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Abstract: This paper explores the opportunities and challenges for classifying human posture in
indoor scenarios by analyzing the Frequency-Modulated (FM) radio broadcasting signal received
at multiple locations. More specifically, we present a passive RF testbed operating in FM radio
bands, which allows experimentation with innovative human posture classification techniques. After
introducing the details of the proposed testbed, we describe a simple methodology to detect and
classify human posture. The methodology includes a detailed study of feature engineering and
the assumption of three traditional classification techniques. The implementation of the proposed
methodology in software-defined radio devices allows an evaluation of the testbed’s capability to
classify human posture in real time. The evaluation results presented in this paper confirm that the
accuracy of the classification can be approximately 90%, showing the effectiveness of the proposed
testbed and its potential to support the development of future innovative classification techniques by
only sensing FM bands in a passive mode.

Keywords: RF passive sensing; human posture classification; context awareness; machine learning;
performance evaluation

1. Introduction

Radio Frequency (RF) sensing systems can assess propagation environments and spec-
trum utilization to improve wireless systems’ performance [1]. RF sensing and context
awareness systems were limited for specific purposes due to the technical challenges related
to the understanding of most diversified contexts, where the techniques for classifying the
scenario objects are more demanding [2]. The complexity of such challenges has motivated
the adoption of more advanced techniques, including deep learning (DL) [3] and artificial
intelligence (AI) techniques [4]. Several machine learning (ML) techniques have been used
recently for RF human posture detection based on the RF Time of Flight (ToF) [5–9]. Although
proposing different ML techniques, these works are based on active RF sensing systems.

Recently, significant research efforts have been carried out for detecting and classifying
human activities (e.g., gestures, postures, gait, etc.) adopting passive RF sensing and
DL/ML techniques. The work in [10] proposed a human body movement sensing system,
operating in real time and focusing on detecting falling movement and locating more than
one human body in the same area. The system exploits RF signals sent by radio devices that
operate in the 2.4 GHz ISM band and detects events related to safety concerns by keeping
track of radio signal strength indicator (RSSI) footprints. In [11], the influence of human
movements on channel state information (CSI) was studied. Many experiments were
carried out in order to extract features to detect human posture in complex scenarios, and
commercial Wi-Fi devices were used to perform experiments that reached a detection rate of
approximately 90%. An indoor motion recognition and classification method was proposed
in [12] adopting a reference and a surveillance channel. Adaptive filtering was performed
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in order to eliminate the echoes from the surveillance signals. Then, a DL method was
used to classify the time series signal into a certain motion, achieving an accuracy rate of
approximately 70% in real-time operation. CSI was also considered in [13] to detect human
presence using an RF phase and magnitude information to train DL models. In [14], a study
was conducted on both passive and active RF sensing systems. Five different activities
were distinguished, as well as their location within three indoor environments. In [15], a
device-free system for fall detection was proposed, and CSI was exploited as the input
to identify the activities in three different indoor scenarios using devices equipped with
802.11n cards.

Our work is motivated by the opportunities offered by the existing Frequency-Modulated
(FM) radio broadcasting systems to detect indoor human motion through the analysis
of the FM signal received by multiple devices. More specifically, our focus is on the
development and testing of a passive RF testbed operating in FM radio bands, which
allows experimentation with innovative human posture classification techniques. The
contributions of this work include the following:

• The design of a testbed to perform passive RF sensing in FM radio bands. The testbed
is prepared to not only gather RF information to be used in an offline manner but also
to process the RF information in real time, allowing experimentation with innovative
classification techniques;

• The specification of human posture scenarios that were used to sample RF information
to be characterized in an offline manner to assist the development of the real-time
sensing methodology;

• A general assessment of the importance of the multiple features computed from the
received FM signals through the comparison of its score;

• A dynamic selection of the best features to adopt in the classification process according
to the features’ score of the data gathered during an initial calibration scheme;

• The assessment of three classification techniques showing that simple classification
schemes can easily achieve approximately 90% classification accuracy.

In our work, we are motivated by practical scenarios in which a person usually
performs a task seated in a chair, such as train conductors or ship captains. The identification
of these cases can support safety enforcement practices, as it is mandatory that some
operations performed by the person in command must be carried out in a seated position
and not in a standing position. The goal is to position the sensing system in front of a
chair to identify if a person is in the standing position, seated in the chair, or not in front of
the system. If nobody is identified in front of the sensing system, the state of the driving
system must be switched to a nonoperational status. Otherwise, the driving system can be
switched to an operational state, restricting the number of commands allowed when the
driver is in the standing position and eliminating all restricted commands when seated.
When compared with other systems, such as video recognition systems, the adoption of RF
sensing systems for safety enforcement purposes does not raise privacy issues and is the
main advantage of using it for the indicated purposes.

As far as we know, this is the first work focused on the design of passive RF systems
for human posture classification operating in FM radio bands. The next section introduces
the experimental setup. Section 3 describes the feature engineering methodology and
introduces the classification steps compared in the testbed. Section 4 presents the perfor-
mance results achieved with the classification methods run in the proposed testbed. Finally,
Section 5 concludes this paper.

