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Abstract: Temporal action detection is a very important and challenging task in the field of video
understanding, especially for datasets with significant differences in action duration. The temporal
relationships between the action instances contained in these datasets are very complex. For such
videos, it is necessary to capture information with a richer temporal distribution as much as possible. In
this paper, we propose a dual-stream model that can model contextual information at multiple temporal
scales. First, the input video is divided into two resolution streams, followed by a Multi-Resolution
Context Aggregation module to capture multi-scale temporal information. Additionally, an Information
Enhancement module is added after the high-resolution input stream to model both long-range and
short-range contexts. Finally, the outputs of the two modules are merged to obtain features with rich
temporal information for action localization and classification. We conducted experiments on three
datasets to evaluate the proposed approach. On ActivityNet-v1.3, an average mAP (mean Average
Precision) of 32.83% was obtained. On Charades, the best performance was obtained, with an average
mAP of 27.3%. On TSU (Toyota Smarthome Untrimmed), an average mAP of 33.1% was achieved.

Keywords: action detection; multi-scale; self-attention mechanism

1. Introduction

Due to the rapid growth of online video platforms, video understanding has attracted
the attention of a large number of researchers in recent years. Action recognition and
action detection are two fundamental tasks in the field of video understanding. Action
recognition is the classification of action instances within a pre-edited video. In terms
of temporal action detection, it involves the temporal localization and classification of
multiple action instances within a raw, unedited video, requiring the detection of the start
and end times of a specific action instance and its classification. Compared with action
recognition, temporal action localization is closer to realistic scenarios. Therefore, temporal
action detection is more challenging than action recognition while also being closer to
practical applications. Temporal action detection can be used for video retrieval to filter out
some videos containing inappropriate content in a large amount of video data. It can also
be applied to security, where violent behavior can be detected by cameras.

Especially for videos that contain a large number of action instances, the duration of
these actions can vary, and there may be overlapping parts between them. Such videos
often better reflect our daily lives. For example, a video of a person working at a table
(see Figure 1) may contain multiple different action instances, such as sitting in a chair,
reading a book, tidying a table, holding a cup, etc. The duration of these actions vary
significantly, and the temporal relationships between actions are also very complex, such
as a person holding a cup while tidying a table.

Towards modeling such complex temporal information, previous approaches have
partly used convolutional networks [1–5]. These methods perform well at aggregating
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short-term temporal information. However, they are limited by the size of the receptive
field of the convolutional network, which prevents them from capturing the relationships
between distant segments in the video. Some researchers subsequently found that construct-
ing a graph structure using each video frame as the node and the temporal relationship
between video frames as the edge of the graph convolution [6–9] could well model the
temporal information between video frames. However, the performance of these methods
depends on how the graph structure is constructed and the choice of some hyperparameters.
With the advent of vision Transformers (ViTs) [10], transformer-based methods [11–15]
quickly emerged. The ability of the self-attention mechanism to capture long-term depen-
dencies allows it to model the global temporal context better. However, a pure transformer
network requires much more memory than a convolutional network when fed with a large
amount of data simultaneously. It is also essential to take into account the local temporal
context information.

Figure 1. Complex temporal relations in daily life videos. Here, we show a common distribution of
action duration in a daily life video, which includes both long-range and short-range dependencies
among actions.

Therefore, in order to model contextual information at different temporal scales
more effectively, we designed a two-stream network MCMNET, as shown in Figure 2,
by first splitting the input data into two temporal resolution streams, with the aim of ob-
taining a richer representation of information with different coarse and fine granularity
by processing more raw feature information with different temporal resolutions. Both
streams are fed into the Multi-Resolution Context Aggregation module (MRCA) to obtain
multi-scale temporal features. The MRCA module is composed of Attenuation blocks and
Aggregation blocks. The Attenuation block mainly consists of a Reduction block, Global
block, and Local block which aim to build a pyramid of features with different temporal res-
olutions. The Reduction block operates on the temporal resolution, reducing the resolution
and increasing the dimension of the features; the Global block uses multi-headed self-
attention mechanism to model global temporal features; and the Local block uses multiple
convolutional layers to model local information. Followed by the modeling of temporal re-
lations at different scales, an Aggregation block is used to fuse the features from each stage
to get a unified feature representation. In order to aggregate long-range and short-range
contexts more efficiently, we have added an Information Enhancement (IE) module to the
back of the high-resolution stream as a complement to the MRCA module. The IE module
is a stack of Multi-Path Temporal Convolutions. In each convolution block, there are three
paths: the long-range path, to expand the perceptive field and aggregate the long-range
context by dilated convolution; the short-range path, to aggregate the short-range context
by the ordinary convolution; and the original path, to enhance the representation of features
and to solve the problem of network degradation during training. Finally, we combine the
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three paths and perform element-wise addition to obtain a strong feature with long-range
and short-range contexts. We summarize our contributions as follows.

