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Abstract: The current study investigated the impact of cold stress on the morphological, physio-
logical, and phytochemical properties of Juglans regia L. (J. regia) using in vitro microclone cultures.
The study revealed significant stress-induced changes in the production of secondary antioxidant
metabolites. According to gas chromatography–mass spectrometry (GC–MS) analyses, the stress
conditions profoundly altered the metabolism of J. regia microclones. Although the overall spectrum
of metabolites was reduced, the production of key secondary antioxidant metabolites significantly
increased. Notably, there was a sevenfold (7×) increase in juglone concentration. These findings are
crucial for advancing walnut metabolomics and enhancing our understanding of plant responses to
abiotic stress factors. Additionally, study results aid in identifying the role of individual metabolites in
these processes, which is essential for developing strategies to improve plant resilience and tolerance
to adverse conditions.

Keywords: Juglans regia; microclones; cold stress; anatomy; metabolome

1. Introduction

During the growth season, plants continuously face a wide range of stress factors.
Growth, development, and photosynthesis are key physiological indicators of a plant’s
ability to thrive and reproduce under adverse conditions [1]. Metabolomics, which studies
metabolites in biological systems, provides tools for understanding and valuable insights
into plant stress responses and the role of individual metabolites [2–6]. Unlike the tran-
scriptome and proteome, the metabolome is not always directly connected to the plant
genome [7]. The systematic identification and quantification of metabolites reveal the
organism’s biochemical reactions to specific conditions and help define the phytochemical
profile of the phenotype [8–10].

Gas chromatography–mass spectrometry (GC–MS) is a powerful analytical tool in
metabolomics for identifying and quantifying both volatile and non-volatile compounds,
including bioactive substances, in plant samples. This technique provides critical insights
into the physiological state of plants [5]. Due to its high sensitivity, GC–MS can detect
minute amounts of metabolites within complex plant matrices, enabling researchers to
explore the dynamics of metabolic changes during various growth stages and in response
to environmental stimuli, with excellent resolution and reproducibility. The application
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of GC–MS to profile stress-responsive metabolites, which help plants adapt to adverse
conditions, is crucial in contemporary biotechnology research [11–13].

Stress factors affect different species, and even individual plants within the same
species at different developmental stages, in various ways. In some cases, these effects
can be beneficial, eliciting desired responses in the crops under study [14,15]. Indeed, the
production of beneficial secondary metabolites in medicinal plants can be enhanced [16–21].
Today, there is a growing global interest in exploring how plants respond at the metabolomic
level to cold stress [22–27]. Research indicates that low-temperature stress can effectively
stimulate the production and accumulation of secondary metabolites, both in vivo and
in vitro [28–30]. However, the specific mechanisms by which cold stress stimulates sec-
ondary metabolism in medicinal plants remain unclear and warrant further investigation.

The walnut (Juglans regia L.) is among the medicinal plants of interest [31–33] due to its
rich content of antioxidants such as flavonoids, phenolic acids (notably ellagic acid), melatonin,
folate, gamma-tocopherol (vitamin E), selenium, juglone, and proanthocyanidins [34–37] in
various organs (kernels, shells, roots, and leaves). Several studies have shown that J. regia,
along with its extracts and essential oils, exhibits a range of biological and pharmacological
properties, including antibacterial, antifungal, antioxidant, and anti-inflammatory activities,
demonstrating effectiveness against a broad spectrum of pathogens [38–42]. Innovative
modern biotechnologies are increasingly focused on developing medicinal crops that are
rich in biologically active compounds via manipulating growth conditions to enhance the
production of these valuable compounds.

The microclonal propagation of walnuts has advanced significantly in recent years.
Researchers have primarily focused on identifying the optimal mineral and hormonal
compositions of nutrient media, selecting the appropriate type of explants, and establishing
cultivation conditions. These efforts aim to develop effective protocols for in vitro walnut
propagation at the commercial scale [43–48]. Despite these advancements, studies on
the chemical composition of J. regia micro-shoots remain limited. However, the presence
of naphthoquinones such as hydro-juglone glucoside and juglone, as well as flavonoids
like myricitrin and quercitrin, has been confirmed in walnut micro-shoots, and inter-
varietal differences in these compounds have been identified [49,50]. Consequently, walnut
microclones represent a promising source of biologically active chemicals and provide
a valuable model for studying various morphophysiological and phytochemical processes
in plant tissues.

The current study aimed to examine the impact of cold stress on the
anatomical–morphological, photosynthetic, and phytochemical characteristics of J. regia
microclones. There is a lack of research on how the walnut might respond to this type
of abiotic stress and the potential benefits of such studies, making this a significant topic
for discussion. Consequently, this research explored the physiological and phytochemical
properties of J. regia shoot microclones in vitro after exposure to low positive temperatures.

Our study delves into how low positive temperatures influence the plasticity of J. regia
during the initial stages of microclone formation. It offers both theoretical and practical
insights into the species’ ecological adaptation strategies, as well as the potential to harness
these adaptation processes to develop methods for the targeted synthesis of beneficial
secondary metabolites for medical use.

2. Results
2.1. Microclone Propagation

After sterilisation, 82.8 ± 3.6 aseptically viable explants were obtained, while 17.2 ± 1.06
were found to be infected (Figure 1b). Following the application of 6- Benzylaminopurine
(BAP) at a concentration of 1 mg L−1, small shoots (0.5–0.7 cm) began to form within 7–10 days,
accompanied by callus formation at the base of the cut site and the emergence of new buds
within the callus, which subsequently developed into additional shoots (Figure 1c). By the
20th day, shoots measuring 0.6–1.2 cm in height had formed, resulting in a reproduction ratio
of 1:7 (Figure 1d).
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Figure 1. Induction and propagation of J. regia shoots: (a) lignified branches with dormant buds; (b) 
bud explants on a nutrient medium; (c) nodal explant on medium with BAP; (d) microclones. 

