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Abstract: Object detection is a crucial component of the perception system in autonomous driving.
However, the road scene presents a highly intricate environment where the visibility and characteris-
tics of traffic targets are susceptible to attenuation and loss due to various complex road scenarios
such as lighting conditions, weather conditions, time of day, background elements, and traffic density.
Nevertheless, the current object detection network must exhibit more learning capabilities when
detecting such targets. This also exacerbates the loss of features during the feature extraction and
fusion process, significantly compromising the network’s detection performance on traffic targets.
This paper presents a novel methodology by which to overcome the concerns above, namely HRYNet.
Firstly, a dual fusion gradual pyramid structure (DFGPN) is introduced, which employs a two-stage
gradient fusion strategy to enhance the generation of more comprehensive multi-scale high-level
semantic information, strengthen the interconnection between non-adjacent feature layers, and re-
duce the information gap that exists between them. HRYNet introduces an anti-interference feature
extraction module, the residual multi-head self-attention mechanism (RMA). RMA enhances the
target information by implementing a characteristic channel weighting policy, thereby reducing
background interference and improving the attention capability of the network. Finally, the detection
performance of HRYNet was evaluated by utilizing three datasets: the horizontally collected dataset
BDD1000K, the UAV high-altitude dataset Visdrone, and a custom dataset. Experimental results
demonstrate that HRYNet achieves a higher mAP_0.5 compared with YOLOvS8s on the three datasets,
with increases of 10.8%, 16.7%, and 5.5%, respectively. To optimize HRYNet for mobile devices, this
study presents Lightweight HRYNet (LHRYNet), which effectively reduces the number of model
parameters by 2 million. The results demonstrate that LHRYNet outperforms YOLOvS8s in terms of
mAP_0.5, with improvements of 6.7%, 10.9%, and 2.5% observed on the three datasets, respectively.
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1. Introduction

The 21st century represents a period characterized by swift and significant progress
in science and technology. Autonomous driving [1] embodies a holistic system that amal-
gamates state-of-the-art technology with the contemporary automotive industry. The
development of autonomous driving has considerable significance in the mitigation and
prevention of traffic accidents, the resolution of vehicle road safety issues, and the improve-
ment of individuals’ overall well-being. The autonomous driving system has three main
components [2]: environmental perception, route decision-making, and motion control.
Among these factors, environmental perception is crucial to the overall system, as it di-
rectly impacts the efficacy of route decision-making and motion control. The main goal of
environmental perception is to recognize and detect target objects effectively. Given the ad-
vancements in machine vision algorithms and the development of visible light equipment,
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an expanding array of companies are employing object detection as the primary approach
for perception systems.

Object detection is a crucial task for the perception systems of autonomous driving,
aiming to accurately identify and locate traffic objects from images or videos. The detection
of traffic objects faces a series of challenges [3]. Firstly, traffic scenes are highly complex,
and the influence of different weather conditions, lighting, and traffic situations leads to
the attenuation of surface features. Secondly, there is significant scale variation among
objects in traffic scenes, requiring algorithms to adapt to different scales. Finally, current
object detection networks rely heavily on convolution and pooling operations, exacerbating
the loss of feature information between layers. To address these issues, attention mech-
anisms reinforce the crucial information of targets through assigned weights, enhancing
the detection performance of algorithms. Multi-scale processing, by fusing features from
different scales, enables algorithms to adapt to targets of various sizes, thereby improving
the detection performance of the network.

Despite the effectiveness of feature fusion strategies and attention mechanisms when
enhancing network detection performance, there is still a need for them to adequately
address objects with weak feature information. The challenge lies in the diminished charac-
teristic information and the degradation of feature details during the transmission process,
leading to suboptimal performance in algorithmic detection, this study introduces the High
Robust YOLO network (HRYNet). First, to enhance the network’s anti-interference capabil-
ity in a highly disruptive environment, HRYNet introduces a novel residual multi-head
self-attention mechanism (RMA). The RMA approach mitigates background interference
and amplifies target information by employing feature weighting operations. Secondly, the
HRYNet introduces a double-fusion gradual pyramid (DFGPN)), significantly alleviating
the reduction and elimination of target feature information during the feature extraction
process, and thereby enhancing the detection performance of the network model in complex
background scenarios. The heatmap provides a visual representation of the algorithm’s
proficiency when understanding the location and features of the target. Figure 1 displays
the actual road scenes captured by the drone and the heatmap comparison between the
proposed algorithm HRYNet and the baseline algorithm YOLOvS8s. According to Figure 1,
it is evident that the proposed HRYNet algorithm in this paper demonstrates enhanced
feature learning capabilities, mainly when dealing with traffic targets characterized by
limited feature information.

