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Abstract: The multidrug and toxin efflux (MATE) family participates in numerous biological processes
and plays important roles in abiotic stress responses. However, information about the MATE family
genes in Torreya grandis remains unclear. In this study, our genome-wide investigation identified
ninety MATE genes in Torreya grandis, which were divided into five evolutionary clades. TgMATE
family members are located on eleven chromosomes, and a total of thirty TgMATEs exist in tandem
duplication. The promoter analysis showed that most TgMATEs contain the cis-regulatory elements
associated with stress and hormonal responses. In addition, we discovered that most TgMATE
genes responded to abiotic stresses (aluminum, drought, high temperatures, and low temperatures).
Weighted correlation network analysis showed that 147 candidate transcription factor genes regulated
the expression of 14 TgMATE genes, and it was verified through a double-luciferase assay. Overall,
our findings offer valuable information for the characterization of the TgMATE gene mechanism
in responding to abiotic stress and exhibit promising prospects for the stress tolerance breeding of
Torreya grandis.

Keywords: Torreya grandis; expression profiles; WGCNA analysis; MATE transporters

1. Introduction

Torreya grandis is an evergreen conifer species of the Taxaceae family. It is an endan-
gered plant species and only grows in a few mountainous areas of some southern provinces
of China [1]. As the native economic nut tree species, the fruit of Torreya grandis has been
documented to have many medicinal properties and has been used as food for thousands
of years in China [2]. Torreya grandis seed oil is abundant in unsaturated fatty acids and
bioactive compounds, rendering it of excellent nutritional and medical value [3]. Due to
the high-value components, Torreya grandis seed oil has been widely employed in medicine,
food, and cosmetics in Japan and China. [4,5]. Nut crops are an integral component of
food production systems, which are vital to nutrition and food security [6]. However,
the frequent occurrence of abiotic stress environments in recent years has shown adverse
effects on crop yields and thus poses a challenge to food security [7,8]. In recent years,
acid rain and long-term improper fertilization have resulted in increased soil acidification
and aluminum (Al) toxicity stress in Torreya grandis plantations, which adversely affects
the yield and quality of Torreya grandis [9,10]. In addition, severe drought occurrences are
common in Torreya grandis planting areas from the summer to autumn, causing Torreya
grandis seedling growth and development to be hampered by water stress, which inhibits
their growth and development [2]. Therefore, it is important to improve the resistance of
Torreya grandis to various abiotic stresses. Nowadays, genetic engineering is widely used
for crop improvement and provides a means to address the challenges of food security
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associated with environmental stress [11]. Numerous studies have shown that molecu-
lar breeding methods, such as genetic modification, can enhance plant stress tolerance
traits [12,13]. Consequently, the breeding of Torreya grandis with greater abiotic stress
tolerance is important for ensuring food security.

Over a long period of evolution, plants have evolved plenty of strategies to adapt
to abiotic stress. When subjected to external stress, the stress-specific signal transduction
pathways in plants will be triggered, thus activating relevant regulatory mechanisms to
adapt themselves to the stress [14]. One of the regulatory mechanisms is the differential
expression of stress-related genes [15]. The molecular processes of plant responses to
abiotic challenges have been widely explored, and many genes critical for improving
tolerance to various abiotic pressures have been found. The MATE gene family, which
encodes multidrug and toxic compound extrusion transporters, is believed to be relevant
to numerous abiotic stresses [16].

The multidrug and toxic compound extrusion (MATE) family is a newly classified
family of multidrug efflux transporters that are ubiquitous in both prokaryotes and eu-
karyotes [16,17]. In plants, MATE transporters are engaged in a variety of biological
processes [16]. They were discovered to have an essential role in the transport of metabo-
lites, including flavonoids and alkaloids [17]. For example, Arabidopsis TT12 encoding the
MATE protein was found to be able to transport flavonoids, which are involved in the
vacuolar accumulation of proanthocyanidin precursors in the seed [18]. In addition, MATE
transporters have been proven to be involved in the endogenous and exogenous mecha-
nisms of detoxification [19] and the transport of plant hormones, such as efflux abscisic
acid (ABA) [20] and salicylic acid (SA) [21]. At present, MATE family members have been
discovered in many angiosperms, such as Oryza sativa [22], Solanum tuberosum [23], and
Arabidopsis thaliana [24]. Studies in these species have revealed that plant MATE genes play
a key role in the response to various abiotic stresses. In Arabidopsis thaliana, MATE family
member AtDTX50 can promote cellular ABA efflux and consequently impact drought
tolerance [20]. The barley MATE gene, HvAACT1, could accelerate the citrate efflux and
improve the Al tolerance of the transgene plants [25]. However, the MATE family has not
been discovered in gymnosperms to date. The structural features of MATE genes in Torreya
grandis and their effects in the response to abiotic stress need to be further studied. Thank-
fully, the whole genome sequencing of Torreya grandis has been completed recently [26],
which provides the basis for analyzing the MATE family in gymnosperms.

