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Abstract: Accurate identification of road objects is crucial for achieving intelligent traffic systems.
However, developing efficient and accurate road object detection methods in complex traffic scenarios
has always been a challenging task. The objective of this study was to improve the target detection
algorithm for road object detection by enhancing the algorithm’s capability to fuse features of different
scales and levels, thereby improving the accurate identification of objects in complex road scenes.
We propose an improved method called the Enhanced YOLOVS5 algorithm for road object detection.
By introducing the Bidirectional Feature Pyramid Network (BiFPN) into the YOLOVS5 algorithm,
we address the challenges of multi-scale and multi-level feature fusion and enhance the detection
capability for objects of different sizes. Additionally, we integrate the Convolutional Block Attention
Module (CBAM) into the existing YOLOv5 model to enhance its feature representation capability.
Furthermore, we employ a new non-maximum suppression technique called Distance Intersection
Over Union (DIOU) to effectively address issues such as misjudgment and duplicate detection when
significant overlap occurs between bounding boxes. We use mean Average Precision (mAP) and
Precision (P) as evaluation metrics. Finally, experimental results on the BDD100K dataset demonstrate
that the improved YOLOV5 algorithm achieves a 1.6% increase in object detection mAP, while the P
value increases by 5.3%, effectively improving the accuracy and robustness of road object recognition.

Keywords: intelligent traffic; enhanced YOLOV5; multi-scale; road object detection

1. Introduction

With the emergence of autonomous driving, road detection has become particularly
important. However, as the number of cars increases and urban development becomes
more complex, there is a greater demand for object detection with higher performance
in challenging road conditions. When using cameras or LiDAR to sense the surrounding
environment and construct real-time maps, establishing a comprehensive and accurate
perception system is key to understanding urban traffic problems. Therefore, precise road
object detection has become one of the important issues that need to be addressed.

Most traditional object detection algorithms in the past were based on manually
selecting features, which was a labor-intensive task with poor stability. These methods
not only fail to deeply interpret image semantics, but also suffer from incomplete feature
expressions [1,2]. Deep learning methods have achieved remarkable success in the task
of object detection. Among them, two-stage object detection algorithms, such as the
Region-based Convolutional Neural Network (R-CNN) series, have demonstrated excellent
accuracy. R-CNN first generates candidate region proposals using selective search or
other methods, and then extracts features and performs classification on these proposals.
Subsequently, Fast R-CNN and Faster R-CNN further improve this process by introducing
a Region Proposal Network (RPN) to generate high-quality proposals automatically [3,4].
These methods have achieved high accuracy, especially in scenarios that require precise
localization. Another category is one-stage object detection algorithms, such as the You Only
Look Once (YOLO) [5] series and the Single Shot MultiBox Detector (SSD) [6,7] algorithm.
These methods transform the object detection problem into a regression problem and
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predict the positions and corresponding classes of objects directly. This end-to-end design
enables fast detection speeds, making them suitable for real-time scenarios such as video
analysis and edge computing. In addition to deep learning methods, there are also classical
machine learning methods applied to object detection tasks. These methods usually use
hand-crafted features and traditional machine learning algorithms, such as Support Vector
Machines (SVM) [8,9]. Although these methods still have some applications in specific
scenarios, they generally have limitations in terms of accuracy and generalization compared
to deep learning methods.

Autonomous driving poses great requirements and challenges for the robustness
and accuracy of object detection. Object detection in current traffic scenarios usually
involves multiple objects with diverse classifications, which increases the difficulty of
detection. Moreover, because the position, displacement, shape, and background of the
detected targets are uncertain, the images obtained from traffic scenarios often have low
resolution due to their complex and variable nature, which increases the difficulty of feature
extraction for object detection algorithms. Therefore, the field of autonomous driving is
seeking a solution that can achieve high accuracy in different scenarios. Thanks to the
application of object detection in the industrial field, especially the deployment on mobile
devices, YOLOV5 has been continuously updated [10]. It has obtained lightweight and
mature network models, coupled with real-time detection speed, making it very popular
on embedded devices such as Jetson. However, YOLOVS5 still has problems, such as low
confidence in identifying small targets far away, inaccurate positioning, and false alarms,
making it difficult to meet the needs of building a complete and accurate perception system
for autonomous driving vehicles in complex real-world environments.

To address the problem of multi-scale, multi-level features in object detection tasks
that require fusion and enhancement, we introduced the BiFPN improvement method into
the YOLOVS5 algorithm [11,12]. It uses bidirectional connections to ensure the completeness
of feature information and an adaptive weight calculation method for feature fusion, better
utilizing features at different scales and levels. We also used DIOU optimization to improve
the non-maximum suppression algorithm (NMS) in YOLOvV5's loss function and better
evaluate the similarity and distance between detected objects to avoid problems such
as misjudgment and duplicate detection. In order to enhance focus on important areas,
suppress unimportant background information, and improve detection accuracy, we also
introduced the CBAM [13] attention module and conducted experiments on the public
dataset Bdd100k to compare the performance differences between YOLOv5 improved by
BiFPN technology and traditional YOLOVvS.