(a) (b) (o)

Figure 1. Heatmap comparison. (a) A typical real traffic target scene selected from the Visdrone
dataset, including dense conditions during the day and fuzzy conditions at night. (b) Heat map of
the basic algorithm YOLOVSs. (c) Heatmap of HRYNet.
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2. Related Work
2.1. Object Detection Algorithms

Object detection algorithms can be classified into three primary categories according to
their underlying principles: those that depend on prior knowledge, machine learning, and
deep learning. Perception algorithms that rely on prior knowledge [4] generally consist of
two distinct stages: hypothesis generation (HG) and regions of interest (ROI) identification.
The HG step generates regions within an image likely to contain the target object. These
regions are referred to as ROIs. Hypothesis verification (HV) is a crucial stage in which the
algorithm assesses the validity of the regions of interest (ROIs) in terms of whether they
contain the target object. While these algorithms frequently demonstrate high accuracy in
detecting objects, their effectiveness is diminished in complex traffic scenarios due to their
heavy dependence on the intrinsic characteristics of the target objects.

Environmental perception algorithms that utilize machine learning techniques [5] can
be deconstructed into three fundamental stages: region selection, feature extraction, and
classification. In the first stage, sliding windows of different dimensions select potential
regions within the image. The second stage involves extracting pertinent features from the
selected regions. Finally, a classifier is utilized in the third stage to identify and classify the
extracted features. However, various diverse backgrounds encountered in real-world traffic
scenes pose significant challenges when designing a robust classifier. These challenges
directly affect the accuracy of classification. Additionally, the computational complexity of
this algorithm is high and inefficient, making it unsuitable for traffic scenarios that demand
high real-time performance and accuracy. Object detection algorithms, which rely on
deep learning techniques, can autonomously acquire and comprehend high-level semantic
characteristics of the target object by utilizing convolutional neural networks. Currently,
mainstream deep learning object detection algorithms can be classified into two categories:
single-stage and two-stage object detection algorithms. Among these, the category of two-
stage object detection algorithms is represented by region-based convolutional networks
(R-CNN) [6], fast R-CNN [7], and faster R-CNN [8]. These algorithms employ selective
search [9] technology to initially identify candidate regions of interest from the image. These
regions are then resized before being passed to the CNN for feature extraction. Finally,
the system performs classification and regression on the target. Despite the considerable
improvements in accuracy and speed compared with conventional algorithms, these two-
stage algorithms necessitate multiple iterations of detection and classification, resulting in
substantial computational and time demands. Consequently, the two-stage object detection
algorithm is unsuitable for object detection in autonomous driving scenarios. In 2015,
Joseph Redmon proposed the You Only Look Once (YOLO) [10] network, which introduced
the object detection algorithm into a single-stage study. This algorithm partitions the input
image into a grid of size S x S, enabling each grid cell to provide information about
the bounding box position and the confidence score of the target center within that cell.
YOLOv1 demonstrates the potential of single-stage detection, leading to a new era in
single-stage object detection. This advancement is primarily exemplified by the Single Shot
MultiBox Detector (SSD) [11], the YOLO series [12-16], and RetinaNet [17]. Additionally,
the introduction of feature pyramid networks (FPN) [18], attention mechanisms [19-25],
and other structures have further enhanced the detection performance of single-stage object
detection algorithms.