In this investigation, we aimed to conduct a comprehensive genome-wide analysis
of the Torreya grandis MATE gene family. We systematically analyzed their phylogenetic
relationships, gene structure, chromosome localization, potential cis-acting elements, and
expression profiles in Al, drought, high-temperature, and low-temperature responses. In
addition, we investigated potential transcription factors that regulate TgMATE members’ ex-
pression under abiotic stress through weighted correlation network analysis (WGCNA) and
validated their reliability through a dual-luciferase assay. In summary, the response of Tg-
MATE genes to abiotic stress was initially investigated in this research, which is expected to
be helpful for improving the stress tolerance of Torreya grandis through genetic engineering.

2. Results
2.1. Identification and Characterization of MATE Genes in Torreya grandis

In our research, there are 90 MATE family members that were identified in Torreya
grandis through HMM search and conserved domain analysis. We named those genes
TgMATE1-TgMATE90 according to their chromosomal locations. To comprehend the
physicochemical characteristics of TgMATE proteins, a bioinformatics evaluation was
carried out. The outcomes indicated that TgMATE proteins have an amino acid count
ranging from 75 to 755 aa. The molecular weight of these proteins varies from 8.253 to
83.36 kDa, while the isoelectric point (pI) ranges from 4.74 to 10.42. According to the
subcellular localization prediction results, 69 TgMATE proteins are located on the plasma
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membrane, while less than a quarter of the TgMATEs are distributed on other organelles
(Table S2).

2.2. Chromosomal Localization of TgMATEs

TBtools was used to process the genome annotation file and visualize the chromosome
distribution of TgMATE genes [27]. The results showed that the TgMATEs gene was
distributed on all 11 chromosomes of Torreya grandis. Chromosome 5 contains the largest
number of TgMATE genes, which has 19 TgMATEs, while the least number of TgMATE
genes distributed is chromosome 9, which has just 1 TgMATE gene (Figure 1). The processes
of gene replication are crucial to the evolution of organisms [28]. Tandem duplication, one
of the gene replication processes, is defined by the coexistence of family members in the
same or nearby intergenic areas, and it might encourage the growth of gene families [29].
The tandem duplicates in the TgMATE gene family were investigated through the MCScanX
tool [30], and those genes were marked with red arcs (Figure 1). Finally, there are a total of
30 tandem repeat TgMATE genes that were found, which constituted 20 tandem duplication
events. The outcomes indicate that there were numerous tandem duplication events that
occurred, which fueled the growth of the TgMATE genes in Torreya grandis.
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tandem duplication events (presented in red brackets).

2.3. Phylogenetic Analysis of TgMATE Proteins

A phylogenetic tree was constructed based on the protein sequences of 18 different
species to evaluate the evolutionary relationship of the TgMATE gene family. These MATE
proteins were categorized into five clades (I–V), which are illustrated in Figure 2. The
TgMATE genes were distributed in all clades, and clade V has the largest number of
TgMATEs (49 TgMATEs). In clades I, II, and III, there are 24, 6, and 4 TgMATE genes,
respectively. Clade IV (seven TgMATEs) contains the most abundant species, with a total of
fourteen plant species of MATE proteins, indicating that they may have important functions
and are relatively conservative in evolution. Interestingly, we found that many homologous
MATE genes in clade IV have been reported to be associated with tolerance to Al stress,
including TaMATE1B [31], SbMATE [32], VuMATE1 [33], VuMATE2 [34], OsFRDL4 [35],
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HvAACT1 [36], PtrMATE1, and PtrMATE2 [37]. These results imply that the TgMATE genes
in clade IV may also have resistance to Al stress.
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Figure 2. The phylogenetic tree of the expansion MATE genes in Oryza sativa, Nicotiana tabacum,
Arabidopsis thaliana, Ricinus communis, Brassica oleracea, Brassica rapa subsp. Oleifera, Eucalyptus camald-
ulensis, Glycine max, Hordeum vulgare subsp. Vulgare, Medicago truncatula, Populus trichocarpa, Secale
cereale, Sorghum bicolor, Torreya grandis, Triticum aestivum, Vigna umbellate, Zea mays, and Vitis vinifera.
The Roman numerals I through V represent the five evolutionary groups of the MATE family.

2.4. Investigation of Protein Motifs and Gene Structure of TgMATEs

We created the exon–intron structure diagram of TgMATE genes according to the
Torreya grandis genome annotation file to investigate the structural variety of the TgMATE
family members (Figure 3B). The exon number of the TgMATE gene ranges from 2 to
14. The bulk of the TgMATE genes in clades II, III, and IV have quite lengthy intron
sequences, whereas the majority of TgMATE genes in clades I and V have practically
short intron sequences. Noticeably, the TgMATE genes with close genetic distances have
comparable exon–intron structures, whereas the structural patterns of TgMATE genes on
different phylogenetic branches are distinct. Additionally, the evolutionary characteristics
of TgMATE proteins were further explored through the conserved domain analysis in
MEME, and 10 conserved motifs have been discovered (Figure 3C). Figure 3A shows the
distribution of conserved motifs on TgMATE proteins. TgMATE proteins with nearly
genetic distances have similar conserved motif categories and distributions. The protein
motif composition of clades III and IV differed dramatically from that of clades I, II, and
V. Members of clades III and IV, for example, have just 1–2 motifs in common, while
TgMATE proteins in clades I, II, and V have 2–10 motifs in common, and most of them
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have 10 conserved motifs. Our findings are compatible with phylogenetic analysis, which
supports the categorization of MATE family members.
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2.5. Cis-Acting Elements Analysis of TgMATE Gene Promoters