(1) We propose an effective two-stream network to aggregate the multi-scale temporal
context. Using this model, we are able to detect action in some scenarios where the
temporal relation of the action is complex.

(2) A multi-scale context modeling network is proposed for temporal action detection.
MCMNET consists of two main modules: MRCA and IE. MRCA processes the input
data in multiple stages with different temporal scales, which allows MCMNET to learn
both fine-grained relations in the early stage and coarse relations between composite
actions in the latter stage. While IE is used to aggregate long-term and short-term
context effectively, which makes the video features richer.

(3) The experiments prove the convincing performance of MCMNET on three popular
action detection benchmarks: ActivityNet-v1.3, Charades, and TSU.

Figure 2. Overview of our proposed approach. MCMNET uses MRCA to construct video features
with multi-scale temporal information. The IE module, as supplementary to MRCA, uses dilated
convolution to capture long-range and short-range temporal context, which makes the video feature
ampler. Norm&Location regularizes the data and produces the result.

2. Related Work

In this section, we review the prior work related to action recognition, action detection
with CNN, and action detection with transformer.

2.1. Action Recognition

Action recognition is an important task in video understanding. Most of the traditional
methods were based on hand-designed visual features [16]. Later on, with the success
of deep learning, most of the methods are now based on neural networks. From the
beginning, there were dual-stream networks [17–19], which used both optical and RGB
streams as input and sent to a 2D convolutional neural network for processing. This was
followed by the 3D convolutional network [20–22], which uses a 3D tensor with two spatial
and one time dimension to model spatio-temporal features. To reduce the computational
consumption of 3D convolutional networks, some approaches split the 3D convolution into
2D convolution and 1D convolution, becoming (2+1)D convolution [23–25]. We are inspired
by the dual-stream network and set up a dual-resolution stream input in our network.
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2.2. Action Detection with CNN

Action detection aims at localizing the temporal boundaries of human activities in
untrimmed videos and classifying the action categories. Most existing work has used
CNN-based models [4,26–28] to extract spatio-temporal features from the input video
frames before feeding the features into the TAD (Temporal Action Detection) network.
A common practice is first to generate temporal proposals and then classify each proposal
to one of the action categories [3,29–31]. For generating proposals, there are anchor-based
approaches [32–34], which retrieve fine-grained proposals by adjusting a pre-defined multi-
scale anchor. There are also boundary-based approaches [35–38], which predict the start
and end confidence of each frame and then match start and end frames to generate the
proposals with confidence evaluation. Refs. [30,39] generated proposals based on pre-
defined sliding window anchors and train a classifier to filter anchors. Another practice is
the one-stage approach [40–42], which performs localization and classification at the same
time, and thus, it is more efficient. Ref. [40] presented the first one-stage TAD method
using convolutional networks. Later influenced by the anchor-free method [43–45] in
the object detection task, AFSD, [46] designed a basic anchor-free localizer, along with
making full use of the temporal insights of videos to propose novel refinement strategy
and consistency learning. Moreover, [47] explored the combination of anchor-based and
anchor-free methods. In our work, we define anchor points in the Norm&Location module
and combine starting and ending predictions to make training more regular.

2.3. Action Detection with Transformer

The Transformer [48] approach was first applied to NLP, but later, with the advent
of ViTs [10], the transformer was formally applied to the image domain. With the success
of the transformer in the image domain, researchers began to use the transformer for
various tasks in vision, including video understanding. ViViT [49], TimeSformer [50], and
VidTr [51] propose to factorize along spatial and temporal dimensions on the granularity
of encoder, attention block, or dot-product computation. Because transformer networks
require large computational resources when processing larger data such as video, Video
Swin Transformer [52] proposes shifted window attention to limit the computation within
a small local window. While in the case of the TAD task. TadTR [53] is based on the
structure of DETR and uses temporal deformable attention to solve the TAD task as
a sequence prediction problem. Actionformer [54] uses an anchor-free approach to design
a simple and pure transformer network. Our MRCA module inherits a transformer encoder
architecture while gaining benefits from temporal convolution. This enables it to model
global and local temporal context at different temporal scales.