2. Experimental Testbed

This section describes the passive RF sensing system, the methodology followed to
obtain the datasets, the scenarios to be classified, and the characterization of the datasets
generated and used in this work.
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2.1. RF Sensing System

The experimental setup used in this work consists of two similar Software-Defined
Radio (SDR) devices and two identical directional antennas, two Low-Noise Amplifiers
(LNAs), and computers to process the data. The SDR devices selected for this work were the
Nuand bladeRF 2.0 micro xA4 SDR boards that offer 2 × 2 Multiple-Input Multiple-Output
(MIMO) streaming, supporting the connection of 2 external receiving antennas (RX) and
2 external transmitting antennas (TX). The receiving RF chains of the SDRs are connected
to a bias-tee, the Nuand BT-200 wideband LNA, to boost the received signal. The bladeRF’s
complete specifications are presented in Table 1.

Table 1. RF Specifications of the Nuand bladeRF 2.0 micro xA4.

RF Specifications Min Value Max Unit

RF Frequency Range (RX) 70 - 6000 MHz

RF Frequency Range (TX) 47 - 6000 MHz

ADC/DAC Sample Rate 0.521 - 61.44 MS/s

ADC/DAC Resolution - 12 - bits

RF Bandwidth Filter <0.2 56 MHz

CW Output Power - +8 - dBm

In this work, the FM signal is broadcast by an outdoor commercial FM radio station,
and the testbed is mainly focused on the acquisition of the FM signals through two dif-
ferent RF chains implementing the reference and surveillance channels that substantiate
passive radar systems. The reference antenna is mainly aligned to receive the outdoor
FM signal, while the surveillance antenna focuses on the area where the classification
occurs. To minimize possible sample losses due to USB communication rate degradation,
we implemented each one of the two RX chains in a different SDR board. Consequently,
during the sample acquisition process, the two bladeRF boards need to be synchronized.
For this purpose, we used a synchronization cable, illustrated in Figure 1, which is used
for synchronizing multiple bladeRF devices in a multidevice setup. Synchronization is
crucial in applications where precise timing across multiple SDRs is necessary, such as
in distributed MIMO (Multiple-Input Multiple-Output) systems or other advanced radio
communication setups. The cable is used to connect specific synchronization ports on the
bladeRF devices, allowing them to share timing information and maintain synchronization.
This is important in scenarios where multiple devices need to operate together seamlessly,
exchanging data without timing discrepancies. In our work, we used a master clock signal
to synchronize the two Nuand bladeRF 2.0 micro xA4 boards.

Figure 1. Details of the two bladeRF 2.0 micro xA4 boards with their clocks connected.

This is performed by selecting the internal clock of one of the boards, say board 1, as
the master clock. The master clock signal is then transmitted through the synchronization
cable to board 2, which instead of using its internal clock will use the clock signal provided
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by board 1. Consequently, both boards use the same reference signal, and the samples
gathered by each board are then synchronized. The boards allow this kind of operation
by initially running a batch command that identifies which source clock is adopted by
each card, and subsequently, they run a synchronization procedure that identifies the
clock signal and regulates the synchronization parameters needed to successfully lock the
synchronization loop. We connected the two SDR’s clocks using the synchronization cable,
and we configured them accordingly. The port CLK_OUT from the device connected to the
reference antenna is connected to the port CLK_IN of the SDR connected to the surveillance
antenna, so the clock signal of the reference device serves as the master clock for both
SDR boards.

The schematic depicted in Figure 2 represents the passive RF sensing system from a
person’s perspective in which relevant measurements are also provided. A surveillance
antenna is pointing to the person whose posture we want to recognize (at a horizontal
distance of 78 cm), and the reference antenna is pointing to the outdoor FM transmitting
antenna. Additionally, the angle between the pointing direction of the reference antenna
and the surveillance antenna is 90 degrees, making them approximately orthogonal to each
other. We used two highly directional log-periodic antennas, the amateur radio design
model WA5VJB, and their features are presented in Table 2.

Figure 2. Schematic of the RF sensing system setup.

Table 2. Reference and surveillance antenna specification.

Feature Value

Type Periodic Log

Gain 6 dBi

Impedance 50 ohms

Frequency 850–6500 MHz

Dimensions 132 × 142 mm

Weight 33 g

2.2. Posture Classes

Aiming to work with realistic data acquired through the proposed testbed, we tested
different human postures to be recognized in two different laboratory rooms (main lab
and secondary lab). When collecting data from each laboratory, the setup layout and the
distances between the sensing devices, illustrated in Figure 2, were kept as consistent as
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possible. This way, despite changing the environment, other variables were kept constant.
The person whose posture we want to recognize performed three postures, described in
Table 3, which are labeled in different classes. Class 0 represents a human posture where
the person is standing in front of a chair and facing the surveillance antenna. In Class 1,
the person is sitting on a chair and facing the surveillance antenna as well. As depicted in
Figure 3, in the None class (Class 2) the person must be approximately 170 cm away from
the chair without moving. Class 2 roughly represents the case when no human is presented
in front of the RF system. Given the high directionality of the surveillance antenna, the
power of the signal reflected by a human 170 cm away from the chair is significantly lower,
as we experienced in the lab. For this purpose, we considered Class 2 to be representative
of the case when no human is in the room, although a lower power is sensed when the
human is effectively outside the room. This assumption was made to allow people to test
the prototype without leaving the room.