2.2. Traffic Object Detection Algorithms

There are challenges in autonomous driving object detection, including large-scale
variations and complex backgrounds. Numerous scholars have conducted research to
address these challenges. Zhou et al. [26] developed a multi-scale target detector incor-
porating global information aggregation based on coordinates. This approach enhances
the network’s ability to detect targets by combining local, global, and coordinate informa-
tion. Zhang et al. [27] proposed a feature extractor that, through the integration of high-
and low-resolution feature maps, generated a comprehensive semantic feature map. Cai
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et al. [28] introduced a novel feature fusion module that effectively combines the semantic
information from the lower layer with the positional information from the upper layer.
Shimin Xiong et al. [29] proposed YOLOvV3, incorporating spatial pyramid pooling and
adaptive spatial feature fusion. This is designed to tackle the notable scale difference
between the foreground of autonomous driving and nearby targets, thereby enhancing
detection effectiveness. Junfan Wang et al. [30] designed a multi-scale traffic object detector,
which assigns weights by information importance and fuses multi-dimensional attention
maps to improve feature extraction and information retention capabilities. Yuan Zhang
et al. [31]. designed an improved YOLOvV?7 algorithm, which uses the Res3Unit structure to
reorganize the YOLOV7 structure, improve the ability of the network model architecture to
obtain more nonlinear features, and solve the problem of the high missed detection rate
of vehicle detection. Yingkun Song et al. [32] proposed the MEB-YOLO algorithm, which
combines Mosaic and mixed data enhancement, ECA attention mechanism, bidirectional
feature pyramid network, and YOLO to solve the problem of the insufficient detection
performance of small traffic targets in complex scenes.

2.3. Attention Mechanism

The attention mechanism in deep learning is a behavior that emulates the attention
characteristics of human vision. It aims to select information most relevant to the cur-
rent task from a large amount of available information. Numerous exemplary attention
mechanisms have emerged with the advancement of research on attention mechanisms.
SENet [19], as a representative of the channel attention machine, enhances the network’s
feature representation capability by effectively capturing the significant inter-channel re-
lationships. Convolutional block attention modules (CBAM) [20] integrate channel and
spatial attention mechanisms to augment the capacity of convolutional neural networks
when focusing on significant image feature channels and feature spaces. Coordinate at-
tention (CA) [21] incorporates horizontal and vertical position information into channel
attention, enabling the network to attend to various targets selectively and thereby enhanc-
ing the network’s capability to learn features effectively. Self-Attention [22] is a technique
that improves the attention of a network model by assigning varying weights to global
information. Multi-head self-attention (MHSA) [23] utilizes multiple sets of attention
weights to perform self-attention transformation on the input feature matrix. This process
reduces reliance on external information and enhances internal correlation. The Efficient
Multi-Scale Attention Module (EMA) [24] algorithm combines the feature information
from two parallel branches by emphasizing dimension interaction. It effectively captures
the pairwise relationship between pixels and enhances the pixel-level attention for more
advanced feature information. Bi-level routing attention (BRA) [25] modules are used to
effectively eliminate predominantly unrelated key-value pairs within broad regions in
order to attain enhanced computational allocation and content awareness.

2.4. FPN

Multi-scale feature fusion is a crucial strategy in target detection. Combining shallow
texture information with deep semantic information enhances its ability to detect targets
of varying scales. A widely employed approach for multi-scale feature fusion involves
utilizing a feature pyramid network (FPN). FPN [18] facilitates the transmission of semantic
information from the upper layer to the lower layer via top-down fusion. However, it does
not incorporate the texture information from the lower layer to the upper layer. To address
this limitation, PAFPN [33] introduces a bottom-up path to the fusion of deep and shallow
information. FPT [34] accomplishes the objective of data enhancement by leveraging
the information’s low, medium, and high features, thereby enhancing the connectivity
between feature information across different scales. The Graph Feature Pyramid Network
(GraphFPN) [35] enables concurrent feature interaction across all scales. However, the
fusion technique heavily depends on graph neural networks, significantly increasing model
parameters and computational complexity. NASFPN [36] employs neural architecture
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search techniques to construct an optimal FPN structure. The Asymptotic Feature Pyramid
Network (AFPN) [37] is a novel approach that employs a progressive feature pyramid
structure. AFPN gradually generates low-, medium-, and high-level features during the top-
down feature extraction process in the backbone. This progressive fusion strategy effectively
brings information from adjacent feature layers closer together, thereby addressing the
issue of a significant gap in non-adjacent layer feature information.