3. Proposed Method
3.1. Problem Formulation

The input to our pipeline is a raw video that spans varying duration. Following
common video action detection methods [55–57], we consider feature sequences extracted
from video frames by a 3D CNN as input to MCMNET. For each video of length lv, we
divide it into T video clips; the length of each video clip is σ, T = lv/σ , and the feature
dimension corresponding to each video clip is C × 1. In this way, the input feature sequence
for the pipeline can be written as X = {xi}T

i=1εRC×T . Furthermore, for each video sequence,
there is a set of labels with number N relative to it: K = {kn = (ts,n, te,n, Cn)}N

n=1, where
kn represents the nth action instance, and ts,n, te,n, and Cn are its start time, end time, and
action class, respectively. For each input video, temporal action detection model needs

to predict M possible action instance Λ =

{
λm =

(
−
t s,m,

−
t e,m,

−
Cm, Pm

)}M

m=1
. Here, λm

represents the mth predicted action in the video, it contains four indicators t̄s,m, t̄e,m, C̄m,
and Pm. t̄s,m and t̄e,m represent the predicted start time and end time for the mth predicted
action; C̄m and Pm are its predicted action class and confidence score, respectively.



Sensors 2023, 23, 7563 5 of 19

3.2. MCMNET Architecture

The overall architecture of MCMNET is illustrated in Figure 3. We pre-process the
video to obtain two feature sequences with different temporal resolutions, which are used
as input for the model. The model consists of three main modules: a multi-resolution
context aggregation module (MRCA), an information enhancement module (IE), and
a post-processing module (Norm&Location).

Figure 3. Overview of MCMNET architecture. The video is processed into two temporal resolution
fragment characteristic sequences as input. MCMNET mainly includes three modules: MRCA, IE,
and Norm&Location. First, MRCA is used to model multi-scale temporal context from two streams.
At the same time, the high-resolution stream is input into IE for long-range and short-range timing
coding to enrich feature information and enhance feature robustness. Then, the two stream features
are fused into a stronger video feature. Finally, the feature is normalized through Norm&Location to
produce results.

First, the fragment features are copied twice, and their temporal resolution is adjusted
to T and T/2 by convolution, where the feature stream with a temporal resolution of T
is called a high-resolution stream and another feature stream is called a low-resolution
stream. The two streams will be passed through the MRCA module separately, and for
the high-resolution stream, it will pass through the four stages of the MRCA. Each stage
the dimensionality of the incoming data from the previous stage is changed, the temporal
resolution will be reduced to half of the original one, and the channel size will be expanded
to α times of the original one accordingly, where α is taken as 1.5 in the experiment. The
dimensionality-changed data are then passed through a self-attention layer to obtain
the global temporal context, after which the standard convolution is used to obtain the
local temporal context. In this way, we try to have the model learn fine-grained action
representation with more temporal information in the early stages and coarse-grained
action reprsentation with less temporal information in the later stages. In order to increase
the robustness and diversity of the information contained in the features, the same operation
is applied to the low-resolution stream, with the difference that the temporal resolution
decays at a rate of 2/3 and the channel size increases at the same multiplier.

Next, to improve the model’s ability to aggregate short-range and long-range contexts,
we fed high-resolution stream into the IE module, which has eight blocks, each with
an Expansion block and a Fixation block. There are three paths in the Expansion block, one
of which uses dilated convolution to aggregate long-range context and expand the receptive
field. One path uses regular convolution to aggregate short-range temporal context. The
last path does not operate on the input features, keeping the original features for fusion
with the other paths. However, the method of expanding the receptive field by stacking
a large number of dilated convolution layers will cause gridding artifacts, which can lead
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to loss of information, so we effectively avoid this problem by adding a Fixation block
after each Expansion block. There are also three path in the Fixation module, except that
the dilated convolution in the long-range path is replaced by a convolution with a fixed
dilated rate.

Finally, after fusing the features obtained above, they are fed into the Norm&Location
module for regularization, after which the regression score and classification score are
predicted by multiple fully connected layers and their losses are calculated separately,
followed by back propagation.

3.3. Multi-Resolution Context Aggregation

The MRCA module is the core of modeling the temporal context, which processes
the video sequence features obtained through the I3D network. As depicted in Figure 4,
the MRCA contains four Attenuation blocks and four Aggregation blocks. Such multiple
blocks are constructed to cope with the complex temporal relationships of the video while
building a multi-scale hierarchy of temporal features.

Figure 4. The detailed structure of the Multi-Resolution Context Aggregation module. There are
four stages, each consisting of an Attenuation block and an Aggregation block, where the Attenuation
block can be divided into: the Reduction block, which is used to change the temporal resolution
while increasing the feature dimension; the Global block, which uses a self-attention mechanism
to model global temporal information; and the Local block, which uses a convolutional network to
model local contextual information. Furthermore, the Aggregation block uses a liner projection layer
and upsampling to unify the video representation dimension.

Attenuation Block. The structure of the Attenuation block is shown in Figure 4,
which can be subdivided into three main structures: the Reduction block, the Global block,
and the Local block. In this stage, we use a temporal convolutional layer with kernel size
and stride of 2 to decay the temporal dimension of the feature to 1/2 of its original size,
and accordingly, the channel size is increased to 1.5 times of its original size. In this way,
by constructing four stages, each of which processes the dimensionality of the features,
a different coarse fine-grained action representation can be obtained.

