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Abstract: The adoption of DNA-based assessments for biodiversity monitoring has been on the rise.
However, the effectiveness of DNA-based taxonomic assignments heavily relies on the availability and
reliability of DNA barcode libraries. There is growing demand for a comprehensive understanding of
aquatic biodiversity and the critical role of Chironomidae, specifically Stenochironomus in freshwater
ecosystems. Therefore, our objective is to develop a reference barcode library for Stenochironomus in
China. From 2016 to 2021, we collected Stenochironomus specimens in diverse Chinese landscapes
using malaise traps, light traps, and sweep nets. These specimens were carefully preserved for
DNA extraction and barcode sequencing. Our analysis unveiled 36 unique operational taxonomic
units from 180 COI barcode sequences through a Neighbor-Joining tree and Automatic Barcode
Gap Discovery program, highlighting a significant diversity within the Stenochironomus species. The
findings emphasize the constraints of conventional morphological identification methods, especially
for species with ambiguous morphologies. It also underscores the effectiveness of DNA barcoding in
revealing hidden species diversity, known as cryptic species. Consequently, this study advocates for
an integrated taxonomic approach, combining morphological and molecular data, to refine species
identification and conservation strategies.

Keywords: DNA barcoding; Chironominae; cryptic species; COI

1. Introduction

Habitat destruction, pollution, and climate change are major causes of biodiversity
loss, especially in streams and rivers [1]. Despite the increasing risks, our understanding of
its impacts on freshwater biodiversity remains limited. Unlike terrestrial habitats, inland
waters are less protected from environmental impacts [2,3]. Improper land use practices,
such as wastewater effluent, deforestation, and overgrazing, can lead to changes in river
hydrology and water quality [4]. Freshwater invertebrates, especially aquatic insects, play
a crucial role in the energy flow within aquatic ecosystems and are integral to the food
chain as the dominant functional feeding group [5]. Moreover, due to their sensitivity to
environmental changes, aquatic insects serve as important indicators for monitoring and
protecting aquatic systems [6]. Thus, these are commonly used to assess the environmental
quality of freshwater ecosystems [7].

The Chironomidae, also known as non-biting midges, are the most abundant aquatic
insects in freshwater ecosystems. Over 6300 species occur in nearly every zoogeographical
region on Earth, ranging from rainforests to the polar regions. They occupy a pivotal
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niche and hold a lower position in the food chain, making them excellent indicators of
environmental conditions [8,9]. Being the most widely distributed insect species in the
world, they are vital models for studies in species evolution and global biogeography [9].
Meanwhile, their outstanding ability to act as environmental indicators has led to their
widespread use in ecological monitoring and water quality assessment [10].

Accurate species identification is the most critical step in monitoring aquatic ecol-
ogy [11]. Traditionally, species identification relies heavily on morphological features,
which could be challenging, especially for macroinvertebrates that undergo metamorpho-
sis, leading to differences between larvae and adult individuals [12]. To complement the
traditional methods, DNA-based approaches have emerged as a powerful tool for species
delimitation. DNA barcoding, first introduced in 2003 by Hebert and his collaborators, is
commonly used in many research fields, such as species identification, diet analysis, and
environmental DNA [13]. Compared to traditional methods, DNA barcoding offers several
advantages. The usage of standardized molecular barcodes enables easy comparison be-
tween different individuals. For example, The Consortium for the Barcode of Life (CBOL)
has proposed various working groups to identify universal barcoded genes, such as COI
for Metazoa; rbcL, matK, and ITS for plants; ITS for fungi; and 16S rRNA genes for bacteria.
DNA barcoding also can be used in a variety of mixed samples, such as soil and water
samples. Nevertheless, the selection of a barcode gene is the most critical and it should
satisfy certain criteria consisting of a clear “barcode gap” between maximum intraspecies
and minimum interspecies distances among a group of species. Furthermore, the fragment
should possess highly conserved flanking sequences to cover a wide range of species and a
short amplification length to facilitate DNA amplification and sequencing [14]. The most
widely accepted and standardized species-level DNA barcode is Cytochrome c oxidase
subunit I (COI), a 658 bp DNA sequence located in the mitochondrial genome [9]. The
cost of sequencing has decreased significantly in recent years, leading to the formation of
more species-specific and public reference databases. One notable example is the Barcode
of Life Data System (BOLD, http://www.barcodinglife.org, 20 March 2024) [15], a publicly
available database that can store, analyze, and distribute DNA barcodes. There are also
some regional databases for invertebrates [16,17]. BOLD, being the most famous online
public barcode reference library, covers more than 3600 barcodes of chironomid species (up
to 20 March 2024) [15].