Table 3. Human posture description and labeling.

Class Posture Description

0 Standing in front of a chair

1 Sitting on a chair

2 None

Figure 3. Schematic of a person performing the posture labeled as Class 2—None.

2.3. Software

The synchronized SDRs connected to the reference and surveillance antennas are
controlled through software using the GNU Radio development toolkit. GNU Radio [16]
is a free and open-source software toolkit for studying, developing, and setting up SDR
systems. Given that GNU Radio provides great flexibility when building a Graphical
User Interface (GUI), this toolkit was chosen to program the SDR systems. We used the
GUI GNU Radio Companion (GRC) to create flowgraphs of code blocks. GRC allows
converting a flowgraph into a Python file, which can later be executed from the terminal.
The necessary packages that allow the use of GNU Radio applications were installed with
the aid of PyBOMBS [17].

We acquired the data by running a Python script that is generated from the respective
GRC flowgraph. A block diagram of the GRC flowgraph is illustrated in Figure 4. A
description of the parameters set for the RF sensing system’s offline data acquisition is
presented in Table 4.
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Figure 4. Block diagram of GNU Radio Companion flowgraph for offline data acquisition.

Table 4. Description of the RF sensing system parameters set for offline data acquisition and described
in the blocks in Figure 4.

Parameter Label Value (s)

A 4 MS/s

B 104.3 MHz

C 16, 18, 20, 35, and 55 dB

D 10 µs

E 16

F 2 dB

G 100 kHz

H 10 kHz

I Hamming

J 20, 30, 90, and 180 s

K reference_file_path

L surveillance_file_path

The first two blocks depicted in Figure 4 (Osmocom Source) are the source blocks
sampling the RF signal, which represent the two RX channels sampled by the two bladeRF
2.0 micro boards. For each one of the two sources, we tuned the center frequency to the
radio station’s broadcast frequency B (in Table 4), we set the sample rate to A, and we also
set the bias-tee gain to five different gains in C. The Analog-to-Digital Converter (ADC)
collects the In-phase and Quadrature component (I/Q) samples from each RX channel,
and these samples pass through the first two preprocessing blocks: the Skip Head and
the Remove DC Spike blocks. The first one skips the first D×A

E samples that come from
the source block, representing the number of samples corresponding to D = 10 µs of data
acquisition. This is an arbitrary value that was chosen to reflect some possible initial
configurations from each bladeRF. The second block removes the center frequency I/Q DC
spike with an Infinite Impulse Response (IIR) filter. In the next stage, the data are filtered
by a Low-Pass Filter block. This block filters the receiving data with a Hamming window
in order to select all frequencies lower than the defined cutoff frequency G and reject all
higher frequencies. We set the transition width between stop-band and pass-band to H,
the gain to F, and the decimation rate of the filter to E. This decimation rate redefines the
sample rate to A

E = 4MS/s
16 = 250 kS/s. The purpose of this filter is to allow us to only work

within the bandwidth of the baseband FM signal.
The Head block copies the first A

E×J samples to the output. Note that, at this point,
the sample rate is equal to 250 kS/s, and the Acquisition Period is the data acquisition time
in which we used different times in J to form the datasets. Given the Acquisition Period,
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denoted by J, A
E×J is equal to 5, 7.5, 22.5, and 45 MS, respectively, which represent the total

amount of collected samples from each bladeRF 2.0 micro to for the offline datasets.
The last block of the diagram in Figure 4, File Sink, was used to write the samples

stream to a binary file. The File Sink block generates binary files from the samples that
come from the previous block. The generated binary file is composed of 8-byte I/Q pairs,
meaning that the file is full of float32s in IQIQIQ order (i.e., 4 bytes for the real part of
the complex number and 4 bytes for the imaginary part). Therefore, two binary files are
generated, one for the reference antenna and another for the surveillance antenna, and their
size, in bytes, can be determined by the expression A

E × J× 4× 2.
The SDR implements the RF chain, the analog-to-digital conversion, and the digitaliza-

tion and serialization of the sampled data through the USB link. However, the GNU Radio
blocks described in Figure 4 and Table 4 run on the PC side, and only specific procedures
may be executed in the SDR’s Field-Programmable Gate Array (FPGA), depending on the
SDR’s firmware (e.g., Fast Fourier Transforms (FFT) and other signal processing procedures
that can run faster when computed in the SDR’s FPGA).