Next, the scale transformed feature token is fed into the Global block, which uses a
multi-head self-attention mechanism to integrate global temporal context. Furthermore,
its computation process can be described as follows: the input data X = {xi}T

i=1εRC×T go
through eight head self-attention block, for each head j ∈ {1, . . . , 8}, xi is projected using
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Wq
ji, Wk

ji, and Wv
jiεRC/8×C to extract feature representations Qji, Kji, and Vji, referred to as

query, key, and value. The outputs Q, K, and V are computed as Qji = Wq
jixi, Kji = Wk

jixi,
and Vji = Wv

jixi. The output of the jth head self-attention is given by:

Aji = So f tmax
(

QjikT
ji/
√

C/8
)

Vji (1)

Then, the combination of multi-head self-attention can be shown as:

Pi = WO
i Concat(A1i, . . . , A8i) + xi. (2)

The output of multiple headers is concatted and then passed through a linear layer,
where WO

i εRC×C denotes the weight of the linear layer. After the multi-head attention
layer, the output feature size is the same as the input feature size. After that, we use two
linear layers and a temporal convolution layer of kernel size 3 as the Local block to obtain
the local temporal context. The first linear layer expands the feature dimension, then the
convolution layer mixes the neighboring tokens to get local context, and finally, the last
linear layer projects the feature dimension back.

Each Attenuation block contains L Global and Local blocks, and the final output from
each Attenuation block is combined and fed into the Aggregation block.

Aggregation Block. After obtaining such multi-scale temporal features, we also need
to aggregate the multi-scale features to have a unified video representation in order to
facilitate the subsequent detection by the detection head, which requires our Aggregation
block. The features obtained from each attenuation module are fed into the Aggregation
block, as shown in Figure 4. We will first upsample the output of each Attenuation block
Mn, n ∈ {1, . . . , N}, with different upsampling rates in different block; this operation can
be formulated as:

gn(Mn) = UpSampling(∂n Mn). (3)

where ∂n ∈ RDo×αn−1C denotes the weight of liner layer. Upsampling results in interpolation
in the time dimension to the same time dimension as the input features.

Since the temporal and semantic information contained in the output features of
the N Attenuation blocks varies greatly, in order to balance the temporal and semantic
information between each output feature, each upsampled feature performs element-
wise addition with the output of the Attenuation block N, which has also undergone the
upsampling operation. This is because block N is the deepest layer of the network (N
is taken to be 4 in our model), which contains the richest semantic information. This is
given by:

M
′
n = gn(Mn)⊕ g4(M4). (4)

Finally, all the output of the Aggregation block will be concatenated to a final video
representation:

FHM = Concat
(

M
′
1, . . . , M

′
4

)
. (5)

where FHM represents the features obtained from the high-resolution stream after undergo-
ing MRCA module processing.

3.4. Information Enhancement Module

Because the self-attention mechanism pays more attention to the correlation between
positions but ignores the order and distance, we propose an additional convolution module
as a complement to the self-attention mechanism: Information Enhancement module
aims to aggregate long-range and short-range temporal context for temporal evaluation
effectively and increase feature richness.

As shown in Figure 5, the IE module can be divided into eight module groups, with
two different blocks in each group: the Expansion block and Fixation block. The Expansion
block consists of three paths. The first path is a short-range path including an ordinary
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convolution with a kernel size of 3, which aims to aggregate short-range temporal context.
The second path is a long-range path, including a dilated convolution with a kernel size
of 3 and a dilation rate of 2k, where k denotes the ordinal number of the current block. The
role of this path is to aggregate long-range temporal context and expand the receptive field.
The last path leaves the input features untouched in order to preserve the original infor-
mation and alleviate network degradation during training. Finally, the final feature vector
is obtained by fusing the output of the three paths. However, stacking a large number of
dilated convolutions in the long-range path of the Expansion block can cause information
loss, as not every position in the dilated convolution is involved in the computation, and
therefore, information at some positions will be lost. In image processing, the solution
to this problem is by stacking dilated convolutions with a jagged dilation rate so that the
distribution of convolution kernels covers every position and there are no more omissions.
The specific operation is to add a fixation block after each Expansion block, as shown in
Figure 5. Compared with the Expansion block, the only change in the Fixation block is that
the dilation rate of the expansion convolution in the long-range path is changed from 2k

to 3, so that the alternately connected Expansion block and Fixation block form the IE mod-
ule, which can ensure that the receptive field grows rapidly and there is no information loss.

Figure 5. The architecture of the Information Enhancement module. First, temporal features are fed
into the Expansion block with an increasing dilation to expand the receptive field. Then, the Fixation
block with a fixed dilation smooths the features from the Expansion block.