In total, 470 shoots were obtained as a result, 300 shoots of which were then subjected 
to low positive temperatures, specifically 3–5 °C, referred to as “cold stress”, for 72 h. The 
remaining 170 shoots were cultivated for mass cloning, some of which will later be trans-
planted onto a medium to induce root formation. Rooting was carried out on a medium 
with 0.5 mg L−1 indole-3-butyric acid (IBA). 

2.2. Anatomical Characteristics of Microclones 
When the anatomical characteristics of the stems of J. regia microclones were exam-

ined, considerable changes were seen in the metric parameters of numerous tissues, both 
in negative and positive dynamics. Thus, considerable increases in the size of vascular 
bundles were discovered (both phloem (+83% to control) and xylem (+86% to control)), as 
well as the thickness of parenchyma tissue (+38% to control) (Figures 2 and 3 and Table 
1). 

Figure 1. Induction and propagation of J. regia shoots: (a) lignified branches with dormant buds;
(b) bud explants on a nutrient medium; (c) nodal explant on medium with BAP; (d) microclones.

In total, 470 shoots were obtained as a result, 300 shoots of which were then subjected
to low positive temperatures, specifically 3–5 ◦C, referred to as “cold stress”, for 72 h.
The remaining 170 shoots were cultivated for mass cloning, some of which will later
be transplanted onto a medium to induce root formation. Rooting was carried out on
a medium with 0.5 mg L−1 indole-3-butyric acid (IBA).

2.2. Anatomical Characteristics of Microclones

When the anatomical characteristics of the stems of J. regia microclones were examined,
considerable changes were seen in the metric parameters of numerous tissues, both in
negative and positive dynamics. Thus, considerable increases in the size of vascular bundles
were discovered (both phloem (+83% to control) and xylem (+86% to control)), as well as
the thickness of parenchyma tissue (+38% to control) (Figures 2 and 3 and Table 1).

When examining tissue sizes and comparing the characteristics of the leaf’s histological
structures, a difference was seen in the indicators of the control and experimental versions,
mostly with regard to negative dynamics after cooling (Figure 4 and Table 1). This trend is
readily visible in the histogram (Figure 4), which shows that the diameter of parenchyma
cells under stress was 85% of the control values, while the thickness of the abaxial epidermis
was 84% of the control.
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Table 1. Anatomy alterations in J. regia microclones.

Parameter Unit Ctrl Cold Stress % to Ctrl p-Value

Stem anatomy

Th
ic

kn
es

s

Epidermis

mm

0.031 ± 0.003 0.029 ± 0.003 − 0.304

Collenchyma 0.064 ± 0.011 0.059 ± 0.007 − 0.446

Sclerenchyma 0.150 ± 0.020 0.134 ± 0.004 − 0.158

Parenchyma 0.262 ± 0.017 b 0.442 ± 0.103 a 169 <0.01

Endoderm 0.038 ± 0.003 a 0.029 ± 0.003 b 76.3 <0.01

S

Conductive bundles

mm2

0.139 ± 0.010 b 0.249 ± 0.048 a 179 <0.05

Phloem 0.086 ± 0.005 b 0.158 ± 0.009 a 184 <0.001

Xylem 0.043 ± 0.005 b 0.076 ± 0.017 a 177 <0.05

d Cell mm 0.224 ± 0.010 a 0.197 ± 0.009 b 87.9 <0.01

Leaf anatomy

Th
ic

kn
es

s

Adaxial epidermis

mm

0.039 ± 0.003 0.037 ± 0.002 − 0.130

Abaxial epidermis 0.043 ± 0.004 a 0.035 ± 0.001 b 81.4 <0.001

General mesophyll 0.185 ± 0.020 0.186 ± 0.017 − 0.964

Palisade mesophyll 0.077 ± 0.006 0.076 ± 0.007 − 0.970

Spongy mesophyll 0.087 ± 0.014 0.095 ± 0.009 − 0.313

S Central vein mm2 0.176 ± 0.016 0.170 ± 0.009 − 0.409

d

Midrib
mm

0.931 ± 0.064 0.869 ± 0.037 93.3 0.050 *

Cell 0.088 ± 0.006 a 0.070 ± 0.004 b 79.5 <0.001

Notes: S—area; d—diameter; *—tendency at p < 0.1.
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Figure 2. Changes in the anatomical structure of J. regia stem exposed to cold stress: (a) control and 
(b) cold stress (+3 °C, 72 h). Labels: 1—epidermis; 2—sclerenchyma; 3—parenchyma; 4—phloem; 
5—xylem; 6—core. Scale bar = 50 µm. 

Figure 2. Changes in the anatomical structure of J. regia stem exposed to cold stress: (a) control and
(b) cold stress (+3 ◦C, 72 h). Labels: 1—epidermis; 2—sclerenchyma; 3—parenchyma; 4—phloem;
5—xylem; 6—core. Scale bar = 50 µm.
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Figure 4. Changes in the anatomical structure of a J. regia leaf exposed to cold stress: (a) control and 
(b) cold stress (+3–5 °C, 72 h). Labels: 1—adaxial epidermis; 2—abaxial epidermis; 3—palisade mes-
ophyll; 4—spongy mesophyll; 5—central vein; 6—central conductive bundle. Scale bar = 50 µm. 
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Figure 4. Changes in the anatomical structure of a J. regia leaf exposed to cold stress: (a) control
and (b) cold stress (+3–5 ◦C, 72 h). Labels: 1—adaxial epidermis; 2—abaxial epidermis; 3—palisade
mesophyll; 4—spongy mesophyll; 5—central vein; 6—central conductive bundle. Scale bar = 50 µm.
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2.3. Photosynthetic Characteristics of Microclones