2.4. Datasets

Initially, we acquired smaller datasets (lasting 20 and 30 s). Table 5 depicts a descrip-
tion of 13 different datasets. For each table row, only one of the two files generated by the
antennas is described, since both files have equal sizes and formats. The first four datasets
only target two of the three classes. Then, the next nine datasets already take into considera-
tion all classes. We highlight that the last three datasets were also collected in the secondary
lab, and its name holds the “_2” suffix, not to be confused with the datasets obtained in
the same lab and with the same order of classes. Considering these smaller datasets, our
objective was to understand if there was any visual difference between each class and if
the order in which each class was collected by the system was relevant and influenced the
results. The first datasets were also used to characterize the quality of different features
computed from the data, and their performance was visually analyzed. To process and
analyze each dataset, we read back the complex values stored in the generated binary files
describing the complex samples acquired from the two antennas.

Table 5. Description of the 20 and 30 s datasets (main and secondary labs).

Dataset Day Bias-Tee
Gain

Acquisition
Period

Total
Samples File Size

mainLab_Class01 18/05 20 dB 20 s 5 MS 40 MB

mainLab_Class10 18/05 20 dB 20 s 5 MS 40 MB

mainLab_Class02 18/05 20 dB 20 s 5 MS 40 MB

mainLab_Class12 18/05 20 dB 20 s 5 MS 40 MB

mainLab_Class012 18/05 20 dB 30 s 7.5 MS 60 MB

mainLab_Class102 18/05 20 dB 30 s 7.5 MS 60 MB

mainLab_Class210 18/05 20 dB 30 s 7.5 MS 60 MB

secondaryLab_Class102 20/05 16 dB 30 s 7.5 MS 60 MB

secondaryLab_Class201 20/05 16 dB 30 s 7.5 MS 60 MB

secondaryLab_Class210 20/05 16 dB 30 s 7.5 MS 60 MB

secondaryLab_Class102_2 20/05 16 dB 30 s 7.5 MS 60 MB

secondaryLab_Class201_2 20/05 16 dB 30 s 7.5 MS 60 MB

secondaryLab_Class210_2 20/05 16 dB 30 s 7.5 MS 60 MB

The names of the datasets follow the structure depicted in Figure 5, where one of the
datasets described above is used as an example.
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Figure 5. Structure of the name of each dataset.

Given that we did not consider transitions between the sampling process of each
human posture, the data acquired between different postures need to be removed. Having
a continuous flow of data being collected, we consider that the posture transitions do not
last longer than 2 s and, consequently, we removed 2 s of signal at the beginning and at
the end of each posture’s period acquisition. Table 6 provides information about the time
division of each class for each dataset. Note that in this table, it is assumed that Class 0 is
the first posture to be sampled, followed by Class 1, and finishing with Class 2.

Table 6. Time division of each class for all datasets lasting 20 s and 30 s.

Acquisition
Period Class 0 Class 1 Class 2 Class

Duration Class Samples

20 s [2, 8] s [12, 18] s – 6 s 6× sample rate = 1.5 MS

30 s [2, 8] s [12, 18] s [22, 28] s 6 s 6× sample rate = 1.5 MS

After evaluating the smaller datasets, we acquired larger datasets lasting 90 and 180 s
to have more data to work with and, consequently, have more representative data to
analyze and make conclusions. Each dataset may be used to assess the real-time acquisition
and evaluate the classification of human postures in an offline manner. Table 7 depicts a
description of 30 different datasets. We collected the datasets on different days in order to
take into consideration variations in the sampled signal. We also tested different bias-tee
gains to analyze their impact.

Table 7. Description of second datasets (main lab) that last 90 s and 180 s.

Dataset Day Bias-Tee
Gain

Acquisition
Period

Total
Samples File Size

mainLab_Class012_1 03/06 20 dB 90 s 22.5 MS 180 MB

mainLab_Class012_2 03/06 20 dB 180 s 45 MS 360 MB

mainLab_Class012_3 06/06 18 dB 180 s 45 MS 360 MB

mainLab_Class012_4 06/06 18 dB 180 s 45 MS 360 MB

mainLab_Class012_5 07/06 18 dB 180 s 45 MS 360 MB

mainLab_Class012_6 07/06 18 dB 180 s 45 MS 360 MB

mainLab_Class012_7 13/06 18 dB 180 s 45 MS 360 MB

mainLab_Class012_8 13/06 18 dB 180 s 45 MS 360 MB

mainLab_Class012_9 13/06 18 dB 180 s 45 MS 360 MB

mainLab_Class012_10 13/06 18 dB 180 s 45 MS 360 MB

mainLab_Class012_11 15/06 18 dB 180 s 45 MS 360 MB
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Table 7. Cont.