After the prediction in PlantCARE, a total of 67 cis-acting elements with known func-
tions were identified in the TgMATE gene promoters. According to their main functional
characteristics, these elements were classified into six categories, encompassing the en-
vironmental stress-related, hormone-responsive, light-responsive, development-related,
site-binding-related, and promoter-related elements (Table S3 and Figure 4). As the results
demonstrate, the light-responsive elements were the most abundant cis-acting elements in
TgMATE promoters, accounting for 31 different types, followed by the hormone-responsive
elements, accounting for 11 cis-elements. There are seven categories of environmental
stress-related elements that were detected, which were DRE, LTR, ARE, GC-motif, TC-rich
repeats, MBS, and WUN-motif in the TgMATE promoters. The development-related ele-
ments include eight important types, such as cell cycle regulation, circadian control, etc.
Notably, all the TgMATE promoters contain light-responsive cis-elements. In addition,
the stress-response cis-elements exist in almost all TgMATE promoters, except for the
promoters of TgMATE44, TgMATE69, TgMATE70, and TgMATE87 (Table S3). Moreover,
83 TgMATE promoters have hormone-responsive elements, and 59 TgMATE promoters
have development-related elements (Table S3).
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2.6. Analysis of the Expression Profiles of TgMATEs under Various Abiotic Stresses

To obtain some insights into how TgMATE genes respond to abiotic stress, we ana-
lyzed the transcript profile of TgMATEs based on the transcriptome data under Al, drought,
high-temperature, and low-temperature stress. A total of 63 TgMATEs were found to have
differential expression (Fold Change > 1.5 or <0.8) in the four types of abiotic stress treat-
ment (Table S4). As shown in Figure 5A, the number of up-regulated and down-regulated
TgMATE genes was on the same order of magnitude in Al and low-temperature stress
(around 20 TgMATEs), while the quantity of down-regulated TgMATE genes is significantly
greater than that of up-regulated TgMATE genes under drought and high-temperature
stress. Next, we contrasted the overlapping relationships of the differentially expressed
genes (DEGs) under different stress situations through the Venn diagram (Figure 5B). It
is interesting to note that 18 TgMATE genes responded to Al, drought, high-temperature,
and low-temperature stress, and 25 TgMATE genes responded to at least two stresses
(Figure 5B), suggesting TgMATE family genes are extensively implicated in abiotic stress
response processes in Torreya grandis.
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Figure 5. The expression patterns of the TgMATE family genes in response to aluminum (Al) stress,
drought (Dr) stress, high-temperature (HT) stress, and low-temperature (LT) stress in Torreya grandis.
(A) The numbers of up-regulated and down-regulated TgMATE genes under Al, Dr, HT, and LT
stress. (B) Venn diagrams show the overlap of differentially expressed TgMATEs in response to Al
(green), Dr (blue), HT (red), and LT (yellow). (C–F) Heat maps show the expression patterns of the
stress-responsive TgMATEs under Al (C), Dr (D), HT (E), and LT stress (F). The FPKM values are
log-normalized and clustered in rows.

Further, we constructed the gene expression heat maps to illustrate the expression
profile of TgMATE genes under different stresses (Figure 5C–F). During Al stress, the
patterns of these TgMATE genes’ expression can be divided into four groups (patterns
Al_1–4) (Figure 5C). Expression pattern Al_1 exists in 12 TgMATE genes, where their
expressions reached the highest levels at 8 h but decreased at 24 h after AlCl3 treatment
(Figure 5C). Pattern Al_2 comprises 13 TgMATEs whose expression levels increased during
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the Al treatment and peaked at 24 h (Figure 5C). Pattern Al_3 contains nine TgMATEs,
and their expression was lowest at 8 h (Figure 5C). Pattern Al_4 (14 TgMATEs) displayed
the opposite expression pattern to pattern Al_2, with relatively high expression levels at
0 h of Al treatment but decreasing after 8 h and 24 h of Al treatment (Figure 5C). During
drought stress, pattern Dr_1 (13 TgMATEs) exhibited comparatively high expression at 60 d
compared to 0 d and 40 d (Figure 5D). Pattern Dr_2 (18 TgMATEs) was generally down-
regulated at 40 d and 60 d (Figure 5D). Pattern Dr_3 (6 TgMATEs) was increased at 40 d but
decreased at 60 d (Figure 5D). For high-temperature conditions, pattern HT_1 (17 TgMATEs)
exhibited an up-regulation trend, while a majority of genes in pattern HT_2 showed
significant down-regulation at 1 d, 2 d, and 4 d of high-temperature treatment (Figure 5E).
Moreover, under low-temperature stress, pattern LT_1 consisting of 20 TgMATEs, was
up-regulated at nearly all the time points (Figure 5F). Most genes in pattern LT_2 were
down-regulated at 2 d, 4 d, and 6 d of low-temperature treatment, while in contrast, a few
of them were up-regulated at 6 d of low-temperature treatment (Figure 5F). Pattern LT_3
(6 TgMATEs) positively responded to low-temperature stress in the early phases but was
down-regulated during the later phases (Figure 5F). These findings highlight the possibility
of these TgMATEs involved in Al, drought, high-temperature, and low-temperature stress
responses and imply the different contributions of TgMATE family members to abiotic
stress tolerance in Torreya grandis.