Cold stress had a substantial effect on the photosynthetic characteristics of J. regia
microclone leaves, as evidenced by a decrease in the amount of photochemical quenching.
This determines the maximum quantum efficiency in the dark, Fv/Fm (−13.5% to control),
as well as nonphotochemical energy conversion in PSII, due to the downregulation of the
light-harvesting function (adjustable dissipation energy) Y(NPQ) (−58.3% to control) under
stressful conditions. Meanwhile, there was a significant increase in the electron transport
rate (ETR) (+63.1% to control) and the parameter quantum yield of nonphotochemical
energy conversion in PSII, other than that caused by the downregulation of the light-
harvesting function (unregulated dissipation energy) Y(NO) (+49.7% to control). The
water content of plant tissues increased by one and a half times when compared to the
control (Figure 5).
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2.4. Phytochemical Characteristics of Microclones

Thin-layer chromatography (TLC) in various solvent systems with particular devel-
opers was used to identify the main groups of bioactive chemicals in extracts from J. regia
microclones. A comparative study of stress variations revealed that the analysed samples
differed in their composition of the major types of secondary metabolites or groups of
chemicals. A qualitative analysis of plant metabolites detected in extracts of microclones
cultivated under control and stress conditions revealed specific patterns (Table 2).

Flavones, flavanols, anthracene derivatives, and condensed tannins were identified in
the analysed extracts. When microclones were treated at low positive temperatures, control
values for flavones, phenolic acids, and tannins were found to be higher.

The results of the quantitative analysis (Figure 6) confirm the results of the qualitative
analysis and suggest that the quantitative content of the main groups of biologically active
substances, such as flavonoids, alkaloids, polysaccharides, tannins, and organic acids when
treating microclones at low positive temperature increases compared to control samples.

Based on the results of a detailed analysis via gas chromatography with mass spec-
trometric detection, 27 compounds were identified in the extract of the leaf stem part of
J. regia microclones cultivated under control conditions, of which cyclic polyhydric alco-
hols predominated—1,2,3,5-cyclohexanetetrol (α,2β,3α,5β—cyclohexanetetrol) (15.25%);
polyhydric phenols—hydroquinone (9.38%), pyrocatechol (6.40%); naphthoquinones—1,4-
naphthalenedione, 5-hydroxy—(7.50%), carbohydrates—ethyl α-d-glucopyranoside (8.29%)
and lactones—3-deoxy-d-mannoic lactone (6.98%). The identification of phytochemical
compounds was confirmed based on the peak area, retention time and molecular formula
(Table 3, Figure 7).
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Table 2. Comparative qualitative analysis of biologically active substances in J. regia microclones
exposed to low positive temperatures.

Reagent
J. regia Microclones

Ctrl Cold Stress

10% PbAc2 (anthraquinones and others with ortho-hydroxy groups, hydrolysable tannins, flavones) + ++

3% FeCl3 (phenolic compounds, tannins) ++ +++

10% oxalic acid (anthocyanins, anthocyanidins) + +

1% ninhydrin (amino acids) ++ ++

5% NaOH (phenols, reduced forms of anthraquinones, 1,8-dihydroxy derivatives) + +++

1% aqueous solution of iron-ammonium alum (condensed tannins, ortho-dioxy groups of any
phenolic compounds) ++ +++

1% AlCl3 (flavonoids, polyphenolic compounds with 3 ordinary OH groups, flavones,
and flavonol-3-glycosides) + ++

1% KMnO4 + ++

1% gelatine (tannins) ++ +++

1% vanillin in HCl (conc.) (Zaprometov reaction) (flavones) + ++

Notes: ‘+++’—high content; ‘++’—moderate content; ‘+’—low content.
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The analysis of the chromatography–mass spectra showed that stress conditions signifi-
cantly modify the dominant spectrum of PSM of J. regia microclones. It was demonstrated that
the chromatographic spectra of J. regia microclones performed worse than the control under
cold stress conditions, although multiple peaks of chemicals were detected that were greatly
above the control levels. Thus, according to the results of gas chromatography with mass spec-
trometric detection, 10 compounds were identified in the nut extract (experiment), of which
naphthoquinones predominated—5-hydroxy-1,4-naphthoquinone (juglone) (49.9%); esters of
unsaturated fatty acids—ethyl ester of (E)-9-octadecenoic acid (13.7%), ethyl ester of octade-
canoic acid (11.1%); ethyl ester of palmitic acid (5.90%); and sulfoxides based on cyclopropanes
and benzene—2,3-diphenylcyclopropyl) methylphenyl sulfoxide (10.7%). At the same time,
a sevenfold higher content of (2,3-Diphenylcyclopropyl)methyl phenyl sulfoxide and fatty
acid esters was noted concerning the control 1,4-Naphthalenedione, 5-hydroxy—(juglone)
(Table 3 and Figure 6).
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Table 3. Results of chromatographic analysis of J. regia microclones.

Retention Time, min
Substance Class

Identification Probability, % Content, %

Ctrl Cold Stress Ctrl Cold Stress Ctrl Cold Stress

16.25 − 4H-Pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl- Heterocyclic ketones 67 − 1.46 −

16.39 − Benzoic acid, 2-formyl- Aromatic CAs 70 − 1.25 −

17.67 − 1,2-Benzenediol Polyhydric phenols 87 − 6.40 −

18.25 − Benzofuran, 2,3-dihydro- Monoaldehydes 71 − 1.06 −

20.54 − 2-Furancarboxaldehyde, 5-(hydroxymethyl)- Heterocyclic alcohols 70 − 2.41 −

21.12 − Hydroquinone Polyhydric phenols 90 − 9.38 −

22.78 − N-Acetyl-l-alanine ethylamide Keto acids (oxo acids) 69 − 1.77 −

23.25 − Phenol, 2,6-dimethoxy- Phenol ethers 76 − 1.54 −

23.47 − Ethyl 2,3-epoxybutyrate Hydroxy acids 72 − 2.09 −

26.35 − 2-Pyrrolidinecarboxylic acid-5-oxo-, ethyl ester Amino acid esters 87 − 3.65 −