The remaining parts of the article are organized as follows. First, related works and
the existing problems in object detection [14,15] are introduced. Then, the YOLOV5 algo-
rithm for road object detection is presented, and the advantages and disadvantages of the
benchmark model are discussed. This provides the background and context for the pro-
posed improvements. The enhancements include the introduction of BiFPN technology, the
integration of the CBAM attention module, and the application of the DIOU non-maximum
suppression technique. The experimental validation section focuses on comparing the
performance of the improved YOLOVS5 algorithm with the benchmark model in terms of ac-
curacy and robustness. The results are presented and analyzed to showcase the superiority
of the proposed approach. Finally, the discussion and recommendations section examines
the strengths, limitations, and future directions of the proposed approach. In it, we discuss
the advantages of the approach, acknowledge its limitations, and provide suggestions for
future research and applications.

2. Related Works
2.1. Multi-Scale Feature Fusion

Multi-scale feature fusion [16,17] is a commonly used technique in computer vision
aimed at improving model performance by integrating features from different scales. It is
particularly important in object detection tasks. Traditional neural networks often use fixed-
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size filters or pooling operations when processing input images. However, this approach
may lead to a loss of low-level details or high-level semantic information. To address this
issue, multi-scale feature fusion has been introduced into neural network architectures.
There are various methods to achieve multi-scale feature fusion. One common approach
is to concatenate or overlay feature maps with different scales. In this way, the network
can simultaneously utilize information from multiple scales for decision making. Another
method is to use a pyramid structure to generate feature maps at different levels and then
fuse them together. This enables the capture of details and semantic information at different
scales. Through multi-scale feature fusion, models can better adapt to objects or scenes
with varying scales and sizes. This is particularly useful for handling objects or scenes
with scale variations. Furthermore, multi-scale feature fusion enhances the robustness
of the model and improves its performance in complex scenarios. Multi-scale feature
fusion is a beneficial technique that improves the performance of computer vision tasks,
especially object detection, by integrating features from different scales. It captures details
and semantic information at multiple scales and improves the robustness and adaptability
of the model.

Multi-scale feature fusion is an important issue in feature extraction because different
scales of features have significant meanings for different tasks. However, the traditional
top—down Feature Pyramid Network (FPN) [18,19] is often limited by the one-way infor-
mation flow and cannot make full use of the different scale features, so a more efficient
method is needed to solve this problem. The YOLOvVS5 algorithm uses the PANet [20,21]
network for feature fusion. Compared to FPN, PANet adds a bottom-up path aggregation
network to achieve bidirectional information flow. However, the PANet network requires
more parameters and computing resources, which means that its speed is relatively slow
and not very suitable for real-time target detection tasks. Secondly, although PANet uses a
bottom—up path aggregation network to improve the efficiency of information flow, if the
low-level feature information is not rich enough or has lost some information, this method
may bring some negative effects and lead to a decrease in detection accuracy. Therefore,
we modified the original PANet structure in the neck layer of YOLOVS5 to a BiFPN network
for more efficient multi-scale feature fusion.

2.2. Attention Mechanism

Attention mechanism [22,23] is a commonly used technique in deep learning to en-
hance the focus of neural networks on different parts of input data. It simulates the
attention mechanism in the human visual system, allowing the network to selectively at-
tend to information relevant to the current task. In traditional neural networks, every input
is treated equally, and all features are simultaneously involved in computation. However,
in certain tasks, only a small portion of the input may be crucial for the output. Attention
mechanisms were introduced to address this issue. Attention mechanisms have achieved
significant success in various deep learning tasks. For example, in image classification
tasks, attention mechanisms can assist the network in automatically focusing on regions
of an image that are relevant to the classification, thereby improving accuracy. Recently,
there have been some interesting methods in the state-of-the-art (SOTA) research in the
field of object detection. One of them is Selective Attention for Human Identity (SAHI) [24],
which aims to further improve the accuracy of object detection. The SAHI technique adopts
a selective attention mechanism that focuses on the identity of individuals in an image,
thereby achieving excellent performance in person detection. These latest SOTA research
works have propelled the development of the object detection field, enhancing the accuracy
and performance of detection algorithms. They hold significant value in terms of image
semantic understanding, feature representation, and fast detection. Moreover, they are
widely applied in various scenarios that require precise object localization.

To enhance the focus on key areas, suppress unimportant background information, and
improve detection accuracy, we introduced the CBAM attention module. CBAM considers
both the spatial and channel dimensions, calculating their attention weight coefficients
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through the spatial attention module and channel attention module, and multiplying them
with the input feature maps to adaptively refine the input features. The CBAM attention
module is added between the feature extraction backbone network and the inference layer,
so that the YOLOV5 algorithm can find regions with high feature map weights and pay
more attention to important features during inference.

2.3. NMS

NMS [25] is a post-processing technique used in object detection. In object detection
tasks, a set of candidate bounding boxes is generated to represent regions that may contain
objects [26]. However, due to the nature of network outputs and characteristics of objects in
images, these candidate boxes often have overlapping regions. The main purpose of NMS
is to eliminate redundant overlapping bounding boxes and select the best representative
boxes for each object. It is based on a simple principle: among the candidate boxes for the
same object, the one with the highest score is most likely to contain the object, while other
candidate boxes with high overlap can be considered redundant.