3. Methods
3.1. Introduction to the Basic Modules
3.1.1. YOLOvS8

YOLOVS [38] is an enhanced iteration derived from the YOLOVS5 version developed
by the Ultralytics open-source project, officially launched on 10 January 2023. YOLOvS
demonstrates versatility as a model that effectively addresses detection, classification,
and segmentation tasks. The architectural composition is depicted in Figure 2 [38]. It is
structured into three main components: the backbone, neck, and head. The backbone
component functions as the layer for feature extraction, playing a crucial role in extracting
target features of different scales through a top-down pathway. The neck segment is a
feature fusion layer, employing the PAFPN strategy to integrate features from various
scales. The head section consists of three detect modules designed to detect targets at
different scales.
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YOLOVS, similar to YOLOVS5, can be classified into five models (N, S, M, L, X) with
different scaling factors, making them suitable for various application scenarios. It replaces
YOLOVS’s C3 structure with a more gradient-flow-rich C2f structure, incorporating the
widely adopted decoupled head structure [39] and the anchor-free strategy. Furthermore,
YOLOVS utilizes the task-aligned assigner’s positive and negative sample matching ap-
proach, departing from the previous methods of IOU matching or one-sided proportional
allocation. In object detection for autonomous driving, the importance of detection perfor-
mance and speed is equally emphasized. This study utilizes the lightweight YOLOvS8s as
the fundamental model for conducting experiments to achieve equilibrium.
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3.1.2. GSConv

GSCONYV [40] achieves a harmonious equilibrium between model accuracy and com-
putational efficiency. The purple region in Figure 3 illustrates its composition of deep
separable convolution (DSC), standard convolution (SC), and the shuffle operation [41].
The shuffle operation facilitates the exchange of feature information across different chan-
nels, thereby effectively integrating the output information of DSC into SC. This approach
effectively preserves the inherent advantages of DSC in terms of rapid operation speed.
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Figure 3. RMA network structure.

3.1.3. MHSA

At its core, self-attention involves computing a weighted context vector to represent
input sequence information. However, this process tends to overly concentrate attention
on internal positions, resulting in a somewhat constrained semantic representation. Multi-
head self-attention (MHSA) effectively mitigates this limitation. In contrast to traditional
self-attention, MHSA empowers the model to concurrently focus on multiple critical re-
gions, enriching the acquired semantic features. Furthermore, MHSA provides the model
with diverse representation subspaces, fostering a more nuanced feature expression, as
illustrated in the light blue region in Figure 3. MHSA employs distinct attention weights
(W) for linear query, key, and value transformations. These transformed results are par-
allelly computed using self-attention mechanisms, and the ensuing sets are concatenated.
Ultimately, the concatenated results undergo linear transformation with W? to yield the
final output.
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3.2. RMA

The RMA framework is designed to address the problems of gradient vanishing and
explosion by providing a structured residual structure. Integrating GSCONV’s exceptional
feature extraction capability with MHSA'’s outstanding attention capacity leads to a robust
detection performance, even in complex scenes. As illustrated in Figure 3, the structure
of the RMA consists of two distinct branches. The upper branch first performs GSConv
feature extraction, then strengthens the feature layer target information through MHSA.
The lower branch performs the GSConv operation only once, to avoid losing target features
due to excessive convolution. Finally, the feature maps of the two branches are combined
by the concat operation. The GSConvs implemented within the RMA framework exhibit a
stride length of 1. This design enhances the module’s capacity to learn local detail features,
thereby improving the network’s ability to detect small targets and traffic targets whose
feature information is weak. Additionally, it addresses the issue of detection for large-range
targets. The MHSA used in this paper has four heads, which provide notable benefits in
two critical areas. Firstly, it achieves a harmonious equilibrium between detection accuracy
and speed. Secondly, it avoids the issue of inadequate attention capacity resulting from
a limited number of self-attention layers and the problem of excessive degradation of
feature information caused by an excessive number of layers. In the domain of autonomous
driving, where intricate backgrounds introduce diverse interferences to targets, network
models require exceptional feature extraction capabilities and feature attention capabilities
to address background interference effectively. RMA embodies a successful integration
of these two capabilities and has undergone thorough validation through experimental
studies. These experiments have showcased its exceptional detection performance in
intricate background inspection tasks.

3.3. YOLOv8s—FAPN

Undoubtedly, the YOLO series has been successfully applied in various scenarios.
In the domain of autonomous driving, feature information traffic targets are frequently
obscured due to the intricate nature of the surrounding environment. As the network
deepens, there is a risk of losing or weakening the feature information of these targets.