2.7. Expression Pattern of TgMATEs in Different Phylogenetic Clades under Abiotic Stresses

We also examined the expression patterns of each phylogenic clade of TgMATE family
genes in the four types of abiotic stress. Clade I has a total of 24 TgMATEs, among which
13, 6, 9, and 9 genes respond in Al, drought, high-temperature, and low-temperature,
with proportions of 54.17%, 25%, 37.5%, and 37.5%, respectively (Figure 6). There are two
TgMATEs (33.33%) in clade II responding to Al, drought, and low-temperature stress, and
five TgMATEs (83.33%) responding to high-temperature treatment (Figure 6). Clade III
contains only four TgMATEs, with one gene (25.0%) responding in Al and low-temperature
stress, three genes (75.0%) in drought stress, and all of them responding in high-temperature
stress (Figure 6). Clade IV has more than half of TgMATEs that respond to each type of stress,
with five (71.43%), four (57.14%), seven (100.0%), and seven (100.0%) genes in Al, drought,
high-temperature, and low-temperature stress, respectively (Figure 6). Clade V contains
the largest number of TgMATE members (49 in total), and 17, 20, 26, and 24 TgMATEs in
this clade responded under the four treatments, accounting for 34.69%, 40.82%, 53.06%, and
48.98%, respectively (Figure 6). According to our results, different evolutionary branches
of the TgMATE family exhibit varying proportions of response genes to abiotic stress,
indicating that these branches may contribute differently to the abiotic stress response.
Interestingly, clade IV has the highest proportion of TgMATEs responding in Al, high-
temperature, and low-temperature treatments of the five polygenetic branches, implying
that TgMATE members in this clade are widely involved in Torreya grandis resistance to
abiotic stress. Additionally, clade III showed the highest percentage of response genes to
drought stress, suggesting that this clade may be more resistant to drought stress. Our
findings demonstrate the broad involvement of the TgMATE family in the response to
abiotic stress and imply that genes from various evolutionary branches may contribute
differently to facing abiotic stress, which offers possible candidate genes for Torreya grandis
stress-tolerant breeding.
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Figure 6. The proportion of differentially expressed genes (DEGs) and unresponsive genes in different
polygenetic clades of TgMATEs under Al stress (Al), drought stress (Dr), high-temperature stress
(HT), and low-temperature stress (LT).

2.8. QRT-PCR Validation

To validate the results of transcriptome analysis, we evaluated the expressions of the
TgMATE family members in clade IV under Al treatment by qRT-PCR. Unsurprisingly,
the expression patterns of these TgMATEs obtained from qRT-PCR almost matched the
outcomes of the transcriptome study. During the Al stress treatment, the expressions of
TgMATE1, TgMATE2, and TgMATE4 dramatically rose, reaching their peak levels at 24 h
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(Figure 7). TgMATE87 experienced a significant upregulation at 8 h while exhibiting a down-
regulation at 24 h (Figure 7). These results demonstrated the reliability of the expression
pattern of TgMATEs under various abiotic stresses obtained through transcriptome data.
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Figure 7. qRT-PCR analysis of the 7 TgMATE genes from clade IV under Al stress. The gene expression
is normalized relative to the Torreya grandis reference gene, TgActin. The data present the average
of three biological replicates, and ANOVA was employed to test the hypothesis. Different letters
represent statistically significant p-values that are less than 0.05.

2.9. Identification of the Potential Transcription Factors by WGCNA

To investigate the reactions between TgMATEs and the transcript factors in Torreya
grandis, a WGCNA was completed using the transcriptome data of Torreya grandis. A
cluster tree was constructed according to the correlation between gene expression levels,
and 11 different modules were generated by the dynamic cutting method (Figure 8A,B).
Correlation weights calculated by WGCNA were used to measure the interaction degree
between transcription factors and TgMATE genes. We chose a weight threshold of 0.01 as a
criterion for identifying transcription factors that might interact with TgMATEs and used
Cytoscape to visualize their co-expression relationship. According to the WGCNA analysis,
a total of 147 transcription factors were found to have an association with 14 TgMATE
family members (Figure 8C and Table S5). The transcription factors were arranged into
28 families, and the majority of these transcription factors belong to WRKY, bHLH, HD-ZIP,
bZIP, NAC, and ERF families (Table S5), implying that these transcription factor families
may play an important role in regulating TgMATE gene expression.
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Figure 8. Relationships between TgMATEs and possible transcription factors predicted by WGCNA
methods. (A) Determination of soft threshold power. (B) Eigengene adjacency heatmap of WGCNA.
(C) Co-expression network represents the relationships between TgMATEs and possible transcription
factors predicted by WGCNA methods. The blue ovals represent the TgMATE genes, and the yellow
ovals represent transcription factors. Different background colors represent different modules.