To address the issues of misjudgment and duplicate detection that may occur when
there is overlap between bounding boxes in the YOLOVS5 algorithm, we adopted the DIOU
algorithm to measure the distance and aspect ratio differences between detection boxes.
This algorithm provides a more accurate representation of the positional relationships
between objects and helps avoid filtering out boxes that are too close to each other. Specifi-
cally, the DIoU_NMS algorithm replaces the traditional IoU measurement with the DIoU
measurement to compute the intersection-over-union values between detection boxes,
taking into account their distance and aspect ratio differences. During the NMS process,
the algorithm filters out detection boxes that are either too close to the selected boxes or
have a significant difference in scale, based on a predefined threshold. This improves the
accuracy and robustness of the NMS algorithm.

3. Benchmark Model and Proposed Methods

The YOLO series of algorithms are the earliest single-stage object detection methods
that emerged after RCNN, Fast R-CNN, and Faster R-CNN. YOLO is a new framework pro-
posed to improve the real-time performance of object detection. It can achieve a detection
speed of 45 frames per second, and its mAP performance index is also far higher than other
real-time detection systems. After that, the YOLO algorithm was continuously improved.
YOLOV2 optimized the low accuracy problem in v1, improving the precision and speed
of multi-object detection; YOLOV3 chose to add multi-scale training and flexibly process
input images, improving the accuracy of small object detection in v2; YOLOvV4 solved the
problem of GPU training; and YOLOvV5 reduced the model size, making it feasible for
deployment on mobile edge devices. In this paper, we use YOLOVS5 for object detection
on an intelligent networked car host, so we will introduce it in detail using YOLOv5 as an
example [27-30].

3.1. Benchmark Model

The YOLOVS network is mainly composed of four parts: input end, backbone main
layer, neck feature fusion layer, and head output layer. The overall framework is shown in
Figure 1.
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Figure 1. Structural diagram of the YOLOvV5 network.

The backbone main layer is composed of three parts: a Conv module, a C3 module,
and an SPPF module. It is used to extract image features and continually reduce the feature
map size. YOLOV5 uses CSPDarknet as the backbone network, which extracts input image
features through multiple CBS convolutional layers. After convolution, the C3 module is
used for further feature extraction, and the SPPF module performs pooling operations to
output feature layers of three scales: 80 x 80, 40 x 40, and 20 x 20.

The Conv module consists of Conv2d, a BatchNorm2d, and a SiL.u activation function,
mainly used for feature extraction and feature map organization. BatchNorm2d performs
batch normalization on batch data, and the SiLu function enhances the non-linear fitting
ability of the detection model, as shown in Figure 2.

Conv
(k1,s1,p0)

BatchNorm2d

l

Figure 2. CBS convolutional layer.
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The C3 module is a feature extraction module that stacks the image features extracted
by the CBS convolutional layer to make the feature representation more sufficient. As
shown in Figure 3, when the feature map enters C3, it will be processed in two ways. The
Conv module in C3 reduces the dimension of the feature map to help the convolution
kernel better understand the feature information, and then increases the dimension to
extract more complete feature information. Finally, a residual structure is used to extract
features, combining the input and output to remove redundant gradient information.

; y CBS
Conv Concat (kislpo)  Output feature

Y

CBS Convx2

Input feature (kLsl,

Add
9

Figure 3. Schematic diagram of the C3 module.

SPPF is an improvement over the SPP spatial pyramid pooling, where feature maps
of different scales are converted to the same scale through same pooling. As shown in
Figure 4, it combines CBS convolutional layers and three serial 5 x 5 pooling layers to fuse
multi-scale features. While further extracting features, it avoids the problem of incomplete
expression of deep-level feature information. It extends the region in the input layer
corresponding to the point on the feature map, thereby increasing the receptive field of the
detection model.

Input feature
layers

Maxpool Maxpool Maxpool
5x5 5x5 5%5

CBS
Extraction of
feature layers
Output feature
layers
CBS

Feature layers
stacking

Figure 4. Schematic diagram of the SPPF module.

The Neck feature fusion layer obtains shallow image features from the backbone
network and concatenates them with deep semantic features to complete the fusion of
shallow image features and deep semantic features.
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YOLOV5’s neck structure is based on the one-way upsampling FPN structure and
expanded to the bidirectional PANet structure, as shown in Figures 5 and 6. By changing
the scale of the feature map through interpolation using the upsampling method, the
feature map is continuously enlarged to fuse the image features in the backbone network.
Different scale feature maps are obtained through downsampling, allowing shallow image
features and deep semantic features to complement each other. The neck combines the
two paths of different sampling methods to stack the deep features and shallow features
of three different scales (20 x 20, 40 x 40, 80 x 80), which are passed layer by layer and
finally extracted using the C3 module on the fused features of the three scales, and then
passed to the detection layer.

I predict

——c _’/ - 40.%0
- =

Figure 5. Schematic diagram of the FPN fusion structure.