28.05 28.03 1,4-Naphthalenedione, 5-hydroxy- Naphthoquinones 82 83 7.50 49.92

28.17 − D-Allose Carbohydrates 88 − 3.52 −

− 28.59 Egenine Isoquinoline alkaloid derivatives 70 1.68

29.09 29.07 3,7,11,15-Tetramethyl-2-hexadecen-1-ol Phytols, terpenes 82 77 0.46 2.07

30.03 − Ethyl α-d-glucopyranoside Carbohydrates 84 − 8.29 −

31.17 − 3-Deoxy-d-mannoic lactone Lactones 74 − 6.98 −

31.39 − 3-O-Methyl-d-glucose Carbohydrates 70 − 3.16 −

31.54 − 1,2,3,5-Cyclohexanetetrol, (1α,2β,3α,5β)- Cyclic PAs 68 − 15.25 −

32.49 − Hexadecanoic acid Saturated FAs 77 − 1.31 −

32.59 32.58 Hexadecanoic acid, ethyl ester Saturated FAs esters 84 85 2.07 5.90

33.96 − 2,7-Anhydro-l-galacto-heptulofuranose Heterocyclic compounds 80 − 3.53 −

34.49 − d-Gluco-heptulosan Heterocyclic alcohols 78 − 3.60 −

− 35.70 Dibutyl phthalate Dicarboxylic acids esters − 86 − 1.90

− 36.16 (E)-9-Octadecenoic acid ethyl ester Unsaturated FAs esters − 82 − 13.71

36.17 − Ethyl Oleate Unsaturated FAs esters 85 − 4.92 −

36.48 36.47 9,12-Octadecadienoic acid, ethyl ester Unsaturated FAs esters 86 83 3.40 11.14

36.54 − 9,12-Octadecadienoic acid (Z,Z)- Unsaturated FAs 77 − 1.29 −
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Table 3. Cont.

Retention Time, min
Substance Class

Identification Probability, % Content, %

Ctrl Cold Stress Ctrl Cold Stress Ctrl Cold Stress

− 36.96 9,12,15-Octadecatrienoic acid Unsaturated FAs − 70 − 1.71

− 38.03 4,4′-(Hexafluoroisopropylidene)diphenol Diphenylmethanes − 68 − 1.22

39.45 − Hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl)ethyl ester PAs and saturated FAs esters 65 − 0.79 −

41.92 − Oleic acid, 3-hydroxypropyl ester Polyunsaturated FAs esters 74 − 1.18 −

42.97 − Butyl 9,12-octadecadienoate Unsaturated monobasic CAs 75 − 1.73 −

− 44.86 (2,3-Diphenylcyclopropyl)methyl phenyl sulfoxide Stilbenes − 69 − 10.74

Notes: FAs—fatty acids; PAs—polyhydric alcohols; CAs—carboxylic acids.
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3. Discussion

Low temperatures, or cold stress, are a major environmental factor that inhibits the
growth and development of many plant species [51–53]. Symptoms of stress typically
appear 48–72 h after exposure to cold temperatures, although this duration can vary
based on the plant type, growth stage, and individual susceptibility to cold. Cold stress
induces various phenotypic symptoms such as reduced growth rate, wilting, chlorosis (leaf
yellowing), and necrosis (tissue death) in leaves. Additionally, it significantly diminishes
plant reproductive capabilities [54]. Cold stress also triggers anatomical and morphological
changes compared to the control conditions, impacting physiological and biochemical
processes and altering the concentration of biologically active substances in the above-
ground organs [55]. These changes in anatomical characteristics are crucial as they underpin
the physiological processes within the plant. This is because all adaptive processes are
linked to the structures of organelles, cells, and tissues and their spatial relationships within
plant tissues [56].
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Interestingly, hypothermia does not necessarily reduce biomass accumulation; it can
even induce an increase in the water content of plant tissues [57]. During cold stress, the
expansion of the stem’s conductive and parenchymal tissues compared to the control is
necessary to manage an increased flow of water and organic compounds. This adjustment
leads to a higher total water content in the tissues of walnut microclones under cold stress,
which may be an indicator of J. regia microclones’ adaptation to cold [58–60].

Study findings show that different plant organs exhibit distinct responses to cold stress.
In the leaf blade tissues, a more “compressed” structure under stress was observed, where
the diameter of the parenchyma cells was reduced to 85% of the control values and the
thickness of the abaxial epidermis was 84% of the control. Conversely, there was a 15%
increase in the thickness of the mesophyll, largely due to the thickening of the spongy tissue
layer compared to the control. Leaves are crucial as the primary sites for photosynthesis
and for the exchange of materials and energy with the environment [61]. The palisade
tissue, situated directly beneath the epidermis, absorbs most of the photosynthetically active
radiation (PAR) and is more essential for photosynthetic productivity than the spongy tissue.
The spongy parenchyma, characterised by multiple rows, primarily facilitates efficient gas
exchange and transpiration. Additionally, it provides protection against temperature stress
and passive moisture loss [62,63]. Therefore, the observed sensitivity of J. regia leaf tissues
to cold stress was likely to lead to significant changes in photosynthesis parameters [64].
Furthermore, under light exposure conditions, photosystem II (PSII) is more susceptible to
cold stress than photosystem I (PSI) [65].

The literature shows that a decrease in the photochemical quenching parameter known
as Fv/Fm, which determines the potential maximum quantum efficiency of PSII, indicates
photo-damage [66]. This was also observed in our experiments with J. regia microclones
along with an ETR increase. An increase in PSII-mediated ETR was associated with low
levels of stress [67], although at critical stress levels, a decline in this parameter was
observed [68]. The observed adverse effects on the Fv/Fm index in our experiments could
be indicative of the initial stages of degradation in the oxygen-releasing complex [69–71]. If
the photochemical processes and electron transport in the chloroplast electron transport
chain (ETC) are mismatched with electron collection rates, the excess electrons must be
dissipated to avoid damage to the cell and the organism [72]. The literature’s evidence
indicates that abiotic stress led to changes not only in energy absorption and ETR but also in
energy dissipation, resulting in decreased PSII efficiency [73–75]. Consequently, less energy
was used for photochemistry and more energy was lost as heat through mechanisms like
xanthophylls (nonphotochemical quenching) [76].