2.10. Verification of WGCNA Results through the Dual-Luciferase Reporter Assay

To verify the prediction results of WGCNA, TgMATE2 and the transcription factor pre-
dicted to be associated with it in the turquoise module were selected for the dual-luciferase
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reporter assay. Through PCR reaction, we successfully amplified the TgMATE2 promoter
fragment and four transcription factors (evm.TU.PTG000304L.6, evm.TU.PTG009519L.1,
evm.TU.PTG000725L.65, and evm.TU.PTG016833L.4) from Torreya sinensis DNA and cDNA.
Their sequences were cloned into the reporters and the effectors, respectively, followed by
the transient co-expressed in tobacco leaves through Agrobacterium tumefaciens. The empty
62-SK plasmid was used as the negative control. LUC and Rluc values were measured, and
the interaction intensity of the TgMATE2 gene promoter region and the transcription factor
proteins was reflected by the ratio of LUC to Rluc. As shown in Figure 9, the transcrip-
tion factors in the co-expression network had different activation capacities for TgMATE2
promoters. Notably, transcript factor evm.TU.PTG016833L.4 from the HD-ZIP family, had
a significantly higher LUC/Rluc ratio than the negative control (Figure 9B). In addition,
the fluorescence of evm.TU.PTG016833L.4 detected through Tanon 5200 is brighter than
that of the control (Figure 9C), implying this HDZIP transcription factor could activate the
expression of TgMATE2. These findings support the validity of the approach for identifying
transcription factors that control TgMATE members via WGCNA.
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Figure 9. Dual-luciferase experiment between TgMATE2 and its candidate transcription factors.
(A) Structure schematic of reporter and effector. (B) Transcriptional activation ability of 4 tran-
scription factors for TgMATE2 in tobacco leaves. Each data presents the average of three biological
replicates. A quadruple asterisk denotes the significant difference (p < 0.0001) assessed by ANOVA.
(C) Fluorescence is released as a result of the reaction between the substrate and firefly luciferase.
The scale bar corresponds to 1 cm.

3. Discussion
3.1. Torreya Grandis Genome Possessed a Large TgMATE Gene Family

Our research discovered 90 TgMATE family members by searching the Torreya grandis
genome with the hidden Markov model of the MATE protein. According to earlier studies,
there are 56 MATE family genes in Arabidopsis [24], 46 in Oryza sativa [22], 42 in Cucumis
melo [38], 48 in Solanum tuberosum [39], and 42 in Capsicum annuum [23]. Compared to these
reported species, Torreya grandis has a substantially higher number of MATE family genes,
suggesting their diversity and important role in plants. Gene replication is one of the main
driving forces for the evolution and expansion of gene families [40]. Previous studies have
shown that tandem and fragment replication mainly promote the replication of the MATE
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gene family [22,23,41]. The collinearity analysis of the Torreya grandis genome revealed
there are 30 (33.4%) tandem repeat genes in the TgMATEs, which was close to the number
of tandem repeat MATE genes in pepper and potato (38.1% and 35%, respectively) [23].
Therefore, we consider that tandem duplication may also promote the expansion of the
MATE gene family in Torreya grandis. The results of subcellular localization prediction
showed that the majority of TgMATEs, 69 in number, were located on the plasma membrane.
This is compatible with the function of toxic compound efflux.

The length of MATE family proteins varies in different species. Arabidopsis MATE
proteins contain 414 to 539 residues [24], and OsMATE proteins range in length from 370
to 598 aa [22]. MATE proteins in Gossypium arboreum range from 153 to 722 aa [42]. Our
research discovered that the amino acid length of the TgMATE protein varied from 75 to
755, implying that the TgMATE family has higher diversity and complexity. According
to phylogenetic analysis, MATE proteins from eighteen species could be divided into five
clades, which is consistent with the MATE gene family previously reported in Capsicum an-
nuum [23]. Further analysis reveals that the conserved motif distribution and gene structure
of TgMATEs in different clusters were significantly distinct, while similar patterns were
found among TgMATE genes in the same phylogenetic branch (Figure 3), which supports
the classification results of MATE protein in the phylogenetic analysis. In summary, the
differences among TgMATE family members suggest their diverse gene functions. Exon
and intron play an important role in the differentiation of gene structure and function [42].
The divergence of gene structure could be primarily caused by the exonization of intronic
sequences or pseudoexonization of exonic sequences [43]. We noticed TgMATE genes have
very long intron lengths, especially in clades II, III, and IV. In tobacco, the intron length
of MATE family genes is within 30 kb, and some members are intron-less [44]. While in
Torreya grandis, all TgMATE genes have introns, and some are even more than 100 kb in
length. This suggests that the expansion of TgMATE genes may be controlled by changes
in the number and length of introns.