*"’ﬂ' 20sz SR predict

‘ ‘ 2 4 ><40 e d predict
_%__‘ 80x80_
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Figure 6. Schematic diagram of the PANet fusion structure.

The neck structure effectively fuses shallow and deep features, prevents feature in-
formation loss, obtains more complete features, and ensures the feature expression of the
detection model for objects of different scales.

The Head output layer is mainly used for detection and consists of the detection
module, which includes three 1 x 1 convolutions that correspond to three detection fea-
ture layers.

In YOLOVS5, the detection layer first divides the three scales of feature maps output
by the neck into grids of different scales (80 x 80, 40 x 40, 20 x 20), where each grid
corresponds to a pixel, carrying highly condensed feature information. By extracting feature
layer information through 1x1 convolutional operations for dimensionality reduction
or enhancement, the detection head obtains the position coordinates, categories, and
confidence of the anchor in the grid. Then, using anchor boxes of different aspect ratios,
the detection layer detects the target object within each grid and adjusts the aspect ratio of
the anchor box based on the position information to generate the real box for subsequent
detection of position and category information within the box, as shown in Figure 7.
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Figure 7. Schematic diagram of the detection process. (a) Anchor box. (b) Real box.

3.2. Proposed Methods

Although the original YOLOvV5 network performs well in many aspects, there are still
some limitations. For example, it may perform relatively poorly in detecting small and
dense targets, which can lead to missed or false detections. Additionally, when dealing
with targets with a large aspect ratio, such as persons and cars, the detection accuracy
is relatively low. Especially during actual driving, the size and resolution of targets in
complex and varied real-world scenarios vary greatly, making it a challenge to effectively
handle multi-scale features. To address these issues, we propose to improve the YOLOv5
object detection algorithm from three aspects in order to enhance the model’s perceptual
ability and detection accuracy. The improved network architecture is shown in the Figure 8.

C

Image
(640,640,3)

Conv(160,160,128)

(C3_9(80,80,256)

C3.9(40,40,512)

SPPF(20,20,1024) { Conv ]

=

Figure 8. Structural diagram of the improved YOLOv5 network.
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3.3. BiIFPN

BiFPN is a novel network structure for multi-scale feature fusion [31-33] that addresses
the issue of traditional one-way FPN not fully utilizing different scale feature informa-
tion. BiFPN adds a bottom—up feature path to the FPN and achieves multi-scale feature
fusion through bidirectional connections and feature fusion on feature nodes in the feature
pyramid network, resulting in improved accuracy and efficiency. Traditional FPN only
employs a top—down path for feature fusion in the feature pyramid network, leading to
the loss of detailed information in lower-resolution features. BiFPN, on the other hand,
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captures fine-grained details in low-level features by introducing a bottom—up path and
fuses them with high-level features. Additionally, BiFPN enables features to propagate and
fuse bidirectionally between different levels through its bidirectional connections, further
enhancing feature representation. By effectively utilizing features at different scales and
implementing bidirectional connections and feature fusion in the network, BiFPN provides
more accurate and efficient feature representations for computer vision tasks such as object
detection and image segmentation.

In terms of specific implementation, BiFPN removes nodes with only one input edge
and adds extra edges between original input and output nodes to fuse more features.
Secondly, BiFPN adds a skip connection. A skip connection is added between the input and
output nodes in the same scale, which fuses more features at the same layer without adding
too much computational cost. In addition, unlike PANet, which only has one top—down
and one bottom-up path, BiFPN considers each bidirectional path as a feature network
layer and repeats the same layer multiple times to achieve more advanced feature fusion.
The structure of BiFPN is shown in the Figure 9.

b7 repeated blocks
N
.
T —
T _—

Figure 9. Structural diagram of the BiFPN fusion structure.

Weighted Feature Fusion

As different input features have different resolutions, it is crucial to fuse features with
different resolutions to improve the accuracy and efficiency of the model. A common
method is to adjust features with different resolutions to the same size and then perform
addition operation. However, as different features may have different contributions to the
output, this method may not achieve the best results. To address this issue, BiFPN proposes
a weighted feature fusion method.

BiFPN chooses to add an additional weight for each input feature and lets the network
learn the importance of each input feature. To achieve feature fusion, a fast normalization
method is adopted, where the weights are divided by the sum of all weights and normalized,
as shown in Formula (1):

w; )
j

In the formula, O represents the output value, I; represents the input value of a node,
w; represents the weight of the input node, and j represents the sum of all input nodes.
The condition w; > 0 is guaranteed by applying the ReLU activation function after each
w;, and ¢ = 0.0001 is a small value used to prevent numerical instability. Similarly, the
values of each normalized weight also fall between 0 and 1. However, since there is no
softmax operation involved, the fusion process is more efficient. The final BiFPN integrates
both bidirectional cross-scale connections and fast normalized fusion. As an example, we
describe here the fusion of two features at level 6 of the BiFPN, as shown in Figure 10.
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Here, P6td represents the intermediate feature of the sixth layer in the top—down path,
P represents the output feature of the sixth layer in the bottom-up path, Conv represents
the convolution operation, and Resize represents the upsampling or downsampling operation.