3.5. Norm and Localization

The input data, after being processed by the MRCA and IE modules, respectively, are
then fed into the post-processing module and can be expressed by the following formula:

FBNL = [(FHM + FLM)/2] + FIE. (6)

where FHM and FIE represent features obtained from high-resolution streams processed
by the MRCA and IE modules, respectively, and FLM denotes low-resolution streams
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processed by MRCA. The above features are fused to obtain the input FBNL for the post-
processing module.

In the post-processing module, we first input features to the Norm module, using
pre-defined anchors to generate segments{U ε j

}J
j=1, where J is the total number of segments

and ε j =
{

ts,j, te,j
}

represents the start moment and end moment of the j-th segment. We
sample ϑ points (ϑ: alignment quantity) via interpolation and rescaling as described in
Algorithm 1, and generate the segment feature Y = {yε j}

J
j=1.

Algorithm 1 Interpolation and Rescaling in Norm&Location.

Input: The input data {xl}L
l=1; {Uε j}

J
j=1, where J is the total number of processed data,

ε j =
{

ts,j, te,j
}

; alignment quantity ϑ;
1: for each Uε j do
2: List all Uε j in chronological order;
3: Compute sampling interval s =

⌈(
ts,j − te,j

)
/ϑ
⌉
, interpolation quantity J = ϑs;

4: Sample J points based on linear interpolation using the two neighbors of each point

g =
[
ts +

k(ts,j−te,j)
J f or k in range(J)

]
;

5: Xin =
[
(die − i)xbic + (i− bic)xdie f or i in g

]
;

6: yε j = [mean(Xin[ks : [k + 1]s]) f or k in range(ϑ)];
7: end for

Output: Y = {yε j}
J
j=1.

For each segment Uε, we calculate its Intersection-over-Union (IoU) with all ground-
truth actions Gt, and denote the maximum IoU ψc as the training target. Then, we set three
fully connected layers(FC) for Uε, while the last FC layer output two scores pcls and preg.
They are trained to match ψc using classification and regression losses, respectively.

3.6. Training and Inference

Training. We train MCMNET by using the classification loss Lc and the localization
loss Lr:

L = Lr + Lc. (7)

The loss Lr is used to determine the confidence scores of segments. The loss Lc
classifies each feature segment according to its position relative to the action. During model
training, the training set in the dataset is processed into two resolutions and then input into
the model; the two resolution streams are, respectively, passed through the MRCA module
to get the spatio-temporal features with higher-level semantic information, after which
the high-resolution streams are passed through the IE module to get the features with
long-term and short-term temporal information, and then the two features are united to the
same resolution and then fused to get the final video features FBNL. Inputting FBNL into the
Norm&Localization module yields two scores, pcls and preg. With these two parameters,
the first part of the loss function lr can be constructed. The localization loss Lr is defined
as follows:

Lr = Lwce(pcls, Gcls) + ω1 · Lmse
(

preg, ψc
)
. (8)

where Lwce is the weighted cross-entropy loss function used to calculate the loss of pcls and
Gcls and Gcls is the confidence score obtained by binarizing the IoU map with a threshold 0.5,
which is calculated by proposals and ground truth. Furthermore, Lmse is the square error
loss. The weight is computed to balance the positive and negative training samples and we
set the weighting factor ω1 to 10.
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Meanwhile, we input Fbnl directly into FC layers to get the starting and ending
probabilities (ps, pe) and corresponding training targets for each feature segment (dss,dse).
With these two parameters, it is possible to derive the classification loss function Lc:

Lc = Lwce(ps, dss) + Lwce(pe, dse). (9)

Finally, we use the weighted cross-entropy loss Lwce to calculate the difference between
the prediction and the target.

Inference. During inference, the previous method for data processing is the same
as in training, and the video data are passed through the trained model to get the final
video feature FBNL. After feeding FBNL into the Norm&Localization module, MCMNET
outputs the classification and regression scores for each segment Uε. Among J segments,
we construct:

Λ =

{
λj =

(
−
t s,j,

−
t e,j,

−
Cj, Pj

)}J

j=1
. (10)

where
(
−
t s,j,

−
t e,j

)
indicate the beginning and end moment of the predicted action,

−
Cj

denotes the predicted action class, and Pj denotes the confidence score of the prediction. Pj

is obtained by Pj = pα
cls · p

1−α
reg , where α is obtained by searching in each setup after optimal

value in the experiment. By comparing the predicted segment with the ground-truth, it is
possible to obtain the mAP at different tIoUs (temporal Intersection over Union).

4. Experiments
4.1. Datasets and Metrics

We perform extensive experiments on the datasets of ActivitiesNet-v1.3, Charades,
and TSU to demonstrate the effectiveness of our MCMNET. For comparison with exist-
ing models, our work follows the standard evaluation scheme and uses the mAP with
intersection over union(IoU) thresholds as the evaluation metric.