3.2. Members of the TgMATE Family Play an Essential Part to Response the ABIOTIC Stress in
Torreya grandis

Nowadays, abiotic stressors, including Al, drought, high-temperature, and low-
temperature stresses, are recognized as significant barriers to plant growth and agricultural
productivity. Understanding the molecular response mechanism of plants under stress
is helpful for the development of plant resistance breeding [45]. It is generally believed
that one of the means for plants to cope with Al stress is to form complexes with extra-
cellular aluminum ions through the secretion of citrate and other organic acid anions in
the roots to alleviate Al toxicity stress [46]. Under drought stress, plants will accumu-
late a large amount of ABA and regulate the expression of downstream-related genes
to resist drought [47]. In addition, plants will produce many reactive oxygen species
under abiotic stress, resulting in tissue oxidative damage [48]. Numerous studies have
shown that MATE transporters can respond to a variety of abiotic stresses through these
mechanisms [15,31,32,49]. Nevertheless, little is known about how the TgMATE genes in
Torreya grandis respond to abiotic stress. To date, transcriptome analysis of gene expression
profiles has become one of the most important means of biological research and is generally
considered to provide important clues for the exploration of gene functions [40]. There-
fore, we investigated the expression pattern of TgMATE genes in response to Al, drought,
high-temperature, and low-temperature stress based on the transcriptomic data. We found
that more than half of TgMATE genes (70%) were differentially expressed under abiotic
stress. The number of up-regulated genes in Al and low-temperature stress is almost equal
to that of down-regulated genes, whereas the number of up-regulated genes is less than
that of down-regulated genes in drought and high-temperature stress, suggesting that
TgMATE genes tend to be down-regulated in response to drought and high-temperature
stress in contrast to Al and low-temperature stress. Under Al stress, we found that 19 Tg-
MATEs were up-regulated and 22 TgMATEs were down-regulated. There is some evidence
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showing that MATE transporters are responsible for the secretion of organic anion citrate,
which affects the Al tolerance of plants. For example, the introgression of bread wheat
TaMATE1B into durum wheat enables better growth in the soil with high Al3+ [31]. The
transgenic sugarcanes with the SbMATE gene overexpressed have an improved tolerance
to Al [32]. These data suggested that TgMATE family genes might be involved in Al stress
response. The Arabidopsis homologous gene DTX50 was found to encode a transporter with
ABA effector function and thus play a significant role in response to drought stress [48].
In our research, 15 TgMATEs were up-regulated and 22 TgMATEs were down-regulated.
Under drought treatment, suggesting the possibility of these TgMATEs responding to
drought stress. high-temperature and low-temperature stress are common abiotic stresses
that accumulate reactive oxygen species and cause damage to plants. Previous studies
have shown that the Cotton DTX/MATE gene accelerates the expression of antioxidant
genes, which reduces the content of reactive oxygen species and enhances abiotic stress
tolerance in transgenic Arabidopsis [15]. In Torreya grandis, there are 11 and 24 genes that
were up-regulated, and 44 and 22 genes were down-regulated under high-temperature
and low-temperature stress, respectively, indicating their important roles in responding
to extreme temperature. Notably, 25 TgMATEs responded to at least two stresses, and
18 TgMATEs responded to all four types of stress, indicating that TgMATE family members
actively participate in the abiotic stress response mechanisms in Torreya grandis. Moreover,
hierarchical clustering results showed that TgMATEs had different expression patterns
under four different stresses, implying that the TgMATE genes may contribute differently
to cope with these abiotic stresses. In summary, these findings suggest that the TgMATE
genes are extensively associated with the abiotic stress response in Torreya grandis and
could provide the molecular foundation for the breeding of Torreya grandis cultivars with
improved abiotic stress tolerance.

3.3. Expression Profiles of Different TgMATE Subfamilies under Abiotic Stress

During evolution, different phylogenic clades within a gene family typically acquire
distinct functions to enhance their adaptability to changing environmental conditions [50].
In Arabidopsis and rice, the subfamily MATE III has distinct physiochemical properties
that are different from the other subfamilies, as Type-II divergence only occurred in the
MATE III subfamily, while there were no Type-II functional divergence sites in any other
subfamilies [51]. Nevertheless, little research has been conducted on how MATE family
members from different phylogenic clades react to diverse abiotic stresses. Here, we
analyzed the expression patterns of TgMATE family members during abiotic stress to
explore their functional differentiation in abiotic stress responses. TgMATE family members
from five evolutionary clades have different numbers of responses across the four stress
types. For example, clade IV has the highest percentage of TgMATE genes responding
in Al, high-temperature, and low-temperature stress, which suggests that TgMATEs in
this clade are extensively implicated in plant resistance to abiotic stress. Notably, clade IV
also combines many MATE homolog genes that have been confirmed in other plants to be
tolerant to Al resistance, e.g., VuMATE1 [33], etc., which highlights the important roles of
TgMATEs in clade IV in the abiotic stress. Moreover, we found clade III had the highest
proportion of response genes under drought stress, indicating this clade may tend to resist
drought stress. Our findings suggest that different TgMATE family evolution branches
may contribute differentially to the abiotic stress tolerance in Torreya grandis.