The Stenochironomus Kieffer, 1919 (Figure 1) is a noteworthy genus in the Chironomidae
family, known for its wide distribution and considerable species variety [18]. The larvae in-
habit various habitats such as swamps, ponds, streams, rivers, and even trophic rainforests.
According to the Catalogue of Life (https://www.catalogueoflife.org/, 20 March 2024), a
total of 103 species was recorded up to Feb, 2023. However, due to convergent evolution,
some morphological characteristics of larvae of this genus are too similar to distinguish.
Furthermore, some adult individuals exhibit distinctive morphological features, such as
patterned coloration [19]. In 2008, three new Stenochironomus species were recorded, and a
total of ten Chinese Stenochironomus species were reviewed in 2011 [20,21,21]. Additionally,
more and more new species were recorded and described, such as Stenochironomus zhengi,
Stenochironomus brevissimus, and Stenochironomus linanensis [22,23]. Although a few DNA
barcode records of Stenochironomus have been published, it is clear that further research
is needed to develop a comprehensive COI DNA barcode reference library for this genus
in China. In our study, we aim to address this gap by curating barcode sequences from
180 individuals representing 32 morphotypes of Stenochironomus. This will contribute
to the development of a comprehensive DNA barcode reference library. Additionally,
we will investigate barcode gaps and explore the possibility of cryptic species within
Stenochironomus.

http://www.barcodinglife.org
https://www.catalogueoflife.org/
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Figure 1. Pictures of adult male (a), female (b), and larvae (c) individuals of the Stenochironomus 
Kieffer. Photos (a,b) were photographed at the Summer Palace in Beijing by Ying-Chao Li, a Senior 
experimentalist at the Beijing Forestry University Museum. Photo (c) was the larvae of Stenochirono-
mus okialbus and was photographed by Xiao-Long Lin, Shanghai Ocean University. 

2. Materials and Methods 
From 2016 to 2021, we conducted extensive fieldwork across China�s mainland (lon-

gitude: 98.795°~128.144° E; latitude: 18.692°~42.4567° N) to collect Stenochironomus speci-
mens. Various collection methods were employed, such as malaise traps, light traps, and 
sweep nets. The collection sites ranged in altitude from 16 m to 2558 m. Adults were stored 
in 85% ethanol, whereas larvae and other immature individuals were preserved in 95% 
ethanol. All samples were stored in dark conditions at a consistent temperature of 4 °C 
until they were ready for further analysis to preserve the integrity of DNA and samples. 
Selected specimens with intact morphology were chosen for detailed examination and 
prepared for DNA extraction. Materials were processed at Shanghai Ocean University. To 
minimize cross-contamination and ensure the integrity of the DNA samples for subse-
quent analysis, only legs or thoracic tissue from one side of the specimen were used for 
DNA extraction. Then, the remaining parts of the specimens were mounted on microscope 
slides with Euparal® and kept as vouchers. To ensure the robustness and reliability of the 
findings, each specimen was subjected to an analytical process that allowed for both tar-
geted and broad-spectrum genetic insights. The DNA extraction was implemented with a 
CW2298M DNA extraction kit (CWBIO, Beijing, China). The DNA barcode sequence was 
amplified with the universal primers LCO1490 and HCO2198 and the PCR product was 
sent for Sanger sequencing [24]. The PCR was carried out with the reaction mix, including 
12.5 µL of Taq Master Mix (Blue dye, Vazyme, Nanjing, China), 0.5 µL of both primers, 6.5 
µL of PCR water, and 5 µL of the extracted DNA template. The PCR protocol was rigor-
ously designed to optimize DNA amplification, starting with an initial denaturation at 94 
°C for 2 min, followed by a series of temperature cycles tailored to the specific require-
ments of the COI barcode amplification [17]. 

