTSC, and complexes 

CuHHSB, CuHIN, CuHTSC, and the changes in their respective spectra on the subse-

quent addition of CT-DNA from 2.5 μM to 25 (35) μM in increasing concentration were 

recorded. All experiments were carried out in Tris buffer (5 mM Tris-HCl, 50 mM NaCl, 

pH 7.2). While measuring the absorption spectra, the solutions were allowed to incubate 

for 10 min before the absorption spectra were recorded, and an equal amount of CT-DNA 

was added to both the compound solution for the reference solution to eliminate the ab-

sorbance of CT-DNA itself. The intrinsic binding constant (Kb) of our compounds with 

CT-DNA was obtained using Equation (1) [68,69,87,88]. Spectrofluorimetric measure-

ments were performed on a Hitachi spectrophotometer, model F-2000. Tris buffer con-

Figure 11. Schematized multistep binding process between DNA and [Cu(LnH2
am)(AcO)], along

with the Fitness values of the docking assays of the formed adducts. The symbols “· · · ” and “⊃“
indicate, respectively, the minor groove and intercalative binding.

3. Materials and Methods
3.1. Synthesis

The synthesis and characterization of the CuHHSB complex have been presented in
ref. [65], while the synthesis and description of the complexes CuHIN and CuHTSC were
reported in ref. [66]. CuHESP was synthesized according to ref. [86]. All ligands (HHSB,
HIN, and HTSC) were prepared according to the literature procedure [64]. The racemic
hesperetin, benzohydrazide, 2-aminobenzohydrazide, isoniazid, thiosemicarbazide, and
copper(II) acetate monohydrate (Cu(AcO)2·H2O) were purchased from Sigma-Aldrich Co.
(Poznań, Poland). Thiazole orange and calf thymus DNA were purchased from Sigma-
Aldrich Co. (St. Louis, MO, USA). All reagents were of analytical quality and used without
further purification.

3.2. Spectroscopic Measurements

All absorption spectra were recorded at room temperature (25 ◦C) using matched
quartz cells of 1.0 cm path length with a Varian UV–Visible Perkin-Elmer Lambda 11 spec-
trophotometer. Absorption spectra of 25 µM HHSB, HIN, HTSC, and complexes CuHHSB,
CuHIN, CuHTSC, and the changes in their respective spectra on the subsequent addition
of CT-DNA from 2.5 µM to 25 (35) µM in increasing concentration were recorded. All
experiments were carried out in Tris buffer (5 mM Tris-HCl, 50 mM NaCl, pH 7.2). While
measuring the absorption spectra, the solutions were allowed to incubate for 10 min before
the absorption spectra were recorded, and an equal amount of CT-DNA was added to both
the compound solution for the reference solution to eliminate the absorbance of CT-DNA
itself. The intrinsic binding constant (Kb) of our compounds with CT-DNA was obtained
using Equation (1) [68,69,87,88]. Spectrofluorimetric measurements were performed on a
Hitachi spectrophotometer, model F-2000. Tris buffer containing 25 µM DNA and 25 µM
TO was titrated with solutions of the tested ligands or CuII complexes (concentrations in
the range of 10–300 µM were used).

The inner filter correction was included in the values of fluorescence intensity in the
emission spectra, as shown in Figure 6. The inner filter correction was calculated according
to the equation Fobs = Fcorr·10

Aex ·dex
2 · Aem ·dem

2 , where Fobs is the measured fluorescence, Fcorr
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is the correct fluorescence intensity that would be measured in the absence of inner-filter
effects, dex and dem are the cuvette pathlength in the excitation and emission direction (1 cm),
respectively, and Aex and Aem are the measured absorbance values at the excitation and
emission wavelength, respectively, caused by ligand addition [89]. The emission spectra
were recorded in the 500–600 nm (emission) wavelength range at an excitation wavelength
λex of 430 nm. Measurements were performed in a quartz cuvette at room temperature.

3.3. DFT Calculations

Geometry optimization and vibrational frequency calculations were run by Gaussian
16 [90] using the DFT method with the B3LYP functional and Grimme’s D3 correction [91].
The basis-set 6-31G(d,p) was applied to the main group elements, while the SDD plus
f-functions was employed for the metal [92]. The SMD continuum model for water was
used to account for the aqueous environment [93]. Frequency calculations allowed us to
obtain the thermal and entropic corrections. To determine the Gibbs free energies, these
corrections were added to the potential energy obtained by single-point calculations on the
optimized structures, with the basis-set def2-TZVP for the main group and def2-QZVP for
the d-block elements [94]. A mixed explicit/continuum model [83] was used for aqueous
water molecules, hydronium, and acetate. A dataset collection of the computational results
is available in the ioChem-BD repository and can be accessed via https://doi.org/10.19061
/iochem-bd-1-322 [95].

The EPR parameters were computed using the ORCA program [96–98]. The combina-
tion of the PBE0 [99] and 6-311G(d,p) basis-set was used to calculate the g tensor, while the
B3LYP [100,101] was applied to determine the A tensor with the same basis-set, following
the published results of Sciortino et al. [102].