ActivityNet-v1.3 [58] is a large-scale dataset containing 10,024 training videos,
4926 validation videos, and 5044 test videos belonging to 200 activities covering sports,
household, and working actions. ActivitiesNet-v1.3 only contains 1.5 occurrences per video
on average, and most videos contain a single action category with 36% background on
average. We report the mAP with IoU thresholds [0.5, 0.75, 0.95] on ActivitiyNet-v1.3.

Charades [59] is a densely labeled dataset with 9848 videos of 157 daily indoor actions,
separated into 7.9 k training and 1.8 k validation clips. Each video may include multiple
overlapping activities annotated with frame-level labels. This is in contrast to ActivityNet,
which only has one action per time-step. The average length of a video is 30 s. We evaluate
the per-frame mAP on these densely labeled datasets following [60,61].

TSU [62] (Toyota Smarthome Untrimmed) is also a densely labeled dataset that con-
tains 536 videos with an average duration of 21 min. Besides, TSU contains some very
similar actions, such as eating food and drinking a drink, and some actions with high
temporal variance, such as putting on glasses in 5 s, reading for 10 min, or some subtle
actions such as stirring coffee. As a result, TSU has longer action durations and more
complex temporal relationships than other datasets. We evaluate the per-frame mAP on
TSU as Charades.

MultiTHUMOS [61] is an extended version of THUMOS’14 [63] dataset, which con-
tains dense, multilabel, frame-level action annotations for 30 h across 400 videos in the
THUMOS’14 action detection dataset. It consists of 38,690 annotations of 65 action classes,
with an average of 1.5 labels per frame and 10.5 action classes per video. This is in contrast
to other activity detection datasets, such as ActivityNet and HACS(Human Action Clips
and Segments) [64], which only have one activity per time-step.



Sensors 2023, 23, 7563 11 of 19

4.2. Implementation Details

We use pre-extracted features for these three datasets. For ActivityNet-v1.3 and
Charades, we used the pre-trained dual-stream network of [65] to extract video feature. For
TSU, we use the officially available RGB I3D feacure. In the proposed network, the number
of Attenuation blocks and Aggregation blocks is set to B = 4 and the number of Expansion
blocks and Fixation blocks is set to N = 8. The number of attention heads for Global block
is set to 8. Finally, we implemented and compiled our framework by using PyTorch 1.9,
Python 3.7, and CUDA 11.6. For Charades and TSU training, we set the learning rate, batch
size, and epoch to 0.0003, 24, and 10, respectively. In ActivityNet-1.3 training, the above
parameters are set to 0.00003, 30, and 6, respectively. The learning rate will drop 10-fold
every epoch.

4.3. Comparison with State-of-the-Arts Methods

In this subsection, we compare MCMNET with the state-of-the-art action detection
method on ActivityNet-v1.3, Charades, MultiTHUMOS, and TSU in Tables 1 and 2.

Table 1. Action detection results on the validation set of ActivityNet-1.3 measured by mAP (%) at
different tIoU thresholds and the average mAP.

Method 0.5 0.75 0.95 Average

SCC [66] 40.00 17.90 4.70 21.70
CDC [3] 45.30 26.00 0.20 23.80
BSN [29] 46.45 29.96 8.02 30.03
PGCN [6] 48.26 33.16 3.27 31.11
BMN [35] 50.07 34.78 8.29 33.85
TSCN [67] 35.30 21.40 5.30 21.70
G-TAD [7] 50.36 34.60 9.02 34.09

E2E-TAD [68] 50.47 35.99 10.83 35.10
Actionformer [54] 53.50 36.20 8.2 35.6

TadTR [53] 49.12 32.58 8.63 32.30

MCMNET (ours) 46.70 34.90 6.38 32.83

Table 2. Action detection results on validation set of Charades, TSU, and MultiTHUMOS. Note that
the evaluation for the methods is based on per-frame mAP (%) using only RGB videos.