Initial data processing was carried out using the Geneious (11.0.14.1+1, Biomatters, 
Auckland, New Zealand) software [25]. Two sequences were assembled after removing 
primers and low-quality bases. To verify the integrity of the coding sequences and ensure 
the presence of functional genes, the MUSCLE function was used for sequence alignment 
and the screening of stop codons [26]. Additionally, a comprehensive search was con-
ducted in BOLD to identify more publicly available Stenochironomus barcode records 
within China (until 5 February 2024). 

DNA barcode gaps refer to the genetic distances between and within species. For 
groups of species with limited information, DNA barcoding can be used directly to clas-
sify species into putative Operational Taxonomic Units (OTUs). Automatic Barcode Gap 
Discovery (ABGD) uses pairwise distance to identify the so-called “barcode gap” between 
species [27]. Additionally, it infers confidence for model-based intraspecific differentiation 
from the data by using the range of prior intraspecific differentiation. The method then 
detects barcode gaps as the first significant gap above this limit and uses it to partition the 

Figure 1. Pictures of adult male (a), female (b), and larvae (c) individuals of the Stenochironomus
Kieffer. Photos (a,b) were photographed at the Summer Palace in Beijing by Ying-Chao Li, a Senior ex-
perimentalist at the Beijing Forestry University Museum. Photo (c) was the larvae of Stenochironomus
okialbus and was photographed by Xiao-Long Lin, Shanghai Ocean University.

2. Materials and Methods

From 2016 to 2021, we conducted extensive fieldwork across China’s mainland (longi-
tude: 98.795◦~128.144◦ E; latitude: 18.692◦~42.4567◦ N) to collect Stenochironomus speci-
mens. Various collection methods were employed, such as malaise traps, light traps, and
sweep nets. The collection sites ranged in altitude from 16 m to 2558 m. Adults were stored
in 85% ethanol, whereas larvae and other immature individuals were preserved in 95%
ethanol. All samples were stored in dark conditions at a consistent temperature of 4 ◦C
until they were ready for further analysis to preserve the integrity of DNA and samples.
Selected specimens with intact morphology were chosen for detailed examination and
prepared for DNA extraction. Materials were processed at Shanghai Ocean University. To
minimize cross-contamination and ensure the integrity of the DNA samples for subsequent
analysis, only legs or thoracic tissue from one side of the specimen were used for DNA
extraction. Then, the remaining parts of the specimens were mounted on microscope slides
with Euparal® and kept as vouchers. To ensure the robustness and reliability of the findings,
each specimen was subjected to an analytical process that allowed for both targeted and
broad-spectrum genetic insights. The DNA extraction was implemented with a CW2298M
DNA extraction kit (CWBIO, Beijing, China). The DNA barcode sequence was amplified
with the universal primers LCO1490 and HCO2198 and the PCR product was sent for
Sanger sequencing [24]. The PCR was carried out with the reaction mix, including 12.5 µL
of Taq Master Mix (Blue dye, Vazyme, Nanjing, China), 0.5 µL of both primers, 6.5 µL of
PCR water, and 5 µL of the extracted DNA template. The PCR protocol was rigorously
designed to optimize DNA amplification, starting with an initial denaturation at 94 ◦C for
2 min, followed by a series of temperature cycles tailored to the specific requirements of
the COI barcode amplification [17].

Initial data processing was carried out using the Geneious (11.0.14.1+1, Biomatters,
Auckland, New Zealand) software [25]. Two sequences were assembled after removing
primers and low-quality bases. To verify the integrity of the coding sequences and ensure
the presence of functional genes, the MUSCLE function was used for sequence alignment
and the screening of stop codons [26]. Additionally, a comprehensive search was conducted
in BOLD to identify more publicly available Stenochironomus barcode records within China
(until 5 February 2024).

DNA barcode gaps refer to the genetic distances between and within species. For
groups of species with limited information, DNA barcoding can be used directly to clas-
sify species into putative Operational Taxonomic Units (OTUs). Automatic Barcode Gap
Discovery (ABGD) uses pairwise distance to identify the so-called “barcode gap” between
species [27]. Additionally, it infers confidence for model-based intraspecific differentiation
from the data by using the range of prior intraspecific differentiation. The method then
detects barcode gaps as the first significant gap above this limit and uses it to partition
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the data. The method recursively applies limit inference and gap detection to obtain finer
partitions until no further partitions are available. Degrees of intra- and interspecific
sequence divergence were quantified by the ABGD with the Kimura 2 Parameter (K2P)
model (https://bioinfo.mnhn.fr/abi/public/abgd/, 10 February 2024). Finally, a Neighbor-
Joining (NJ) tree was constructed within MEGA X (Pennsylvania, USA) using the K2P
model with 1000 bootstrap replications.