3.4. Mining of Candidate Transcription Factors That Interact with TgMATEs

Transcription factors control gene expression at the transcriptional level by attaching
to cis-acting elements on target promoters [52]. In plants, transcription factors are essential
in numerous biological activities such as the regulation of development, the induction
of defense, and the stress response [53]. Recent studies have reported that transcription
factors regulate the expression of the MATE gene in other plants. In rice, Yokosho et al. [54]
discovered that a c2h2 type zinc finger Al tolerance transcription factor ART1 controls
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the expression of the rice MATE gene (OsFRDL4). However, the transcription factors that
regulate the family members of TgMATEs in Torreya grandis have not yet been discovered. In
this study, transcription factors co-expressed with TgMATE genes were predicted through
WGCNA analysis. A total of 147 transcription factors were discovered to potentially
regulate the expression of TgMATE genes and their relationship network was constructed.
Many of these transcription factors belong to the WRKY, bHLH, HDZIP, bZIP, NAC, and
ERF families, which were believed to be widely involved in plant responses to stress.
For instance, wheat TaWRKY10 could regulate the expression of a series of stress-related
genes to improve the stress resistance of tobacco [55]. In Vigna umbellate, an NAC-type
transcription VuNAR1 could regulate the Al resistance through interaction with the cell
wall-associated receptor gene promoter to regulate the metabolism of cell wall pectin [56].
The two HDZIP family members, AtHB7 and AtHB12, oppositely control Al resistance
by affecting the root cell wall Al accumulation in Arabidopsis thaliana [57]. Therefore, we
speculated that the transcription factors screened by WGCNA analysis could respond
to abiotic stress and regulate the expression of TgMATE genes, thus affecting the stress
tolerance of Torreya grandis. Furthermore, the dual-luciferase reporter assay showed that a
transcription factor (evm.TU.PTG016833L.4) from the HDZIP family in the co-expression
network can positively regulate the expression of TgMATE2, suggesting the credibility in
mining the transcription factors of TgMATEs through WGCNA. The potential transcription
factors predicted by WGCNA can provide a molecular basis for further exploring the
mechanism by which TgMATE genes respond to abiotic stress. Above all, the study of
transcription factors related to TgMATE genes has important biological significance; it
could not only enrich our knowledge of the mechanism of Torreya grandis in response to
environmental stress but also contribute to providing new theoretical guidance for the
genetic improvement of Torreya grandis in stress conditions.

4. Methods
4.1. Identification and Characterization of the MATE Family Members in Torreya grandis

The entire genome sequence of Torreya grandis and the annotation file were down-
loaded from Figshare (https://doi.org/10.6084/m9.figshare.21089869.v1, accessed on 29
April 2023) [58]. To find the potential TgMATE genes, we obtained the Hidden Markov
model file of MATE protein (PF01554) in PFAM (https://pfam-legacy.xfam.org, accessed on
29 April 2023) and used the HMMER3.0 software to employ an HMM search
(E-value < 1 × 10−5) on the Torreya grandis proteomes. The sequences of those puta-
tive TgMATE proteins were validated further based on their MATE domain, which was
discovered through the NCBI web tool CDD-Search (https://www.ncbi.nlm.nih.gov/
Structure/bwrpsb/bwrpsb.cgi, accessed on 29 April 2023). The isoelectric point (PI)
and molecular weight (MW) were determined via the ExPASY online tools (https://web.
expasy.org/protparam/, accessed on 8 May 2023) [59]. We used the TargetP 2.0 web tool
(https://services.healthtech.dtu.dk/services/TargetP-2.0, accessed on 8 May 2023) [60] to
forecast the protein subcellular location of each TgMATE.

4.2. Phylogenetic Analysis

Homologous MATE protein sequences in other plants were obtained from NCBI. The
proteins of 18 species were used for the phylogenetic analysis, including 11 dicotyledonous
plants and 6 monocotyledons in addition to Torreya grandis. We aligned all protein sequences
through ClustalW [61], and the phylogenetic tree was constructed based on the Maximin
Likelihood method with the bootstrap value 1000 in IQTREE software v1.6.12 [62]. The
phylogenetic relationship of these MATE proteins was visualized through ITOL (https:
//www.itol.org/, accessed on 11 July 2023) [63].

4.3. Chromosomal Location, Gene Structure, and Conserved Motifs Analysis

We used TBtools software v2.042 to extract the exons, introns, and UTR information
of TgMATEs from the Torreya grandis genome annotation file [27]. The 10 most conserved

https://doi.org/10.6084/m9.figshare.21089869.v1
https://pfam-legacy.xfam.org
https://www.ncbi.nlm.nih.gov/Structure/bwrpsb/bwrpsb.cgi
https://www.ncbi.nlm.nih.gov/Structure/bwrpsb/bwrpsb.cgi
https://web.expasy.org/protparam/
https://web.expasy.org/protparam/
https://services.healthtech.dtu.dk/services/TargetP-2.0
https://www.itol.org/
https://www.itol.org/


Int. J. Mol. Sci. 2024, 25, 3859 16 of 20

motifs of TgMATE proteins were detected through MEME SUITE (https://meme-suite.org/
meme/, accessed on 13 May 2023) [64]. The chromosome distribution records of TgMATEs
were derived via the genome annotation file. Finally, these outcomes were visualized via
the TBtools software v2.042 [27].

4.4. Analysis of the Promoter Cis-Acting Elements of TgMATEs

Based on the genomic annotation file, the promoter sequence located in the upper
2000 bp of the coding sequence of the TgMATEs was extracted. The cis-acting elements of
their promoters were predicted through PlantCARE websites (http://bioinformatics.psb.
ugent.be/webtools/plantcare/html/, accessed on 9 May 2023) [65], and the results were
visualized through TBtools software v2.042 [27].