Method Charades TSU MultiTHUMOS GFLOPs

R-C3D [4] 12.7 8.7 - -
PDAN [67] 23.7 32.7 40.2 3.2
TGM [69] 20.6 26.7 37.2 1.2

MS-TCT [70] 25.4 33.7 43.1 6.6
TTM [71] 28.8 - - 0.8

MLAD [72] 18.4 - 42.2 44.8

MCMNet (ours) 27.3 33.1 43.0 24.7

In ActivityNet-v1.3, MCMNET is less advantageous for this dataset, as it contains
fewer action instances per video and the temporal relationships are relatively simple,
whereas the focus of MCMNET is on modeling multi-scale temporal contextual information.
Furthermore, by comparing with the mainstream temporal action location methods, it is
found that MCMNET performs significantly better than other methods when the IoU
requires medium accuracy. When we focus on densely labeled datasets, we find that
MCMNET performs reasonably well compared to other methods for these videos with
more complex temporal relationships. Benefiting from MCMNET’s excellent multi-scale
temporal information aggregation capability, it performs outstandingly on Charades and
MultiTHUMOS. Although MCMNET did not achieve the best performance on the TSU
dataset, it still reached the state-of-the-art level. This is probably due to the fact that our
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model has a large number of parameters, while the TSU data volume is much smaller
than that of Charades, and there are many longer video and action instances in the TSU.
Therefore, we also need to pay more attention to modeling temporal information over
long distances. At the same time, we compared the computational consumption required
by several models, and from the results, we can see that our model requires much less
computational resources than the model with pure self-attention mechanism (MLAD), but
the computational consumption will still be higher than that of the model with pure CNN
models (PDAN, TGM) because our model needs to take care of both the long duration
actions and the short duration actions. In the future, we hope to simplify the model as
much as possible and reduce the number of parameters so that we can achieve a better
balance between effectiveness and efficiency.

4.4. Ablation Study

In this subsection, we validate the effectiveness of different components of MCMNET
and evaluate the effects of various hyper-parameters.

Effectiveness of MRCA. The MRCA module can be divided into two components:
Attenuation block and Aggregation block. The Attenuation block can be further divided
into three submodules: Reduction block, Global block, and Local block. We ablate the
four submodules and study their impact on the final performance. Each submodule is
individually enabled and disabled. We conduct ablation experiments on ActivityNet-v1.3,
Charades, and TSU, respectively; the results are shown in Tables 3 and 4. It can be seen
that overall, the Attenuation block has a significant improvement in the performance on
all three datasets, which proves the effectiveness of the module for aggregating local and
global temporal contexts. Moreover, the Global block has a more obvious improvement in
the two densely labeled datasets, suggesting that self-attention is well suited for handling
data with complex temporal relationships.

Table 3. Ablating MRCA Components on ActivityNet-v1.3. We disable Reduction block/Global
block/Local block/Aggregation block on ActivityNet-v1.3.

Reduction Block Global Block Local Block Aggregation Block 0.5 0.75 0.95 Avg.

× × × × 40.88 26.93 2.57 25.71
X × × × 41.92 27.35 2.92 27.96
X X × × 42.61 30.78 4.03 28.06
X X X × 44.02 32.18 5.65 30.73
X X X X 46.70 34.90 6.38 32.83

Table 4. Ablating MRCA Components on Charades and TSU. The evaluation is based on per-frame
mAP on the Charades and TSU datasets.

Reduction Block Global Block Local Block Aggregation Block Charades TSU

× × × × 25.9 31.4
X × × × 26.3 32.0
X X × × 26.8 32.3
X X X × 27.1 32.9
X X X X 27.3 33.1

Effectiveness of IE. The IE module contains Expansion block and Fixation block,
where the Expansion block is used to expand the receptive field and to aggregate long-
range temporal context, the Fixation block is used to prevent grid artifact caused by the
rapid expansion of receptive field by the Expansion block. The results in Tables 5 and 6
show that when only Expansion block is present, there is a drop in accuracy for all three
datasets. This is due to the fact that a large number of stacked dilated convolution layers
can cause certain positions in the feature maps to be skipped and fail to participate in the
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computation. However, when both the Expansion block and the Fixation block are present,
the results are much improved.

Table 5. Ablating IE Components on Activity-v1.3. We verify the usefulness of the Expansion block
and Fixation block on ActivityNet-v1.3.

Expasion Block Fixation Block 0.5 0.75 0.95 Avg.

× × 41.02 28.51 5.18 30.38
× X 43.97 29.78 5.69 31.14
X × 41.48 31.22 5.10 30.81
X X 46.70 34.90 6.38 32.83

Table 6. Ablating IE Components on Charades and TSU. We also tested the effect of the IE module
on the Charades and TSU dataset.

Expasion Block Fixation Block Charades TSU

× × 26.1 32.0
× X 26.3 32.7
X × 25.9 32.1
X X 27.3 33.1

Choice of attenuation factor. In the MACA module, each Attenuation block reduces
the time dimension of the input feature to build multi-scale temporal context information.
Furthermore, the attenuation factor greatly affects the final feature quality. Therefore, we
conducted ablation experiments on the high-resolution stream and the low-resolution
attenuation factor, respectively, and the results are shown in Table 7. The results show
that the best results can be achieved when the attenuation factor of the high-resolution
stream is 2 and that of the low-resolution stream is 1.5. Besides, it can be seen from the
results that the effect of the attenuation factor is greater in the high resolution than in the
low resolution.

Table 7. The effect of different attenuation factor on Charades and TSU.