3. Results
3.1. Sequence Information

We successfully sequenced 114 COI barcode sequences of 24 Stenochironomus species
from various provinces in China. Additionally, we collected 66 COI barcode sequences
of 10 species from the BOLD system, resulting in a total of 180 barcode sequences. These
sequences were obtained from larvae and adult individuals collected from the Jilin, Zhe-
jiang, Jiangxi, Hunan, Hubei, Sichuan, Yunnan, Guangxi, and Taiwan provinces. All of the
barcode sequences obtained were of high quality, with a length over 600 bp long without
any deletion, insertion, or stop codons. The minimal and maximal lengths of those barcode
sequences were 606 bp and 669 bp, respectively.

3.2. Inter- and Intraspecific K2P Distance

The analysis of the genetic divergence of COI barcodes revealed interesting findings.
At the species level, the average intraspecific divergence was 0.58% (SE:0.03), with the
highest intraspecific divergence being 8.78%, found in Stenochironomus okialbus (Figure 2),
indicating relatively low genetic variation within species. The average interspecific dis-
tance was 13.1% (SE: 0.05), and the smallest interspecific divergence was observed between
Stenochironomus sp. 10XL and Stenochironomus sp. 11XL at 10.39%, and the highest interspe-
cific divergence stood at 17.34% between Stenochironomus sp. 4XL and Stenochironomus sp.
6XL. These findings highlight the existing genetic demarcations between species within
the genus. For the entire dataset, the distance of 32 morphotypes to their nearest neighbor
was higher than 10%, with four species owning an intraspecific distance exceeding 2%,
namely, Stenochironomus hainanus (7.22%), Stenochironomus okialbus (8.78%), Stenochironomus
sp. 11XL (7.35%), and Stenochironomus sp. 8XL (7.78%).
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Figure 2. Distance distribution of mean intraspecific distance and distance to nearest neighbour.
(a) The distance distribution histogram shows the mean intraspecific divergence. (b) The distance
distribution histogram shows the distances to nearest neighbour.

According to the Barcode Gap analysis, all the plots were above the 1:1 oblique line,
representing that the minimum interspecific divergence was found to be higher than the
mean and max intraspecific distance (100%), which indicated the presence of a barcode gap
(Figure 3a,b). Furthermore, based on species against max intraspecific distance, no strong
sampling bias was observed (Figure 3c).

https://bioinfo.mnhn.fr/abi/public/abgd/
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Figure 3. Barcode gap analysis of 180 COI barcode sequences of Stenochironomus species from
China. (a) The maximum intraspecific distance to the nearest neighbor (NN) species (b) The mean
intraspecific distance to the nearest neighbor (NN) species (c) The number of individuals in each
species against their max intraspecific distances.