3.4. CBAM

CBAM [34] is an attention module that enhances the discriminative power of deep
neural networks by emphasizing key regions and suppressing background information
through spatial and channel attention mechanisms. The spatial attention module assigns
weights to pixels in the input feature map based on their spatial positions, allowing the
model to focus more on the regions of interest. The channel attention module considers
the interdependencies between different channels, balancing the importance of relevant
channels and disregarding irrelevant ones. By incorporating CBAM modules between the
feature extraction backbone and inference layers, the network can adaptively optimize the
input features, thereby improving detection accuracy. CBAM has been widely applied in
various computer vision tasks. The CBAM attention process is shown in Figure 11.

/ Spatial attention \

Input feature Output feature

- /

Figure 11. Structural diagram of the CBAM module.

Channel attention
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As shown in Figure 11, CBAM incorporates attention mechanisms in both the channel
and spatial dimensions, which not only saves parameters and computational resources, but
also facilitates its integration as a plug-and-play module into existing network architectures.
The expression of the CBAM attention process is:

FF=M(F)®F 4)

F' = M;(F)® F )

CBAM consists of the input, channel attention, spatial attention modules, and the
output. The input is the feature map F, which then goes through the channel attention
one-dimensional convolution to produce the channel attention vector M.. The convolu-
tional result is multiplied elementwise with the original feature map to obtain the channel
attention output. Subsequently, the spatial attention two-dimensional convolution, denoted
as M;, is applied, and the resulting output is multiplied elementwise with the original
feature map.

The specific process of channel attention is as follows: First, the input feature map
F is sent to the pooling operation, obtaining the global average pooling vector V and the
global max pooling vector V’. These two pooling vectors represent the mean and maximum
values of the features in the channel, respectively, which provides a better understanding
of the range and interval of the features in the channel. Then, these two vectors are sent to
the shared Multi-Layer Perception (MLP) for addition and sigmoid activation, generating
the channel attention vector Mc. The channel attention mechanism is shown in Figure 12.

/ Channel attention \

Maxpooling
Vector V

Add Sigmoid
< B O— =

Channel attention M,

1 !
Avgpooling Vector V

Shared MLP j

Figure 12. Structural diagram of channel attention mechanism.

Input feature F

The mathematical expression for the channel attention as follows:
Mc(F) = o(MLP(AvgPool(F)) + MLP(MaxPool (F)) (6)

This formula obtains a channelwise representation of the input feature map F through
average pooling, processes it through MLP activation functions, and finally maps it to the
attention weight Mc within the range [0, 1] through the sigmoid function (¢).

After obtaining the channel attention vector Mc in the channel attention mechanism, it
needs to be multiplied with the original feature map F to obtain the enhanced feature map
F'. Then, F' is sent to the spatial attention mechanism, which extracts spatial information
through max pooling and average pooling operations, and concatenates these two pooling
vectors. The concatenated vector is fed into the shared MPL for convolution and sigmoid
activation, generating the spatial attention vector Ms, as shown in Figure 13. Finally, Ms
is multiplied with F’ to obtain the final feature map F’/, which contains both channel and
spatial attention information and is used for processing in the next layer of the network.
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Spatial attention

Conv Sigmoid

O—

Input feature F' . .
Spatial attention M,

[Maxpooling , Avgpooling]

Figure 13. Structural diagram of the spatial attention mechanism.
The mathematical expression for the channel attention as follows:
Ms(F) = o(f7*7(|AvgPool (F); MaxPool(F)])) (7)

This formula performs a max pooling operation on the input feature map F, and
processes it through shared MLP activation functions, and finally maps it to the atten-
tion weight Ms within the range [0, 1] through the sigmoid function. f”*7 performs a
convolution operation with a kernel size of 7 x 7.

Specifically, the operation of the CBAM [35] module is as follows: First, the channel
attention module performs average pooling and max pooling on the entire input feature
map to extract feature information. Then, this feature information is passed through two
fully connected layers for processing and a sigmoid function is applied to generate a
channel attention weight in the range of 0 to 1. This channel attention weight is multiplied
with the original input feature map, resulting in a set of more representative feature maps.
Next, the spatial attention module applies a 7 x 7 convolution to these attention-weighted
feature maps to further improve their representational power. Finally, the spatial attention-
weighted feature maps are multiplied with the original input feature map to obtain feature
maps with stronger expressiveness and better classification and detection performance.

3.5. DIoU_NMS

DIoU_NMS refers to the method of using DIoU for NMS in object detection. NMS is
an important post-processing technique used to filter out redundant detection results and
retain the most accurate object detection boxes.

In traditional NMS algorithms, a fixed IoU [36] threshold is set as the suppression
threshold, as shown in Figure 14. All detection boxes are sorted by confidence, and all
detection boxes are traversed from high to low confidence one by one. The boxes with lower
confidence or high IoU overlap with selected boxes are filtered out. However, this method
has drawbacks. A very high suppression threshold may filter out some accurate boxes,
and only IoU values between boxes are considered, without considering their distance
and proportional relationships. In real-world scenarios, overlapping objects may occur
during detection. If two targets are close together, this will result in high IoU values. After
processing with NMS, only one detection box may be retained, leading to missed detections.