In the current study, the quantum yield of nonphotochemical energy conversion in
PSII, due to a downregulated light-harvesting function (regulated energy dissipation)
Y(NPQ), significantly decreased under cold stress. In contrast, the quantum yield of
nonphotochemical energy conversion in PSII that did not involve the downregulation of
the light-harvesting function (unregulated energy dissipation) increased when microclones
were exposed to cold stress. This provides a reliable indicator of the stress response in
photosynthesis [77–79].

Temperature is a crucial physical factor that impacts secondary metabolites and
supramolecular complexes through standard thermodynamic effects. Conceptually, any
biologically active molecule could function as a thermos-sensor [80]. Studies from the
1980s and 1990s have established a correlation between cold damage and oxidative stress in
plants. Low-temperature stress leads to cell membrane damage characterised by increased
viscosity, gel phase formation, phospholipid breakdown, the accumulation of free fatty
acids, and changes in protein and metabolite concentrations [81–83].

Reactive oxygen species (ROS), formed due to failures in the ETC, can trigger non-
enzymatic reactions, further increasing their numbers. These reactions can subsequently
alter the levels of secondary metabolites, such as polysaccharides, flavonoids, organic acids,
alkaloids, and tannins, which exhibit significant anti-inflammatory, immunoregulatory, an-
tibacterial, and antiviral activities [84–86]. In the current study, qualitative and quantitative
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analyses of the biologically active complexes of J. regia have provided evidence of these
changes.

Recent studies have begun to actively explore the multicomponent nature of the
plant antioxidant system, where all components interact functionally [64]. Modern theories
suggest that low-temperature damage in plants starts with a rapid increase in cell membrane
stiffness due to lipid bilayer phase transitions [85]. These changes in membrane structure
and function lead to incremental alterations in chlorophyll-bearing leaf tissues, as observed
in this study.

Phospholipids and glycolipids, the primary components of plant membranes, play
a pivotal role in metabolism and enhancing plant resilience, especially under low temper-
atures [87,88]. These lipids, which have a glycerol backbone and two fatty acid “tails”,
significantly influence membrane characteristics and the photoinhibition of PSII during
stress [20,89,90]. Indeed, in the current study, the concentration of fatty acid esters signifi-
cantly increased in J. regia microclones exposed to cold stress.

Terpenoids play a crucial role in lipid metabolism and accumulation [91]. In this study,
exposure to cold stress led to an increase in the concentration of 3,7,11,15-tetramethyl-
2-hexadecen-1-ol, commonly known as phytol. This increase in terpenoids, along with
other volatile components like aldehydes, alcohols, and esters in green leaves, suggests
their potential role in transmitting stress signals between plants [92]. Terpenoids can
mitigate the effects of oxidative stress either through direct interactions with oxidants or
by modulating ROS signalling [93–95]. Additionally, they may enhance the hydrophobic
interactions between membrane proteins and lipids [95], protecting against destruction.
Phytol, a component of chlorophyll, has a notable relationship with plant stress responses,
especially under conditions that disrupt photosynthetic activity [57]. The observed increase
in phytol content in J. regia microclones during cold stress underscores the significance of
this finding.

Phenolic compounds are the predominant non-enzymatic antioxidants in plants,
present in all tissues and cells [96]. The high concentration of these phenolics in J. regia
leaves enhances their antioxidant properties. Phenolic compounds are predominantly
synthesised in cellular locations such as plastids (chloroplasts and thioplasts), the endo-
plasmic reticulum, and the Golgi apparatus [97,98], highlighting the cellular infrastructure
supporting their production.

The leaf epidermis assumes a crucial role in adapting to adverse environmental
conditions. Contemporary theories propose that only 5–10% of UV light penetrates beyond
the epidermal layer, with the majority being absorbed by phenolic compounds in the
vacuoles of epidermal cells. The observed reduction in the thickness of both the abaxial
and adaxial epidermises during cold stress may result in an increased concentration of
phenolic compounds, which typically elevate under stress conditions [20,56,99].

The antioxidant activity of phenolic compounds is largely determined via the number
of hydroxyl groups on the aromatic ring [100–102]. Currently, about 10,000 phenolic
compounds are known, which participate in various physiological processes and exhibit
antioxidant properties [97,98]. However, the synthesis of these compounds during the early
phases of plant ontogenesis, particularly in in vitro cultures under adverse environmental
conditions, is not well understood [103,104].

Study findings show that cold stress significantly stimulates the production of stilbene,
specifically (2,3-Diphenylcyclopropyl)methyl phenyl sulfoxide, in J. regia microclones.
Stilbenes, a small subclass of phenolic compounds, are synthesised as a response to both
abiotic and biotic stress factors. Stilbenes and their closely related secondary metabolites,
flavonoids, may possess antioxidant properties due to their ability to scavenge free radicals
and chelate metal ions involved in radical reactions [105,106]. Research indicates that
stilbene biosynthesis is regulated via plant stress hormone signalling, ROS generation,
calcium signalling, and the MAP kinase cascade [107–109].

Stilbenes, particularly (2,3-Diphenylcyclopropyl)methyl phenyl sulfoxide, exhibit
significant biologically active properties, including cardioprotective, antibacterial, and
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antitumor effects [110–112]. Understanding the natural processes that control stilbene
biosynthesis can aid in developing new plant protection strategies and in the commercial
production of stilbenes [113]. However, the mechanisms governing stilbene biosynthesis
have been relatively under-researched, making it crucial to explore the associated enzymes,
genes, and the influence of stress factors on stilbene production [114–116]. Therefore, our
findings that cold stress stimulates stilbene production in vitro in J. regia microclones hold
considerable scientific and practical importance.