3.3. OTU Delineation Based on Distance Using ABGD

The data showed a clear divergence in interspecific and intraspecific pairwise K2P
distance (Figure 4). The number of pairwise variations decreased to 0 at 5% and increased
from 6% to 9%. Then it increased from 10%, followed by serval peaks at 15% and 19%.
All the pairs could be assigned to species levels under 5%. Within the 6% to 9% range,
all the pairs were in agreement with the same genus. The lowest divergence to separate
two species belonging to the same genus was at 9%, which was observed in Stenochironomus
okialbus (max intraspecific distance at 8.78%). However, with similar morphological features,
cryptic species could present when the intraspecific divergence is larger than 10%. While
the prior intraspecific divergence increased gradually, the number of MOTUs converged
continuously and stabilized to 36 species, indicating that cryptic species exist within our
samples (Figure 4b, File S1).
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The BOLD implemented a BIN assignment by the p-distance seed threshold at 2.2% and
clustered BINs according to genetic divergence among sequences. In total, 180 sequences
of 32 morphotypes were assigned to 41 BINs. Besides 12 species that only have one indi-
vidual assigned to a single BIN, there were 13 species with more than 2 individuals, also
assigned to single BINs, such as Stenochironomus annulus: BOLD:ADK3619, Stenochirono-
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mus linanensis: BOLD:AEG1837, Stenochironomus macateei: BOLD:ADL5641, Stenochironomus
sp. 13XL: BOLD:AEC0447, Stenochironomus sp. 15XL: BOLD:AEC1431, Stenochironomus
sp. 17XL: BOLD:AEB9437, Stenochironomus sp. 18XL: BOLD:AFN3855, Stenochironomus
sp. 1XL: BOLD:ADK4980, Stenochironomus sp. 20XL: BOLD:AEN7975, Stenochironomus sp.
22XL: BOLD:ADD7020, Stenochironomus sp. 6XL: BOLD:AEC0006, Stenochironomus sp. 9XL:
BOLD:AEJ1073, Stenochironomus zhengi: BOLD:AEG5343. In addition, we observed one-to-
more BIN matches in our data; more than six species were assigned to more than one BIN
(Stenochironomus baishanzuensis: BOLD:AEC0207, BOLD:AEL2939; Stenochironomus hainanus:
BOLD:ADF2136, BOLD:AEJ4351, BOLD:AET5459; Stenochironomus okialbus: BOLD:ADC5272,
BOLD:AEG6557; Stenochironomus sp. 11XL: BOLD:AEC0226, BOLD:AEO0097; Stenochirono-
mus sp. 4XL: BOLD:ADP1847, BOLD:ADP3912, BOLD:AEN6782; Stenochironomus sp. 8XL:
BOLD:AEG5843, BOLD:AET9193).

3.4. Phylogenetic Tree-Based Identification and Cluster Analysis

An NJ-based phylogenetic tree of 32 morphotypes showed the conspecifics in mono-
phyletic clades with high bootstrap values (Figure 5). Among these clusters, ten of them
corresponded to previously identified species. The remaining 26 clusters pointed to a
considerable number of unnamed species, emphasizing the rich, yet partially unexplored,
biodiversity within the Stenochironomus sp. 16XL and Stenochironomus annulus, Stenochirono-
mus macateei, and Stenochironomus linanensis stayed at close leaves in the NJ tree. Further-
more, sequences from different sampling areas of the same species tend to form separate
branches according to the NJ tree (Figure S1). Species Stenochironomus hainanus were
collected from Shaoguan (Guangdong), Yilan (Taiwan), and Honghe (Yunnan), and they
formed three branches in the NJ tree. Interestingly, species within the Honghe population
(Yunnan) were separated into two branches. Stenochironomus okialbus also showed the
same situation and formed two separate branches consisting of populations from Zhejiang
(Lishui, Taizhou, and Wenzhou), Guanggong (Shaoguan), Hunan (Chenzhou), and Yun-
nan provinces (Honghe). Additionally, those species were clustered into more than one
BIN cluster.
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may not only have unique evolutionary trajectories but also respond differently to envi-
ronmental changes. The size of Stenochironomus may be higher than is currently recog-
nized. Notably, each of the 12 species was associated with a single BIN, emphasizing the 
diversity within the Stenochironomus and the specificity of the DNA barcoding method in 
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Figure 5. Neighbor-Joining tree based on K2P distance model of all barcode sequences generated in
this study with 1000 bootstraps. Only a bootstrap value larger than 70% was shown.
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4. Discussion