The geometric principle of the DIoU metric is shown in Figure 15, where d represents
the distance between the centers of two boxes and ¢ represents the diagonal length of the
minimum closed bounding box that covers the two boxes.
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Area of overlap
IOU =
Area of Union
Figure 14. Definition of IOU.
) ¢ Y
Figure 15. Structural diagram of DIoU.
The mathematical expression of the DIoU metric is:
42 B
DIoU = IoU — <c2) ®)

The parameter 3 controls the penalty weights of ¢> and d? in the DIoU metric. When
the value of {3 is infinitely large, the DIoU metric becomes equivalent to the IoU metric.
When the value of 3 is 0, all boxes that have their centers coincide with the center of the
box with the highest score are removed.

4. Experimental Results and Analysis
4.1. Environment and Parameter Settings

In our experiments, we used a Windows 10 operating system and hardware with a
12th Gen Intel(R) Core(TM) i9-12900K CPU and an NVIDIA GeForce RTX 4090 GPU. The
deep learning framework used was Pytorch 2.0.0, and the algorithm was compiled using
Python 3.10. For training, we set the epoch to 300 and fixed the initial learning rate at 0.01.
The input image size was set to 640 by 640, and the batch size was set to 32. For testing, we
used a confidence threshold of 0.25 and an IoU threshold of 0.45.

4.2. Database

The dataset used in this paper is the BDD100K dataset, which was developed by re-
searchers at the University of California (Berkeley, CA, USA) and released in 2018. BDD100K
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(Berkeley DeepDrive 100K) [37] is a large-scale autonomous driving visual dataset that
contains approximately 100,000 annotated driving scene images and videos. It covers
a wide range of real-world driving scenarios, including urban, suburban, and highway
scenes, as well as various weather, lighting, and traffic conditions. This makes it highly
beneficial for road detection generalization and application in the field of autonomous
driving. However, in consideration of practical needs, we selected 10,000 images suitable
for urban road scenes from the BDD100K dataset for our experiments. These 10,000 images
were divided into training, validation, and test sets in an 8:1:1 ratio and included nine road
object categories, as shown in Figure 16 and Table 1.

© (d)

Figure 16. Various road traffic flows in the Bdd100k dataset. (a) Free flow. (b) Mixed flow. (c) Con-
gested flow. (d) Slow flow.

Table 1. The dataset used for the experiment.

Class Name Train Numbers Test Numbers
Person 10,614 1199
Rider 512 59
Car 81,881 10,425
Bus 1258 167
Truck 3374 420
Bike 797 92
Motor 364 44
Traffic sign 28,182 3331
Traffic light 21,370 2701

4.3. Performance Evaluation Metrics

For our experiments, we employed the commonly used Precision (P), Recall (R), and
mean Average Precision (mAP) as performance evaluation metrics to assess the detection
accuracy of our algorithm. The corresponding formulas are shown below:

. TP
Precision = TP L EP )

TP
Recall = '1"P—|——FI\] (10)
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n
mAP = %2 AP, (11)
i=1

Here, P refers to the proportion of correctly detected objects among all detected objects,
whereas R refers to the proportion of correctly detected objects among all ground truth
objects. mAP is an evaluation metric that comprehensively considers the performance
of object detection algorithms across different categories. For each object category, the
average precision (AP) can be calculated based on confidence scores and IOU thresholds.
AP represents the area under the precision-recall curve at different IOU thresholds. The
mAP is then calculated by taking the average AP across all object categories, where a higher
mAP indicates better algorithmic performance across different categories.

4.4. Experimental Results

For object detection tasks, Precision-Recall (PR) curves are usually used to evaluate the
performance of models. The PR curve can describe the precision performance at different
recall rates, which enables us to have a more comprehensive understanding of the model’s
quality. Comparing the PR curves before and after improvement can display the actual
improvement of model performance brought by the improvement scheme. The horizontal
axis in Figure 17 represents the recall rate, and the vertical axis represents the precision
rate. We can see that the model performance after improvement has slightly improved at
different recall rates, indicating that the improvement scheme is effective in improving
model performance.

10

[— car0.700
bus 0.615

|— person 0.499
bike 0300

— car 0695
bus 0.586

—— person 0.496
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truck 0.522 08
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— motor 0.323
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traffic sign 0.535
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|—— all classes 0.478 MAP@0.5
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Figure 17. Before and after PR curve comparison. (a) Before PR curve comparison. (b) After PR
curve comparison.

The addition of BiFPN to PANet aims to effectively address the limitations of PANet in
multi-scale object detection and enhance detection accuracy. BiFPN is a bidirectional feature
pyramid network that overcomes the insufficient information flow issue in PANet under
multi-scale scenarios by introducing bidirectional connections and multi-scale feature
fusion. The key characteristics of BiFPN include bidirectional feature propagation and
effective multi-scale fusion ability.