Dataset Day Bias-Tee
Gain

Acquisition
Period

Total
Samples File Size

mainLab_Class012_12 01/07 18 dB 180 s 45 MS 360 MB

mainLab_Class012_13 01/07 20 dB 180 s 45 MS 360 MB

mainLab_Class012_14 01/07 35 dB 180 s 45 MS 360 MB

mainLab_Class012_15 01/07 35 dB 180 s 45 MS 360 MB

mainLab_Class012_16 13/07 18 dB 90 s 22.5 MS 180 MB

mainLab_Class012_17 13/07 55 dB 90 s 22.5 MS 180 MB

mainLab_Class012_18 13/07 18 dB 90 s 22.5 MS 180 MB

mainLab_Class012_19 13/07 55 dB 90 s 22.5 MS 180 MB

mainLab_Class012_20 18/07 55 dB 180 s 45 MS 360 MB

mainLab_Class012_21 19/07 55 dB 180 s 45 MS 360 MB

mainLab_Class012_22 19/07 35 dB 180 s 45 MS 360 MB

mainLab_Class012_23 25/07 35 dB 180 s 45 MS 360 MB

mainLab_Class012_24 25/07 35 dB 90 s 22.5 MS 180 MB

mainLab_Class012_25 26/07 35 dB 180 s 45 MS 360 MB

mainLab_Class012_26 26/07 55 dB 180 s 45 MS 360 MB

mainLab_Class012_27 28/07 35 dB 180 s 45 MS 360 MB

mainLab_Class012_28 28/07 55 dB 90 s 22.5 MS 180 MB

mainLab_Class012_29 29/07 55 dB 180 s 45 MS 360 MB

mainLab_Class012_30 29/07 35 dB 90 s 22.5 MS 180 MB

We applied the same data processing in order to read the complex values from all of
the datasets and, similarly, the transitions between postures were removed by applying the
time division described in Table 8.

Table 8. Time division of each class for the datasets lasting 90 s and 180 s.

Acquisition
Period Class 0 Class 1 Class 2 Class

Duration Class Samples

90 s [2, 28] s [32, 58] s [62, 88] s 26 s 26× sample rate = 6.5 MS

180 s [2, 58] s [62, 118] s [122, 178] s 56 s 56× sample rate = 14 MS

3. Feature Engineering and Classification

This section provides an initial solution to classify the human postures in the datasets.
Our goal is to evaluate the capacity of the testbed to support experimentation in human
posture recognition through a simple but effective classification methodology. We describe
the roadmap followed to create, combine, and select the features computed from the
acquired data that achieved the best performance for distinguishing the three classes of
human postures. The classification methods are also described.

3.1. Classification Process Overview

The solutions proposed in this work consider that the classification algorithms take
advantage of an initial stage of calibration, where the user is asked to pose according to each
posture class, and labeled data are acquired for learning purposes. In the methodology, the
datasets are split into calibration and test. The calibration data are used to extract knowl-
edge that is further used to classify the test data. The calibration data are used to compute
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a set of features (presented in Section 3.2) and to identify a subset of features that better
discriminate the calibration data. Note that different datasets, with different calibration
data, can produce different feature selections. We also propose labeling the calibration data
in order to follow a supervised learning approach in the classification process.

An overview of the classification process is presented in the block diagram depicted
in Figure 6, which summarizes the approach followed in this work. The top right dataset
block is constructed by merging the calibration data (green color) from each class into
the calibration portion and merging the test data (blue color) from each class into the test
portion while maintaining the order of each class. As depicted, the calibration data are
used to define which features should be computed and, in this way, the combination of the
selected features is dynamically chosen. Then, the information regarding the selection of
the features and the labeled data from the calibration portion are sent to the classification
algorithm to predict the data in the test portion.

Figure 6. Block diagram with the approach followed to achieve the feature selection and classifica-
tion goals.

The datasets lasting 90 s and 180 s are split into calibration and test portions. The
calibration portion has a total duration of 18 s, which represents 6 s of data (or 1.5 MS) for
each class. For a 90 s dataset, the test portion would have a total of 26× 3− 18 = 60 s of data
(15 MS), and for each 180 s dataset, the test portion would have a total of 56× 3− 18 = 150 s
of data (37.5 MS). Taking into consideration all the 90 s and 180 s datasets, different slices
of 6 s can be chosen for each class of the calibration portion. To avoid the feature selection
and classification steps being biased, different combinations of 6 s slices are considered for
each of the three classes. The process is described in Figure 7 for datasets lasting 90 s. The
Class 0 is divided into 4 slices of 6 s with 2 s remaining. The division is equal for every
other class when considering 90 s datasets. Consequently, 4 different calibration portions
are considered by randomly selecting one slice from each class until all the slices are used.
Each calibration portion and sequence of slices is presented in Table 9. To give an example
of how to read the information presented in Table 9 concerning the 90 s datasets, the first
calibration portion is composed of slice 1 of Class 0, slice 0 of Class 1, and slice 1 of Class 2.
It is also important to note that each calibration portion has a respective test portion, which
corresponds to the missing data from the dataset when the calibration portion is removed.

With regard to a 180 s dataset, the division of each class follows the same reasoning
depicted in Figure 7, where every class contains 9 slices of 6 s with 2 s remaining. For every
180 s dataset, 9 different calibration portions were considered by randomly selecting one
slice from each class until all slices were used. Each calibration portion and sequence of
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slices are presented in Table 9 as well. Table 9 exemplifies how information is used. For
datasets lasting 180 s, the first calibration portion is composed of slice 4 for Class 0, slice 8
for Class 1, and slice 2 for Class 2.

Figure 7. Time division of Class 0 into 6 s slices for a 90 s dataset.