3.4. Docking Calculations

Docking calculations were performed by GOLD 5.3 [103]. Previously, the original
ligands of the DNA crystallographic structures (PDB code 2K4L [84] for the minor groove
binding model; PDB code 108D [85] for the intercalation model) were removed and hydro-
gen atoms were added using UCSF Chimera [104].

The fluorescent dye thiazole orange (TO), used in the fluorescent quenching experi-
ments, was optimized with the aforementioned method and used as the docking ligand
for the purpose of comparison. The binding site comprised the whole structure for both
models (PDB codes 2K4L [84] and 108D [85], respectively). For each ligand, 100 genetic
algorithm (GA) runs were processed. Free rotation of the AcO–Cu coordination bond was
considered along the simulations.

GoldScore, the scoring function used to calculate the Fitness score (F) in this study,
has already been validated for docking with metal complexes as ligands (it must be noted
that, in docking terminology, the species interacting with the receptor is generically named
as the ligand) [105,106]. The polynomial scoring function consists of a sum of four terms
(Equation (5)), accounting for hydrogen bonds between the ligand and receptor (Shb_ext),
van del Waals interactions between the ligand and receptor (Svdw_ext), intramolecular
hydrogen bonds of the ligand (Shb_int), and a term that summarizes the intramolecular van
der Waals forces of the ligand and its torsional strain energy (Sint). Each term is weighted
by the coefficients α = 1, β = 1.375, γ = 1, and δ =1.

Fitness score (F) = α Shb_ext + β Svdw_ext + γ Shb_int + δ Sint (5)

The GA was set automatically with a minimum 1 × 105 operations. All other settings
were left as the default. Finally, the docking solution were clustered by GOLD using an
RMSD with a threshold of 2.5 Å.

4. Conclusions

Among the antitumor drugs, after the discovery of cisplatin and the development of its
derivatives, metal complexes have gained a broad space in experimentation, and Cu-based

https://doi.org/10.19061/iochem-bd-1-322
https://doi.org/10.19061/iochem-bd-1-322
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potential therapeutics are worth being mentioned for their high activity and low toxicity.
The binding studies of metal complexes with DNA are at the basis of the development of
existing or new metal-based drugs. For metal complexes formed by first-row transition
elements, these studies present several limitations: the possibility of exchange reactions
of the ligands with water or solvent molecules, the formation of two or more isomers
and of the corresponding enantiomers, the variation in the coordination number, and the
possibility of the existence of tautomeric forms for the organic ligands can result in a wide
variety of species able to interact with DNA. Therefore, it is not trivial to interpret the
experimental results of the interaction studies, often based on UV–Vis or fluorescence
spectroscopy. Some authors have noticed that the scarce knowledge of these aspects could
be at the basis of the lack of interest by pharmaceutical companies for metal-based drugs
compared with organic compounds, and the failed development of many of them [107].
Therefore, all approaches useful to characterize the metal–protein binding, preferably based
on multiple techniques and a combined application of experimental and computational
techniques, are desirable.

The systems discussed in the present study, containing a Schiff base formed by hes-
peretin with benzohydrazide (HHSB), isoniazid (HIN), and thiosemicarbazide (HTSC)
represent a good example of what was above-mentioned. In fact, the solid compounds
with the general formula [Cu(LnH2)(AcO)] can exchange the acetate ion with water, the
ligands can bind the Cu centers in the amido or imido form, and HTSC can coordinate with
the (O−, N, NH2) or (O−, N, S) donor set. The combined approach of the DFT and docking
methods allowed us to demonstrate that: (i) an equilibrium between [Cu(LnH2)(AcO)]
and [Cu(LnH2)(H2O)]+ exists in aqueous solution, and so both species can interact with
DNA; (ii) the amido and not imido tautomer of HHSB, HIN, and HTSC binds Cu2+ ion;
and (iii) the coordination mode of HTSC is (O−, N, S) and not (O−, N, NH2). Moreover, the
results indicate that the intercalative binding is stronger than minor groove interaction with
the order [Cu(L1H2

am)(AcO)] > [Cu(L2H2
am)(AcO)] ≈ TO ≈ L1H3 > [Cu(L3H2

am)(AcO)],
in agreement with the experimental binding constants to DNA (Kb) obtained from UV–Vis
spectroscopy, with the aromaticity of the ligands playing a major role in binding stabi-
lization. The computational data also suggest that the binding of [Cu(LnH2

am)(AcO)]
is preferred over [Cu(LnH2

am)(H2O)]+, and the binding of R is favored compared to S
enantiomers.

As a general conclusion, it must be highlighted that when different donor sets for
the ligands, isomers, enantiomers, and tautomers for the metal complexes are possible,
a computational approach should be recommended to predict the type and strength of
binding to DNA, and in general, to macromolecules. To this it must be added, however,
that a complete characterization of these systems is often not possible because a mixture
of metal moieties can form and interact with DNA as well as because at the physiological
metal concentration, not greater than a few µM, hydrolysis can lead to hydroxide species
that could dominate in the solution at pH around 7.

Supplementary Materials: The following supporting information can be downloaded at: https:
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