α1 α2 Charades TSU

1 1 26.2 32.1
1 1.5 26.7 32.7
2 1 27.0 33.0
2 1.5 27.3 33.1
2 2 27.2 32.9
4 2 26.5 32.6

Choice of the number for IE block. In the IE module, we stack multiple Expansion
blocks and Fixation blocks to aggregate long-range and short-range temporal context. We
also conducted ablation experiments to determine the optimal number of blocks to use, and
the results are shown in Table 8. The results show that as the number of blocks increases
from 1 to 7, the performance gradually improves, but when the number of blocks is higher,
the accuracy begins to decrease. This is because the kernel size of dilated convolution in
the Expansion block is 2k, and as the number of layers increases, the receptive field quickly
expands. When it exceeds a certain limit, information loss occurs, which leads to a decrease
in accuracy. Therefore, we set the final number of blocks to 7.
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Table 8. The effect of different block numbers of IE module on Charades and TSU.

Block Number N Charades TSU

1 26.6 32.1
3 26.8 32.6
5 27.1 32.9
7 27.3 33.1
9 27.2 32.8
11 27.0 32.5

Efficiency Analysis. In this part, we report the effect of each module of MCMNET on
the inference time and GFLOPs on ActivityNet-v1.3. Using 2000 proposals as input to the
model and processing the video using NVIDIA RTX 3080ti for about 20 min, the results
are shown in Table 9. The overall time required for the MRCA module is greater than
that for the IE module. This is mainly because the multi-head self-attention in the MRCA
module processes features at different time resolutions, which requires a large amount of
computation. In addition, the Expansion block in the IE module requires much more time
than the Fixation block. This is because in the later blocks of the IE module, the dilated
convolution kernel size in the Expansion block is already very large, and the convolution
operation at this stage also requires a long time. From the computational consumption
results, it can be seen that overall, the computational resources required by the IE module
are higher than those of the MRCA, which is due to the fact that the CNN network
requires deeper network layers in order to achieve higher perceptive field. Therefore,
we also need to work on model simplification in the future so that higher efficiency can
be achieved.

Table 9. The inference time and GFLOPs of each module in MCMNET on the ActivityNet-v1.3.
2000 candidate proposals were utilized as input to MCMNET, and an Nvidia 3080Ti graphic card
was employed to process a video for about 20 min.

MRCA IE (Expansion Block) IE (Fixation Block) Tcost(s) GFLOPs

X × × 0.133 10.2
X X × 0.171 17.5
X x X 0.290 17.4
X X X 0.312 24.7

4.5. Visualization

We show some qualitative detection results in Figure 6 on TSU (top), ActivityNet-v1.3
(middle) and Charades (bottom). The results showed that the detection performance was
very good for some short-duration actions, such as a golf swing. However, the performance
still needs to be improved for some longer duration actions, such as brushing teeth and
blow drying hair.

We also used GradCAM [73] to visualize the class activation map of three models,
TSCN, PGCN, and our MCMNET, as shown in Figure 7. From the visualization results, it
can be seen that for kicking a football, MCMNET is more precise in locating the key parts
compared to the other two models. It focuses mainly on a few key movement parts and
rejects the background unrelated to the movement.
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Figure 6. Qualitative results. We show the qualitative results on TSU (top), ActivityNet-v1.3 (middle,
and Charades (bottom).

Figure 7. Visualization of activation maps with GradCAM. Activation maps generated by TSCN,
PGCN, and our MCMNET for the action “playing soccer”. Compared to TSCN and PGCN, it can
be noted that MCMNET can focus more precisely on the subject of the action rather than on the
irrelevant background.
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5. Conclusions

In this paper, we have proposed a multi-scale context modeling network. First, we
extract the feature sequence from the video using a pre-trained model and splitting it
into a high-resolution stream and a low-resolution stream. The two streams are then fed
into the MRCA module to obtain local and global temporal contexts. The high-resolution
streams are additionally fed into the IE module for modeling long-range and short-range
temporal relationships. Finally, the three output features are fused and passed through
the Norm&location module to regularize the data, which is then input into the classifier
to obtain the final score. Extensive experiments conducted on three challenging action
detection benchmarks demonstrate that our MCMNET achieves outstanding temporal
localization performance.

However, there are still some shortcomings in our approach, the main one being that
the overall simplicity of the model is neglected in order to achieve better results. On the
other hand, since our model operates on pre-extracted features, the whole model cannot
be trained end-to-end with raw video data as input. This also leads to the fact that we
cannot explore in detail the effect of spatial features of video data on the detection effect.
In the future, we will explore in more detail the combination of modules which can take
advantage of the strengths of each module while maintaining the simplicity of the model
structure. Furthermore, moving closer to an end-to-end training model, it is possible to
better model both temporal and spatial features and build a more robust model.
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