Pigments like carotenoids, melanin, and quinoid compounds are unique secondary
metabolites with diverse ecological functions. While the protective roles of carotenoids
and melanin against abiotic factors such as ultraviolet radiation, moisture deficiency, and
other environmental stresses have been well documented [117], the ecological functions
of quinone pigments are not as thoroughly explored. There is, however, limited evidence
suggesting that the synthesis of various auto-oxidable naphthoquinone compounds serves
as a protective response to stress through the shikimate pathway [118–120]. Additionally, it
has been established that juglone biosynthesis can inhibit shoot growth, photosynthesis,
respiration, and water transport in plants [120–123]. Moreover, the presence of naph-
thoquinones has been shown to stimulate the activity of antioxidant enzymes such as
superoxide dismutase and catalase.

The findings from our study, which revealed a sevenfold increase in juglone con-
centration when J. regia microclones were exposed to low positive temperatures in vitro,
are particularly significant. This substantial increase in juglone under stress conditions
contributes greatly to our understanding of plant adaptation mechanisms to stressful en-
vironmental conditions. The data presented go beyond illustrating a biological system’s
response to harsh external conditions; they also exemplify a model system that facilitates
the development of effective technologies for the targeted synthesis of valuable secondary
metabolites. This model can be used to create optimal conditions for the super-production
of biologically active substances in vitro.

4. Materials and Methods
4.1. Plant Material and Growing Conditions

The study focuses on the Ideal variety (Juglans regia Ideal), which is specifically adapted
for the Almaty region. This variety was imported from Uzbekistan and provided by
a private farm in the Enbekshi-Kazakh district of the Almaty region, with certificate number
SNJ326. The Ideal variety is characterised by its low-growing stature, reaching no more
than 4–5 m in height. It bears large fruits, averaging 10 g in weight, with a light kernel that
is easily removed due to its thin shell. Fruit ripening typically occurs between September
and October, with a fruit yield from a single tree reaching up to 120 kg. Additionally, it
exhibits frost resistance down to −30–35 ◦C and shows resilience to chlorosis.

For the establishment of aseptic cultures, explants underwent a sterilisation process
involving a 5 min immersion in a soap solution followed by a 10 min treatment with 10%
hydrogen peroxide. These procedures were conducted within a laminar flow hood, after
which the isolated bud was placed onto a nutrient medium.

Adventitious and axillary buds from lignified shoots of J. regia were selected as the
initial material for in vitro propagation. Following sterilisation, a bud was carefully isolated
and placed on a modified DKW (Driver and Kuniyuki Walnut) [124] nutritional medium.
This medium was adjusted to half the usual concentration of macro-elements and supple-
mented with the phytohormones BAP (1 mg L−1) and 1-naphthaleneacetic acid (NAA)
(0.2 mg L−1), glucose (20 g L−1), and agar (7 g L−1), maintaining a pH of 5.7. The cultiva-
tion followed the standard protocol with a 16 h photoperiod (with illumination ranging
between 6 and 9 LUX) and a temperature maintained at 24–26 ◦C. Transplantation to fresh
nutrient media was performed every 20–30 days to ensure optimal growth conditions.

A genetically homogeneous planting material of Juglandaceae with an increased content
of biologically active substances was obtained, and microsatellite SSR markers widely
used for the identification of walnut plants were used in the work. The size of allelic
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loci WGA001, WGA005, WGA009, WGA069, and WGA202 varied between 178–192 bp,
240–252 bp, 237–252 bp, 160–184 bp, and 259–295 bp, respectively.

4.2. Analysis of Changes in the Elements of the Anatomical Structure

A root fixation was performed using 70% ethanol, and the preservative fluid used
was Strasburger–Flemming’s mixture, consisting of 96% ethanol, glycerol, and water in
a 1:1:1 ratio [125]. Anatomical samples were prepared with an MZP-01 microtome (Tech-
nom, Ekaterinburg, Russia), equipped with a freezing unit OL-ZSO 30 (Inmedprom,
Yaroslavl, Russia). Microscopic images of the anatomical sections were captured using
a Micro Opix MX 700 (T) microscope (West Medica, Wiener Neudorf, Austria) equipped
with a CAM V1200C HD camera (West Medica, Wiener Neudorf, Austria). All anatomical
data were collected using a 40× objective and involved 3–5 replicates, with each replicate
consisting of three plants.

4.3. Analysis of Water Content Changes

To determine the moisture (water) content of plant materials, a 3 g sample was placed
into a bottle that had been previously dried and tared. Obtained bottles were transferred
to the drying oven set at the temperature of 100–105 ◦C and then heated for 30 min. After
heating, the sample was cooled and weighed. Sample drying and cooling were contin-
ued, and weight was measured in 30 min intervals until a constant mass was achieved,
indicated by a weight difference of no more than 0.1 g between two consecutive weight-
ings. The moisture content of the raw material (x) was then calculated as a percentage
using Formula (1):

x =
(m1 − m2)× 100

(m1 − m0)
(1)

where m0 is the mass of an empty bottle (with a lid), dried to constant weight, measured in
g and m1 and m2 are the masses of the bottle (with a lid) containing a sample before and
after drying, respectively, dried to constant weight, measured g.

4.4. Photosynthetic Activity Determination

Photosynthetic activity was assessed by measuring fluorescence levels. Rapid Light
Curves (RLCs) were recorded using a Junior-PAM fluorometer (Heinz Walz GmbH, Effel-
trich, Germany) with actinic illumination at 450 nm. For each measurement, the fluorometer
emitted eight saturation light pulses of 10,000 µmol m−2 s−1 at 20 sec intervals, while ac-
tinic light intensity gradually increased from 0 to 625 µmol m−2 s−1 [76]. The data for
comparison were obtained from the last pulse of the light curve, where the readings
across all considered parameters reached a plateau, ensuring the most objective difference
in indicators.