We collected 180 barcode sequences of the Stenochironomus from China and established
a preliminary reference barcode library. Samples were collected from a vast range of
altitudes, from 16 m above sea level to 2558 m, and a broad geographical range, including
latitudes ranging from 18.692◦ N to 42.4567◦ N and longitudes ranging from 98.795◦ E to
128.144◦ E. These diverse sampling locations encompassed various terrains across China.
The lengths of barcode sequences were all above 600 bp, including 35 sequences with
a complete barcode length (658 bp). It is reported that the intraspecific distance of the
COI barcode is less than 2%, and the interspecific distance is more than 4% among most
species [28]. The BIN system combined the morphological characteristics and the barcode
sequence with well-curated taxonomy, clustering barcoded sequences with a pairwise
distance threshold of 2.2% [29]. The analysis of these sequences through the BIN system
resulted in allocating the sequences into 41 distinct BINs. This categorization comprised
12 singleton BINs, which represent unique sequences without close matches in the dataset,
and 13 consistent BINs, indicating groups of sequences with significant similarity. Notably,
species like S. hainanus and S. okialbus were assigned to more than two BINs, suggesting
the presence of potential cryptic diversity within these populations. Cryptic lineages are
often defined as the occurrence of morphologically indistinguishable evolutionary branches
within a species [30]. Despite morphological similarities, cryptic species may not only have
unique evolutionary trajectories but also respond differently to environmental changes.
The size of Stenochironomus may be higher than is currently recognized. Notably, each
of the 12 species was associated with a single BIN, emphasizing the diversity within the
Stenochironomus and the specificity of the DNA barcoding method in identifying unique
species signatures. Owing to the absence of comprehensive descriptions of the larval or
pupal stages of certain Stenochironomus species and the difficulty in distinguishing the
females, it proved strenuous to accurately classify a larva of Stenochironomus sp. 9XL
(BOLD:AEJ1073) and pupae of Stenochironomus sp. 22XL (BOLD:ADD7020) at the species
level using morphological traits alone. This limitation in morphological differentiation
emphasizes the indispensable role of molecular markers in complementing traditional
taxonomy, especially in the context of distinguishing cryptic or closely related species [31].
While the identification results from the database only serve as a reference; it is important to
know that a combination of traditional morphological data coupling with a DNA barcode
should be used for accurate species identification [32].

In the past decade, various methods were developed for species delimitation, which
could be broadly categorized into two types. The first category encompasses methods such
as SpedesSTEM, BPP, and BFD, designed for multi-locus data. However, these methods
are often computationally consuming [33–35] and are usually applied with data of limited
size. The second category is based on the phylogenetic tree and genetic distance for a single
barcode. Although single loci may not accurately represent the number of species well,
this kind of method was widely applied to the DNA barcode since there is no need for
predefined species hypotheses, such as GMYC (general mixed Yule-Coalescent model), PTP
(Poisson tree process), and ABGD [36–38]. GMCY and PTP need a phylogenetic tree as the
input, and ABGD inferred the so-called “barcode gap” only with genetic distance [39]. A
threshold was inferred from the gap between the minimum intraspecific and the maximum
interspecific distance, and was used for species delimitation. For generating the gap
threshold, AGBD needs to accept a prior user-supplied value of intraspecific divergence
and will provide multiple species partitions corresponding to different priori values for a
single dataset. A barcode gap is typically used to delineate species; however, the overlap
of intraspecific and interspecific distances could suggest either a high level of genetic
variability within species (intraspecific divergence) or recent speciation events where
species have not yet accumulated significant genetic differences. Although the above
methods have their own limitations, they generally yield consistent species partitions [40].
It has been suggested that 2% of genetic distance divergence is the threshold for species
delimitation, and interspecific distance is usually 8 to 10 times larger than intraspecific
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distance [41]. The absence of a clear “barcode gap” also suggested possible cryptic species
diversity, where morphologically similar species exhibit significant genetic differences.
According to our study, most of the barcode divergence was lower than 2%. In fact, genetic
markers exhibit varying genetic distances, even within the same type of gene marker.
Nuclear ribosomal ITS regions on helminths exhibited the largest genetic distance, whereas
the nuclear rRNA genes displayed the smallest genetic distance. Furthermore, the genetic
distance observed in mitochondrial rRNA genes was comparable to that of mitochondrial
protein-coding genes, but significantly higher than that of nuclear rRNA markers [42]. In
addition, DNA-based species delimitation can be compromised by inadequate sampling
and species rarity, including ‘singletons’, making it difficult to estimate evolutionary
processes within and between species [16]. For example, S. zhengi only sampled three
individuals at the same location. In addition, the frequent gene exchange may cause a low
divergence within species, such as S. annulus (mean intraspecific divergence: 0.13) collected
from Zhejiang Province and Fujian Province. While inadequate sampling, hybridization, or
incomplete genealogical sorting can impact barcode identification results, DNA barcode
analysis also needs to account for the effects of the geographic distribution of samples [43].