Table 9. Description of the sequence of the slices of the calibration portions for datasets lasting 90 s
and 180 s.

90 s Datasets 180 s Datasets

Class 0 [1, 2, 3, 0] [4, 6, 5, 2, 0, 1, 7, 3, 8]

Class 1 [0, 1, 2, 3] [8, 0, 4, 6, 1, 7, 2, 5, 3]

Class 2 [1, 0, 2, 3] [2, 1, 4, 0, 7, 6, 5, 3, 8]

3.2. Feature Selection

To select the best features to represent the acquired data, we computed various features,
and their performance was first visually analyzed considering all collected datasets. From
the multiple features initially identified as hypothetical candidates, we selected 15 features
of interest. The selection of the features was based on a quantitative benchmark (variance
of the samples) to evaluate their capacity to discriminate the three classes in the datasets.

Let r be the matrix that contains the complex values collected by the reference antenna
and s the matrix that contains the complex values collected by the surveillance antenna.
Both r and s contain N columns and M rows, where N denotes the number of classes and
M represents the number of samples per class. Table 10 identifies the 15 features adopted in
the evaluation process. Note that when computing the Median Absolute Deviation (MAD),
the central point used is the median.

Table 10. Description of the 15 features adopted in this work (max denotes the maximum value, std
represents the standard deviation, and skew denotes the skewness). Note that r (for reference signal)
and s (for surveillance signal) are the matrices heretofore mentioned.

Feature Label Formula

Feature1 max (|r|)

Feature2 max (|s|)

Feature3 max (|r−s|)

Feature4 std (|r|)

Feature5 std (|s|)

Feature6 std (|r-s|)
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Table 10. Cont.

Feature Label Formula

Feature7 skew (|r|)

Feature8 skew (|s|)

Feature9 mean (|r|)

Feature10 mean (|s|)

Feature11 mean (|r-s|)

Feature12 MAD (|r|)

Feature13 MAD (|s|)

Feature14 std (Re(r))

Feature15 std (Re(s))

Given the sample rate of 250 kS/s adopted in all datasets, we computed each feature
for a sliding window of 25 kS. In each second of real-time acquisition, we were able to
compute 10 feature outputs, which allowed 10 posture prediction outputs when neglecting
the time required to compute each feature. The number of feature outputs for every dataset
is described in Table 11.

Table 11. Description of the number of feature outputs for all datasets.

Acquisition Period Class Samples Number of Feature Outputs

20 s 1.5 MS 1.5 M/25 k = 60

30 s 1.5 MS 1.5 M/25 k = 60

90 s 6.5 MS 6.5 M/25 k = 260

180 s 14 MS 14 M/25 k = 560

To decrease the overall computation time of the classification process, only 2 of the
15 features were dynamically selected and used in the classification algorithm. It is im-
portant to highlight that some features are strongly correlated with others (e.g., Feature1
and Feature9); thus, the selection of such features would not add much information. First,
we visually tested different combinations of two features with the datasets in Table 5 by
performing a scatter of the two chosen features for each class.

The next step regarding feature selection relies on the identification of the two features
that maximize the classification detection probability. In other words, the goal is to identify
the two features that provide better separation between the sample clusters of the different
classes. To evaluate the combinations of the features to be selected, we adopted the Analysis
of Variance (ANOVA) method [18] for the calibration data from the 90 s and 180 s datasets.
The ANOVA method is an efficient and simple feature selection technique that evaluates
features through the variance between and within classes. The features achieving the
highest F-statistic score can better discriminate the sampled data.

Taking into consideration the datasets lasting 90 s and 180 s, Tables 12 and 13 present
the mean, median, dissimilarity measure, and normalized variance of the 10 features
obtaining the highest F-statistic values. The mean represents the average performance of a
particular feature considering all datasets. The median, on the other hand, indicates the
overall performance while ignoring the effect of outliers. The dissimilarity is computed as
Mean−Median

Mean × 100 and represents the relative difference between the mean and the median
value of a particular feature. The normalized variance is computed as Variance−Min

Max−Min × 100,
where Max is the maximum variance value from all 15 features and Min is the minimum
variance value from all 15 features. The normalized variance indicates how distant the
F-statistic values are from the mean value.
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Table 12. Features containing the best ANOVA F-statistic values of all the datasets lasting 90 s
and 180 s.

Feature1 Feature2 Feature3 Feature5 Feature6
Mean 661.292 2004.454 1812.913 513.850 1385.641

Median 1017.336 1519.037 1817.084 1046.483 1522.639

Dissimilarity 35.806% 72.440% 43.524% 32.851% 71.780%

Normalized Variance 0.334% 6.766% 3.195% 1.207% 2.807%

Key:
Reference Surveillance Difference

Table 13. Features containing the best ANOVA F-statistic values of all the datasets lasting 90 s
and 180 s.