The following parameters were calculated using Win-Control-3.29 software (Walz,
Effeltrich, Germany): Fv/Fm—the maximum quantum yield of PSII photochemistry; PSII
relative electron transport rate (ETR); Y(NO)—the quantum yield of nonphotochemical
energy conversion in PSII caused by the downregulation of the light-harvesting function;
Y(NPQ)—the quantum yield of nonphotochemical energy conversion in PSII due to the
regulated dissipation of energy. In the study, measurements consistently targeted the
middle third of the active leaf. All photosynthetic data were collected using a 40× objective
with 3–5 replicates (one leaf each).

4.5. Sample Preparation for Phytochemical Analysis

For 30 days, 10 g of a plant sample was extracted with 50 mL of 96% ethanol. Each
variant was prepared in at least three replicates.

4.5.1. Qualitative Analysis

Various chemical tests were performed to detect biologically active compounds in
extracts of J. regia, using standard methods with minor modifications [126,127].
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Lead Acetate Test. Between 3 and 5 drops of a 10% solution of basic lead acetate
were added to 1 mL of the extract, resulting in precipitation ranging from bright yellow to
brown. This indicates the presence of compounds like phenols, phenolic acids, flavonoids,
anthraquinones (yellow precipitate), hydrolysable tannins (brown precipitate), and flavones
(brown-yellow precipitate).

Ferric Chloride Test. Between 1 and 2 drops of a freshly prepared 3% solution of iron
(III) chloride were added to 1–2 drops of the extract. A green or blue-green precipitate
indicates the presence of phenolic compounds. Green precipitate indicates a free 5-OH
group and a two-row arrangement of hydroxy groups, and blue-violet precipitate indicates
flavonoids, anthraquinones, phenols, phenolic acids, and tannins.

Oxalic Acid Test. Around 1–3 mL of a 10% solution of oxalic acid dissolved into
a 1:1 mixture of acetone and water was added to 1 mL of extract. Bright colours indicate
anthocyanins and anthocyanidins.

Ninhydrin Test. A total of 1 mL of extract was mixed with 0.5 mL of 1% ninhy-
drin solution followed by heating until a blue-violet stain appeared, which is specific to
α-amino acids.

Aluminium Chloride Test. About 1–3 drops of a 1% aluminium chloride solution
were added to 1 mL of the extract. An intensified yellow colour indicates the presence
of flavonoids and other polyphenolic compounds with three ordinary OH groups, or
OH...S(O)...OH-fragment and flavonol-3-glycosides.

Iron Ammonium Alum Test. Around 1–3 drops of a 1% solution of iron ammonium
alum were added to 1 mL of the test solution. The resulting black-blue colour indicates the
presence of condensed tannins, while a green colour indicates the presence of ortho-dioxy
groups of any phenolic compounds.

The 1% KMnO4 Solution Test. Around 1–2 drops of a 1% solution of potassium
permanganate were added to 1-3 mL of extract. The resulting purple precipitate indicates
the formation of cocaine.

Gelatine Test. A 1% solution of gelatine was added to the extract, the resulting white
precipitate indicates the presence of tannins. An excess of gelatine clears the turbidity.

Vanillin–Hydrochloric Acid Test (Zaprometov reaction). Around 1–3 drops of a 1%
vanillin solution in concentrated HCl were added to 1 mL of the extract. The resulting
yellow colour indicates the presence of flavones, while a range of pink colours indicates the
presence of resorcinol and phloroglucinol derivatives.

4.5.2. Quantitative Analysis

Tannins. The content of tannins was determined using a titrimetric method, with
0.2 M of KMnO4 as the titrant and indigo carmine sulphate as the indicator [128].

Flavonoids. The quantitative content of flavonoids was expressed in terms of quercetin,
measured using a LEKI SS2107UV spectrophotometer (MEDIORA OY, Helsinki, Finland) [127].

Free Organic Acids. The content of free organic acids was determined with the
titrimetric method using 0.1 M of NaOH as the titrant and phenolphthalein as the indicator.
The results were calculated in terms of malic acid [128].

Alkaloids. The quantitative content of alkaloids was measured using a LEKI SS2107UV
spectrophotometer (MEDIORA OY, Helsinki, Finland). Measurements were taken in a 10 mm
cuvette at a wavelength of 420 nm, using a 2% sulfuric acid solution as a reference [129].

Polysaccharides. To determine the content of polysaccharides, an analytical sample
of raw materials was extracted twice with water in a water bath with reflux. About
25 mL of the filtrate was mixed with 75 mL of 95% ethyl alcohol, heated in a water
bath at 60 ◦C for 5 min, and centrifuged at 5000 rpm for 30 min in an OPN-8UHL4.2
centrifuge (AnalitPromPribor, Moscow, Russia). The precipitate was filtered, washed with
15 mL of 95% ethyl alcohol, and dried at 100–105 ◦C to a constant weight. The content of
polysaccharides was then determined based on the weight of dry raw materials in % [130].
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4.6. Gas Chromatography–Mass Spectrometry

GC–MS analysis of J. regia extracts was performed using an Agilent 7890A/5975C
system (Santa Clara, CA, USA). The sample volume injected was 0.7 µL with an injection
temperature of 280 ◦C, and the analysis was conducted without flow division. Chromato-
graphic separation occurred on a DB-17MS capillary column, which was 30 m in length,
with an inner diameter of 0.25 mm and a film thickness of 0.25 µm. The carrier gas (helium)
was maintained at a constant flow rate of 1 mL min−1. The temperature programming for
the chromatography started at 40 ◦C (held for 0 min) and ramped up to 280 ◦C at a rate of
5 ◦C min−1, with a final hold at 280 ◦C for 10 min. The total analysis time was 58 min.