First, bidirectional feature propagation allows information to flow freely between
different levels, ensuring effective transmission of multi-scale features. This means that
fine-grained details from lower levels can propagate to higher levels, while high-level
semantic information can also propagate to lower levels, achieving a more comprehensive
and rich feature representation. Second, BiFPN achieves effective multi-scale fusion by
integrating features from different levels, using upsampling and downsampling operations
to construct a unified feature pyramid structure. This multi-scale fusion capability enables
the model to capture objects at different scales simultaneously and improve the accuracy of
object detection.

By adding BiFPN to PANet, we can fully utilize the information from multi-scale
features and enhance the feature representation ability. This helps address the challenge of
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scale variation in road object detection and improve the recognition of small and occluded
objects. The main evaluation metric is mAP@0.5, and the ablation experiments in Table 2
show that modifying the neck layer from PANet to BiFPN in comparison to YOLOv5s
led to a 0.8% increase in mAP@0.5. BiFPN, with its bidirectional feature propagation and
multi-scale fusion, compensates for the limitations of PANet and significantly improves the
accuracy and performance of multi-scale object detection.

Table 2. Ablation experiment results.

Model Precision (%) Recall (%) mAP@0.5 (%)
YOLOvV5s 66.7 39.7 47.8
YOLOvV5s + BiFPN 69.4 40.5 48.6
YOLOV5s + BiFPN + CBAM 70.5 41.6 49.1
YOLOV5s + BiFPN + CBAM + DIOU_NMS 72 42.1 494

Integrating the CBAM attention module into the YOLOv5s+BiFPN framework brings
several benefits. The CBAM module is an attention mechanism designed to enhance feature
representation ability, playing a crucial role in road object detection. The basic principle of
the CBAM module involves utilizing channel attention and spatial attention mechanisms
to enhance feature representation ability. The channel attention mechanism learns the
correlations between each channel, adaptively selecting and amplifying the channels that
are most relevant to object recognition. This allows the network to focus more on channels
with rich semantic information, improving feature discriminability. The spatial attention
mechanism learns the correlations between different spatial positions, adaptively selecting
and emphasizing important spatial locations while suppressing irrelevant background
noise. This is particularly important for road object detection, as it enables the network
to attend to the details in the target area while disregarding unimportant background
information. By leveraging channel and spatial attention mechanisms, the CBAM module
improves feature discriminability, thereby enhancing the accuracy of road object detection.
By enhancing the correlations between channels, the CBAM module captures essential
semantic information in the target area, making it easier for the network to differentiate
between different categories of road objects. Additionally, by utilizing spatial attention
mechanisms, the CBAM module provides more attention to the target area, reducing
background interference and further improving feature discriminability and object de-
tection accuracy. The experimental results also indicate that adding the CBAM attention
module improved mAP@0.5 by 0.5% compared to YOLOv5s+BiFPN, demonstrating an
enhancement in feature representation ability.

Introducing DIOU Non-Maximum Suppression (NMS) as an improvement to the
YOLOvV5s+BiFPN+CBAM framework aims to address the limitations of traditional IoU-
based NMS and improve the accuracy of road object detection. Traditional IoU-based
NMS only considers the degree of overlap between bounding boxes but neglects their
geometric distance relationship. This can result in situations where two bounding boxes
have equal overlap but significant differences in spatial positions, leading to false detections
of multiple objects or repetitive detection of the same object. This is commonly observed in
scenarios where objects are close or occluded. DIOU_NMS overcomes these limitations by
using DIOU instead of the traditional IoU as the evaluation metric during non-maximum
suppression. When selecting bounding boxes for final detection, DIOU_NMS chooses the
one with the highest DIOU value as the primary detection and applies a certain threshold
to filter out repetitive detections and false positives. The introduction of DIOU_NMS
reduces false detection rates and optimizes the final detection results. By considering the
geometric distance between bounding boxes, DIOU_NMS accurately assesses the similarity
between them, avoiding situations of repetitive detection and false positives. In comparison
to YOLOv5s+BiFPN+CBAM, the experimental results show that DIOU_NMS improved
mAP@0.5 to 49.4% and precision to 72%. This further enhances mAP@0.5 and precision
values, resulting in more accurate and reliable road object detection.
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According to the experimental results in Table 3, the algorithm proposed in this pa-
per demonstrates excellent performance in road object detection tasks and outperformed
traditional methods such as Faster R-CNN, SSD, YOLOv3, and YOLOv4 under the same
experimental conditions [38,39]. These methods have been widely used in previous re-
search and each has its own advantages and limitations. For example, Faster R-CNN
adopts two network modules, one for region proposal and the other for object classification
and bounding box regression. SSD is a single-stage object detector that directly predicts
object categories and bounding boxes by extracting features through multiple convolutional
layers. YOLOv3 and YOLOV4 are also single-stage object detectors known for their fast real-
time performance. By comprehensively applying improvement measures, we significantly
improved the accuracy of our algorithm in road object detection tasks. The experimental re-
sults show that our algorithm performed better in evaluation metrics, especially mAP@0.5,
verifying the effectiveness of the proposed improvements. It should be noted that although
our algorithm surpasses other common road object detection networks, it may still have
certain limitations in specific datasets and scenarios. Therefore, when selecting and opti-
mizing algorithms for practical applications, it is necessary to consider the influence of
factors such as dataset characteristics, scene complexity, and environmental conditions.