4.5. Transcriptomic Analyses of TgMATE Genes

Our lab has previously constructed a transcriptome database of 1-year-old Torreya
grandis at various abiotic stresses. Here, we examined the expression of TgMATE family
members under various abiotic stressors using these transcriptomes of Torreya grandis under
Al stress (50 µM AlCl3 treatment for 0, 8, and 24 h), high-temperature stress (40 ◦C high-
temperature treatment for 0, 1, 2, and 3 days), low-temperature stress (2 ◦C low-temperature
treatment for 0, 1, 2, 4, and 6 days), and drought stress (drought without watering for 0, 40,
and 60 days). The Fragments per Kilobase Million (FPKM) data of TgMATE family genes
from the transcriptomes were used to generate a gene expression matrix of TgMATEs. The
up-regulated gene was defined as having a Fold Change value greater than 1.5, and the
Fold Change of the down-regulated gene was less than 0.8. Finally, TBtools software v2.042
was utilized to visualize the gene expression heat map of TgMATEs [27].

4.6. Plant Materials and Al Stress Treatment

One-year-old Torreya grandis seedlings (bought from Zhuji City, China) were rinsed
with sterile water and subsequently transferred to a container filled with 1/5 of Hoagland’s
nutrients [66]. During the adaptation period, the seedlings were cultured for 15 days, and
Hoagland’s solution was changed every 3 days. After that, they were moved to a 1/30
Hoagland nutritional solution [66] with 50 µM AlCl3 and 1 mM CaCl2 (pH 5.0). Root tips
of 0–1 cm length of Torreya grandis seedlings were taken after treatment at 0, 8, and 24 h.
For each treatment, three biological replicates were carried out.

4.7. RNA Extraction and qRT-PCR Validation

An RNAprep Pure Plant Plus Kit (Tiangen Biotech, Beijing, China) was used to extract
total plant RNA from Torreya grandis seedling samples, which was then reverse transcribed
into cDNA via a FastQuant RT Kit (with gDNase) (Tiangen Biotech, Beijing, China). Based
on the findings of phylogenetic analysis, 7 TgMATE genes in clade IV that may have
the ability to resist Al toxicity were chosen for qRT-PCR validation. The fluorescent
quantitative primers used for the qRT-PCR are detailed in Table S1, and the reaction steps
were performed according to the method of Luo et al. [67]. There are three technical
duplications that were conducted for each sample, and the relative expressions were
calculated according to a 2−∆∆Ct algorithm [68].

4.8. Weighted Gene Co-Expression Network Analysis

Transcription factors in Torreya grandis were forecasted through the PlantTFD (http://
planttfdb.gao-lab.org/, accessed on 26 June 2023) [69]. To establish the gene co-expression
networks, the WGCNA shiny program in TBtools was used [27]. The gene set is first filtered
to ensure that every gene participating in the WGCNA has an expression level greater than
1 in at least 90% of the samples. A soft threshold power value of 14 was chosen to build
a network. The minimum module size was chosen as 50, and the threshold for similar
module merging was set to 0.35. Finally, the Cytoscape software v3.7.2 was used for the
visualization of the interested module [70].
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4.9. Dual-Luciferase Reporter Assay

A transient dual-luciferase experiment was performed to examine the transactivation
activity of the co-expression transcription factors in the promoters of TgMATE2. Whole
coding sequences of transcription factors were cloned and placed in the pGreenII 62-SK
plasmid as the effector, while the promoter region of TgMATE2 was placed in the pGreenII
0800-LUC plasmid as the reporter. Primers used in the PCR process are detailed in Table
S1. The effector and reporter were then converted into the Agrobacterium tumefaciens
receptive bacteria strain GV3101 (with psoup) (Weidi, Shanghai, China) by the chemical
transformation methods. After overnight incubation (28◦, 200 rpm) in Luria–Bertani
medium containing kanamycin and rifampicin, the target strains were collected and then re-
suspended with infection buffers (10 mM morph ethanesulfonic acid, 10 mM MgCl2, 50 mM
acetyl syringone, and pH 5.6) and the optical density was adjusted to 0.8. Consequently,
the effector and the reporter were injected into the 5-week-old tobacco leaves at a ratio of 10
to 1. After 2 days of culture in the artificial climate chamber, intensities of firefly luciferase
(LUC) and renila luciferase (Rluc) were detected according to the methods as demonstrated
before [53]. A fully automated Tanon 5200 chemiluminescent image analyzer was used to
observe fluorescence.

5. Conclusions

In this study, a comprehensive analysis of the MATE gene family in Torreya grandis
was conducted. A total of ninety MATE genes were identified in the Torreya grandis genome,
which can be phylogenetically classified into five clades. The conserved motifs and gene
structure analysis revealed significant conservation of TgMATEs within each clade, which
confirmed our classification scheme. The tandem duplication plays an important role in
the expansion of the TgMATE gene family. Promoter analysis revealed that the majority
of TgMATEs contain hormone-response and environmental stress-related elements. The
expression profiles of MATE family members in Torreya grandis under Al, drought, high-
temperature, and low-temperature stress confirmed that TgMATEs played critical roles
in response to abiotic stress. Furthermore, potential transcription factors interacting with
TgMATEs were identified by WGCNA analysis, and the dual-luciferase assay validated
their credibility. Taken together, these findings provide a comprehensive and systematic
characterization of the MATE gene family in Torreya grandis and provide a molecular basis
for the stress-tolerant breeding of Torreya grandis.
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