As the geographic distance between samples increases, intraspecific variation in the
species increases while the distance to neighboring species decreases, leading to more am-
biguous identification. Furthermore, the effect of geographic distance on genetic divergence
is primarily based on the concept of genetic isolation by distance, like altitude and channel
isolation, which may lead to population differentiation [44]. The genetic differentiation of
the same species differs in different geographical populations and the genetic distance may
exceed the species classification threshold of 2%. In this study, an intraspecific divergence
greater than 2% was observed in three species, S. hainanus (3.53%), S. okialbus (2.52%), and
Stenochironomus sp. 11XL (3.95%). Unlike other animals, the nonbiting midges do not
have excellent motility [8,45]. The individuals of S. hainanus collected from Taiwan were
assigned to a single BIN (BOLD:ADF2136), indicating the species isolation caused by the
Taiwan Strait. Under some circumstances, genetic diversity is not uniformly distributed
but concentrated in certain regions [46]. Therefore, for a given spatial distance between
two DNA barcode sampling sites, the genetic distance may be greater if at least one of
the sampling sites is from a genetic diversity hotspot [47]. For example, the individuals
of Stenochironomus sp. 11XL collected from Honghe, Yunnan Province, a hotspot of total
species, were assigned to two separate BINs. Furthermore, during the process of species
identification with DNA barcodes, the size of the samples contained in the reference library
also has an important impact on the identification accuracy [47]. Here, the sample size
refers to the number of species of the taxon present in the database and the number of
individuals within each species. The algorithm can process better results in species identifi-
cation with more information from a larger sample size. Therefore, the database should be
supplemented with species from multiple geographic regions in subsequent studies.

The construction of the NJ tree was to investigate the differences in the determination
of the number of OTUs across these various methodologies, providing a comprehensive
overview of species diversity within the collected Stenochironomus specimens. The NJ tree
provides a clear and well-structured phylogenetic representation of the genetic variances
within the Stenochironomus, making the relationships between different OTUs readily ap-
parent. Such a visual representation not only facilitates the rapid identification of potential
species but also provides a solid foundation for further phylogenetic and taxonomic re-
search. Hence, the NJ tree serves as a means to explore species diversity and has appeared
as a powerful tool to assess and compare the differences between various species delimi-
tation methodologies [48]. Although our results have shown a high level of consistency,
we acknowledge the limitations of using the DNA barcoding technique with only the
COI gene for species discrimination. Factors such as significant intraspecific variation,
potential underestimation of recent speciation events, and the effects of horizontal gene
transfer should be considered when using a single molecular marker [49]. These challenges,
coupled with issues such as incomplete lineage sorting and insufficient sampling, further
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highlight the importance of integrating morphological data with molecular techniques.
Such an integrated approach is crucial for accurately exploring species boundaries and
identifying cryptic species.

5. Conclusions

In conclusion, our study has markedly refined the taxonomic understanding of the
Stenochironomus within the diverse freshwater ecosystems of China. By integrating an
extensive array of collection methods and the meticulous application of DNA barcod-
ing, we have assembled a significant dataset that not only enhanced the existing genetic
database but also revealed the cryptic species diversity. The assembly of 180 COI barcode
sequences into 36 unique OTUs demonstrates the efficacy of DNA barcoding as a tool
for species identification, particularly for those with ambiguous morphological features.
This method has also been instrumental in differentiating 40 distinct BINs, revealing a
substantial diversity within Stenochironomus that extends beyond the current taxonomic
recognition. Our findings ease the complexities inherent in Stenochironomus taxonomy,
showcasing the limitations of solely morphological features for species discrimination and
emphasizing the importance of molecular techniques to clarify these ambiguities. The
significant intraspecific variation, especially within species such as Stenochironomus okialbus,
hints at the existence of yet undetected cryptic species, further highlighting the potential
of DNA barcoding in uncovering hidden biodiversity. To obtain more accurate species
delimitation and reveal more cryptic diversity, an approach combining morphology and
multi-locus molecular data is advocated. Future research should focus on collecting species
from multiple geographic regions. Our research is a crucial step in the ongoing effort to
describe new taxonomic units and refine existing classifications, which is fundamental to
preserving the rich biodiversity of the freshwater ecosystems of China.
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