Detection was performed in the SCAN mode with an m/z range of 34–750. The Agilent
MSD ChemStation software (version 1701EA, Santa Clara, CA, USA) controlled the GC
system and facilitated the registration and processing of results and data. Data processing
included determining retention times, analysing peak areas, and processing spectral infor-
mation obtained from the MS detector. The identification of compounds was aided via the
Wiley 7th edition and NIST’02 libraries, which contain over 550,000 spectra.

4.7. Statistical Analysis

The data analysis was conducted using RStudio software (version 2023.06.0 Build 421,
RStudio PBC, Boston, MA, USA, 2023). Tukey HSD tests were performed for pairwise
comparisons of the means, while an ANOVA was used to confirm statistical significance.
Subsequently, the treatments were categorised by letter in descending order, and graphs
were generated. Significance was declared at p < 0.05.

5. Conclusions

Pioneering comprehensive in vitro research on Juglans regia L. microclones was con-
ducted to explore the effects of low positive temperatures on their anatomical, physiological,
and phytochemical characteristics. These studies have identified significant changes in the
synthesis of secondary antioxidant metabolites. GC–MS revealed that stress conditions
substantially alter the metabolome of J. regia microclones. While the spectrum of metabo-
lites was considerably reduced, there was a notable increase in the production of beneficial
secondary antioxidant metabolites, including a sevenfold increase in juglone concentra-
tion. These findings are crucial for advancing walnut metabolomics and enhancing our
understanding of plant responses to abiotic stressors, as well as elucidating the roles of
individual metabolites in these processes.
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123. Solar, A.; Colarič, M.; Usenik, V.; Stampar, F. Seasonal Variations of Selected Flavonoids, Phenolic Acids and Quinones in Annual
Shoots of Common Walnut (Juglans regia L.). Plant Sci. 2006, 170, 453–461. [CrossRef]

124. Driver, J.A.; Kuniyuki, A.H. In Vitro Propagation of Paradox Walnut Rootstock. HortScience 1984, 19, 507–509. [CrossRef]
125. Barykina, R.; Veselova, T.; Devyatov, A.; Dzhalilova, K.K.; Ilyina, G.; Chubatova, N. Guide on Botanical Microtechique: Basics

Methods; MSU: Moscow, Russia, 2004; 312p.
126. Evans, W.C. Trease and Evans’ Pharmacognosy, 16th ed.; Elsevier Health Sciences: Amsterdam, The Netherlands, 2009;

ISBN 978-0-7020-4189-1.
127. Harborne, A.J. Phytochemical Methods: A Guide to Modern Techniques of Plant Analysis, 3rd ed.; Springer Dordrecht: Dordrecht,

The Netherlands, 1998; ISBN 978-0-412-57260-9.
128. Aiyegoro, O.A.; Okoh, A.I. Preliminary Phytochemical Screening and In Vitro Antioxidant Activities of the Aqueous Extract of

Helichrysum longifolium DC. BMC Complement. Altern. Med. 2010, 10, 21. [CrossRef] [PubMed]
129. Ministry of Health, Republic of Kazakhstan. State Pharmacopoeia of the Republic of Kazakhstan, 1st ed.; Zhibek Zholy: Astana,

Kazakhstan, 2008; Volume 1, ISBN 9965-759-97-9.
130. Okhremchuk, A.V. Study of Polysaccharides of Polygamous Burnet (Poterium polygamum Waldast. et Kit.). In Gammerman

Readings—2011; Labor Scientific and Methodological Conference: St. Petersburg, Russia, 2011; pp. 54–57.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.jplph.2012.10.003
https://www.ncbi.nlm.nih.gov/pubmed/23127362
https://doi.org/10.1016/j.foodchem.2016.05.164
https://www.ncbi.nlm.nih.gov/pubmed/27374601
https://doi.org/10.1016/j.plaphy.2018.06.003
https://www.ncbi.nlm.nih.gov/pubmed/29908490
https://doi.org/10.5530/pj.2019.11.140
https://doi.org/10.3390/pr10051016
https://doi.org/10.1038/hortres.2017.58
https://doi.org/10.1007/s00425-017-2730-8
https://www.ncbi.nlm.nih.gov/pubmed/28685295
https://doi.org/10.1007/s11240-018-1490-x
https://doi.org/10.3390/plants13020184
https://doi.org/10.3390/horticulturae9040513
https://doi.org/10.1016/S0031-9422(98)80053-8
https://www.ncbi.nlm.nih.gov/pubmed/9564730
https://doi.org/10.7868/S0555109915020026
https://www.ncbi.nlm.nih.gov/pubmed/26027347
https://doi.org/10.2174/157341209787314936
https://doi.org/10.1023/B:JOEC.0000017988.20530.d5
https://www.ncbi.nlm.nih.gov/pubmed/15112735
https://doi.org/10.22230/jem.2012v13n3a119
https://doi.org/10.1016/j.plantsci.2005.09.012
https://doi.org/10.21273/hortsci.19.4.507
https://doi.org/10.1186/1472-6882-10-21
https://www.ncbi.nlm.nih.gov/pubmed/20470421

	Introduction 
	Results 
	Microclone Propagation 
	Anatomical Characteristics of Microclones 
	Photosynthetic Characteristics of Microclones 
	Phytochemical Characteristics of Microclones 

	Discussion 
	Materials and Methods 
	Plant Material and Growing Conditions 
	Analysis of Changes in the Elements of the Anatomical Structure 
	Analysis of Water Content Changes 
	Photosynthetic Activity Determination 
	Sample Preparation for Phytochemical Analysis 
	Qualitative Analysis 
	Quantitative Analysis 

	Gas Chromatography–Mass Spectrometry 
	Statistical Analysis 

	Conclusions 
	References