Feature9 Feature10 Feature11 Feature14 Feature15
Mean 1584.780 5511.812 3217.418 1558.439 5395.585

Median 1017.336 1519.037 1817.084 1046.483 1522.639

Dissimilarity 35.806% 72.440% 43.524% 32.851% 71.780%

Normalized Variance 8.391% 100.000% 16.777% 7.470% 90.987%

Key:
Reference Surveillance Difference

Each feature represented in Tables 12 and 13 is color-labeled, and each color identifies
which element was used to compute the feature. The blue color represents a feature
computed from data acquired from the reference antenna, the yellow color represents a
feature computed from data acquired from the surveillance antenna, and the orange color
represents a feature that was computed using the data that resulted from the difference
between the complex values acquired by the reference antenna (reference signal) and the
complex values acquired by the surveillance antenna (surveillance signal).

Regarding the reference signal, Feature1 and Feature5 are the two features containing
the lowest mean and median values. Comparing them, Feature5 exhibits lower mean and
median values and higher dissimilarity and normalized variance values. For this reason,
Feature1 is preferred. The features Feature9 and Feature14 are very similar in terms of their
performance, both having a higher mean and median value than Feature1. Nonetheless,
their dissimilarity and normalized variance values are significantly higher than Feature1.
Given that a robust and consistent system is desired, Feature1 is preferred as a discriminant
of the data obtained from the reference antenna.

Regarding the data obtained from the surveillance antenna, although Feature10 and
Feature15 are the features that contain the highest mean value of all features, they also have
the highest normalized variance values. Thus, Feature2 is preferred to describe the data
obtained from the surveillance antenna.

Lastly, considering the features computed from the difference between the reference
and surveillance data, Feature11 achieves the highest dissimilarity and normalized variance
values of the three candidate features, and hence, it is discarded. The features Feature3 and
Feature6 are very similar: Feature6 achieves a higher dissimilarity value and Feature3 has
a higher normalized variance. Feature6 is chosen as the preferred one because we consider
the variance as a more important metric in terms of measuring the overall performance of
the system.

The two features to be used in the real-time classification process, out of Feature1, Fea-
ture2, and Feature6, are dynamically selected from the ones achieving the best
ANOVA F-statistic.
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3.3. Classification Methods

Regarding the classification methodologies, we exploited three different classification
techniques:

• The sum of distances to all clusters’ points;
• Support Vector Machine (SVM);
• K-Nearest Neighbors (KNN).

In the first classification method, for each value pair obtained from the two selected
features, we compute the total distance as the sum of all distances between that input and
all points of the class cluster in the calibration dataset. Then, the method outputs the total
distances for all clusters, and the cluster achieving the smallest total distance is considered
as the predicted class. We used a total of 9 different distance metrics to compute this
method: city block (or Manhattan), Euclidean, standardized Euclidean, squared Euclidean,
cosine, Chebyshev (or infinite Lp norm), Canberra, Bray–Curtis, and Mahalanobis.

Regarding the SVM classification technique, we used three different kernel types in
the algorithm: linear, polynomial (3rd degree), and Radial Basis Function (RBF).

The KNN method is adopted using N = 1, 10, 20, 30, 40, 50, 60 number of neighbors
and, additionally, exploiting six distance metrics, namely city block, euclidean, cosine,
Chebyshev, Canberra, and Bray–Curtis. For each distance metric, we computed the KNN
for every different N.

For both the SVM and KNN classifiers, we used the Scikit-learn Python free software
ML library [19] to train and classify the data.

Considering the offline classification step, only the 180 s datasets were used. This
means that we used the data from 22 different datasets for this particular step. We per-
formed an offline classification in which each classifier was trained with the labeled data
received from the calibration data. The two selected features are computed for each 25 kS
sliding window of each test portion. After computing the two features, a 2D feature output
was constructed by placing the value of one feature on one axis and the value of the other
feature on the other axis, as shown in Figure 8.

4.2. FEATURES SELECTION

secondaryLab_Class201 and secondaryLab_Class210, as represented in Figs. 4.8 and 4.9,

respectively. Notice, once again, the order of the clusters is preserved and the range of

values is similar.

Figure 4.8: Scatter of the outputs of feature6 and feature2 (secondaryLab_Class201).

The next step regarding the features selection was understanding which combination

of two features would improve the system’s prediction performance. In other words, the

goal is to identify what are the two features that provide better separation between the

clusters of the di↵erent classes.

To evaluate the combinations of the features to be selected, the ANOVA method [47]

was applied to the all calibration portions of every 90 s and 180 s datasets. For each cali-

bration portion, the ANOVA F-statistic values were computed for all the 15 features. Con-

sidering one specific dataset and one specific feature, there will be N computed ANOVA

F-statistic values, where N is equal to the number of di↵erent calibration portions (for a

90 s dataset N = 4, and for a 180 s dataset N = 9). Consequently, the mean value of the N

F-statistic values was computed for every dataset and feature. Tables C.1 and C.2 contain

the F-statistic mean values for all datasets and features. Notice there are some features

that present a very reduced mean and median F-statistic value when compared with the

other features, which particularly holds for feature4, feature7, feature8, feature12, and

feature13. For this reason, these features were passed over and the selection of the best

features was reduced to 10 features.