Table 3. The performance of this algorithm compared with various object detection algorithms.

AP(%
Algorithm %) mAP@0.5(%) P(%)
Car Bus Person  Bike Truck Motor Rider Traffic Sign Traffic Light

Faster R-CNN 57.4 46.2 30.5 19.7 43.7 19.2 27.4 20.9 8.5 30.4 39.5
SSD 473 38.2 18.9 19.6 36.2 18.2 13.7 12 7.4 23.5 67.8
YOLOvV3 55.4 443 28.9 15.9 42.6 21.6 17.5 29 25.6 31.1 58.9
YOLOv4 60 40.5 50.2 19.2 52 30.4 12.1 48.3 455 39.8 41.3
YOLOv5s 69.5 58.6 49.6 27.5 52.2 31.6 37.2 53.5 50.2 47.8 66.7

TheProposed 70 61.5 499 30 57.2 32.3 39.3 53.9 50.8 494 72

Comparative experiments indicate a significant performance improvement in road ob-
ject detection tasks with the proposed algorithm, achieved through improved feature fusion,
the introduction of attention mechanisms, and optimized non-maximum suppression. This
has important implications for real-world applications in areas such as autonomous driv-
ing [40-42], establishing a foundation for further research and development. We have also
compared the YOLOR model with the enhanced YOLOv5 model on the BDD100k dataset.
YOLOR may have a slight advantage in terms of accuracy over the enhanced YOLOV5, but
it may be slightly slower in terms of speed. EfficientDet may have higher detection accuracy
on the dataset, and due to the adoption of the EfficientNet structure, smaller model sizes
can achieve larger object detection precision. However, its implementation complexity and
computational intensity are relatively high, which our current hardware cannot effectively
meet. SWIN Transformers can improve accuracy when dealing with objects of different
scales and demonstrate faster inference time per instance. However, compared to other
models, it requires more computational resources and longer training time.

4.5. Algorithm Verification

The visual comparison of road object detection results based on the YOLOVS5 original
algorithm and the proposed algorithm (as shown in Figure 18) reveals that the proposed
algorithm exhibits higher confidence in detecting objects positioned at the front of the road,
and is able to detect more targets located on side roads compared to the original algorithm.
This proves that the proposed algorithm can improve upon issues of poor recognition of
multi-scale objects and insufficient feature representation. In mixed traffic flow scenarios
under varying lighting conditions, the proposed algorithm demonstrates high recognition
accuracy and robustness in detecting dense and overlapping targets, as compared to the
original algorithm, thus proving that the proposed algorithm can address problems of false
detection and repeated detection, while reducing instances of missed detections.
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Figure 18. Comparison of road object detection results based on mixed flow in different light conditions.

The proposed algorithm takes into account weather factors for road object detection,
and its performance in rainy conditions is worth mentioning. The visual results depicted in
Figure 19 clearly demonstrate the advantages of the proposed algorithm in rainy conditions.
Compared to the original algorithm, the proposed algorithm exhibits higher confidence and
a greater ability to detect side-road targets in rainy road scenarios. Moreover, for multi-scale
objects, and especially small targets such as distant traffic lights, the proposed algorithm
demonstrates superior performance. This further confirms the capability of the proposed
algorithm to improve multi-scale object recognition and address deficiencies in feature
representation, validating its ability to meet the demands of complex road scene detection.
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Figure 19. Comparison of road object detection results based on mixed flow in rainy conditions.
(a) YOLOVS original algorithm. (b) The proposed algorithm.

5. Conclusions and Future Work

In this paper, we propose a method based on the YOLOV5 algorithm to improve the
accuracy of object detection in traffic scenes for autonomous driving systems. We introduce
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BiFPN, the CBAM attention module, and the DIOU non-maximum suppression technique
to enhance the algorithm performance. BiFPN is utilized for multi-scale and multi-level
feature fusion, and we evaluate its effectiveness in propagating features across different
levels and its capability in improving feature fusion quality. By incorporating the CBAM
attention module, we improved the network’s focus on target regions and its ability to
distinguish features. Additionally, the DIOU non-maximum suppression technique is
employed to handle overlapping objects and improve detection accuracy. Compared to the
YOLOv5s benchmark model, our proposed model achieved a 1.6% increase in mAP and a
significant 5.3% increase in P on the BDD100K validation dataset for traffic scenes.

However, there are still further explorations and discussions to be conducted for
our proposed method. More comprehensive comparisons with other state-of-the-art road
object detection methods such as EfficientDet and CenterNet can be performed to evaluate
performance across different metrics such as mAP and localization accuracy. Furthermore,
exploring the deployment of our model on intelligent connected vehicle devices and
considering the application of our solution in other domains and tasks would be valuable.
For example, applying BiFPN and CBAM attention modules to other object detection
tasks such as traffic light color detection or lane marking detection can help validate the
generality and effectiveness of our approach across different domains. These explorations
will contribute to further improvements and a wider adoption of our method, ultimately
enhancing object detection performance in autonomous driving systems.
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