Table 4.4 presents the mean, median, dissimilarity measure and normalised variance

of the F-statistic values of the 10 best features. The mean outputs the overall average

55

Figure 8. Classification results obtained with Feature6 and Feature2 (obtained with the secondary-
Lab_Class201 dataset).
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As described in Table 11, for a 180 s dataset, 560 feature outputs can be computed for
each class. However, since only the test portions of each dataset are considered for the
classification step, 560 − 60 = 500 feature outputs are computed for each class. Note that
the 500 feature outputs are used to obtain 500 system classifications. Sample averaging
was adopted, and 10 2D feature outputs were stored before feeding the classifier. This
means that the classifier was fed with the 2D median of the accumulated feature outputs.
Therefore, the total number of classifier predictions for each class can be summarized as
described in Table 14.

Table 14. Description of the number of classifier predictions for each test portion.

Number of Classifier Predictions

Class 0 500/10 = 50

Class 1 500/10 = 50

Class 2 500/10 = 50

Total 50 × 3 = 150

4. Performance Evaluation

In this section, we assess the classification techniques described in Section 3.3 with
the objective of detecting and classifying the three different human postures from the
computed features.

The 180 s datasets were used in the classification and, consequently, in the performance
evaluation results. Given that each dataset has nine different calibration portions (and the
corresponding test portions), the accuracy of each class is defined as the mean accuracy
considering all the calibration portions.

The expression mean accuracy of Class 0+mean accuracy of Class 1+mean accuracy of Class 2
3 was com-

puted to determine the accuracy of each classification method. KNN achieved the lowest
accuracy, 61.030%, using the KNN classifier with K = 1 neighbors and using the cosine
distance metric. On the other hand, SVM achieved the highest accuracy, 87.896%, with an
RBF kernel. Considering each class individually, the mean accuracy was 87.434% for Class
0, 82.212% for Class 1, and 94.040% for Class 2. Taking into consideration the presented
results, an SVM classifier with an RBF kernel was chosen for the classification tests.

The confusion matrix obtained with the SVM classifier with the RBF kernel was
computed considering the data from all the test portions of all 180 s datasets and is
represented in Table 15. The columns represent the class, and the rows represent the
predicted class. As such, the diagonal matrix entries represent the cases where each class
is correctly predicted. Computing the accuracy metric using the diagonal matrix entries
will result in 8656+8139+9310

(8656+1158+86)×3 × 100 = 87.896%, which matches the value exposed above
within the previous performance evaluation step. Note that the denominator operation
corresponds to the total number of predictions.

Table 15. Confusion matrix computed considering the data from all test portions of all 180 s datasets.

True

Class 0 Class 1 Class 2
Class 0 8656 1393 86
Class 1 1158 8139 504

Pr
ed

ic
te

d

Class 2 86 368 9310

Taking into consideration the confusion matrix, Table 16 presents the accuracy of the
classification testbed. Notice that Class 2 achieves the highest accuracy values, followed by
Class 0, and ending with Class 1. Taking into consideration the three classes, the system
achieves a mean precision of 87.933%, a mean recall of 87.895%, a mean specificity of
93.948%, and a mean F1-score of 87.908%
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Table 16. Accuracy of the performance evaluation metrics considering the data from the confusion
matrix for all classes.

Class Accuracy (%) Precision (%) Recall (%) Specificity (%) F1-Score (%)

Class 0 90.832 85.407 87.434 92.530 86.409

Class 1 88.475 83.043 82.212 91.606 82.625

Class 2 96.485 95.350 94.040 97.707 94.691

As it was mentioned before, two out of three features are dynamically selected for each
dataset. To evaluate the effectiveness of the selection of the features, we assess the frequency
of each combination of the selected features for all 180 s datasets, as presented in Table 17.
Although there is a combination of selected features with a significantly higher probability
(Feature6 and Feature2), the proposed solution adapts to the different conditions imposed
by the calibration data.

Table 17. Frequency of each combination of the selected features for all 180 s datasets.

Number of Datasets Percentage

Feature1 and Feature2 2 9.091%

Feature6 and Feature1 2 9.091%

Feature6 and Feature2 18 81.818%

Total 22 100%

5. Conclusions

The main goal of this work was to design a system capable of detecting and classifying
human postures based on passive RF sensing techniques. Firstly, an RF sensing solution
based on two SDRs was described. The RF sensing system was used to collect data and
generate datasets. These datasets were created taking into consideration three proposed
classification scenarios (human postures) to be detected, which were labeled as classes. A
features selection step was carried out applying an ANOVA feature selection algorithm.
Regarding the classification stage, three different classification techniques were used:
the sum of distances to all clusters’ points, SVM, and KNN. The SVM classifier with an
RBF kernel achieved the highest performance, reaching an overall classification accuracy
of 87.896%, a mean specificity of 93.948%, and a mean F1-score of 87.908%. The main
conclusion of this work relies on the capacity of the proposed testbed to passively recognize
human postures through FM radio bands, despite the simple classification algorithms
proposed in this initial study. Future work includes the investigation and identification of
different classification features and the evaluation of more adequate classification methods
leveraged by the recent advances in machine learning and deep learning.
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