YOLOvSs utilizes the Path Aggregation Network (PANet) to integrate shallow texture
information with deep semantics, leading to notable enhancements in network perfor-
mance. However, the top-down feature extraction process and bottom-up feature fusion
process of YOLOvVS8s accelerate the feature attenuation of traffic targets with weak feature
information. AFPN, which employs a progressive fusion strategy, aims to tackle the issue
of feature attenuation. As illustrated in the yellowish region of Figure 4, the top-down
feature extraction process in the backbone involves the progressive generation of low-level,
medium-level, and high-level features through AFPN. This process effectively minimizes
the disparity in feature information between non-adjacent layers, thereby mitigating the
substantial loss of information between these layers.

Consequently, this paper presents a new network architecture called YOLOv8s-AFPN,
which combines the backbone region of YOLOv8s with AFPN. This combination is il-
lustrated in Figure 4. The arrow box symbolizes an adaptive spatial fusion operation.
The utilization of ASFF, which involves the weighting of feature maps at various levels,
guarantees the successful fusion of feature maps across different levels. Experiments have
shown that YOLOv8s—AFPN performs better in object detection tasks involving complex
road scenarios.
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Figure 4. YOLOv8s—-AFPN network structure.

3.4. YOLOv8s—DFGPN

AFPN addresses the issue of non-adjacent layer feature information loss by the con-
nection of non-adjacent layers. However, this approach also introduces a notable challenge.
The recurrent interconnection among various layers imposes constraints on the feature
extraction capabilities of individual network layers. In short, AFPN improves the attenu-
ation phenomenon of low, medium, and high feature information by limiting the ability
of the feature extraction layer. To tackle this challenge, the present study introduces a
pioneering feature fusion strategy known as DFGPN, built upon the foundation of AFPN.
The architectural design of the DFGPN is depicted within the delineated yellow region
in Figure 5. The underlying principle of DFGPN entails the incorporation of a feature
fusion region into the AFPN head. The fusion process involves integrating the foundational
semantic information generated by the backbone model with the feature layers at different
levels (low, medium, and high) within the backbone region. An integral element of this
methodology involves relinquishing the intermediate scale, instead choosing to employ
upsampling and fusion techniques to preserve the fundamental semantic characteristics
of the final output derived from the backbone. After the concatenation operation, the
resulting feature layer incorporates comprehensive information from various target scales
and the underlying semantic information, enhancing its effectiveness in target detection
tasks. The underlying semantic and shallow features are integrated during the fusion
process, generating more robust and multi-scale semantic information. Compared with
the AFPN, The DFGPN guarantees the tight integration of each non-adjacent layer and
mitigates the information gap between these layers. Additionally, DEGPN addresses the
limitation of feature extraction in the gradual process.

Simultaneously, the final output results of each scale are influenced by the fusion
region of the head. These results encompass the semantic information from the low,
medium, and high feature layers of the backbone after the gradual process and incorporate
the robust semantic information derived from the underlying semantic information output
by the backbone after the gradual fusion process. The DEGPN has demonstrated significant
advancements in autonomous driving target detection.
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3.5. HRY Net

The architecture of HRYNet and its constituent modules is illustrated in Figure 5,
delineated into three distinct regions: the feature extraction region (backbone), the DFGPN,
and the detection head (head). The backbone region comprises ten feature extraction
layers arranged in a top-to-bottom configuration, which include conv, C2f, Sppf, and
RMA. Notably, the C2F module is a novel feature extraction component introduced in
YOLOVS. It is designed to provide a more lightweight model while offering enhanced
gradient information compared with the C3 structure found in YOLOVS. Spatial pyramid
pooling (SPPF) enhances the model’s detection capability for objects with varying sizes
by pooling and merging feature maps from different receptive fields. This technique is
applied to the backbone layer and employs a double fusion strategy, allowing its functions
and advantages to be utilized across the entire network. RMA demonstrates exceptional
performance in feature learning and attention, as it is strategically positioned on the ninth
layer of the backbone for several compelling reasons. Firstly, this placement prevents the
degradation of RMA’s attention capacity caused by excessive convolution and pooling
operations. Secondly, it maximizes RMA’s influence on the entire network, enhancing its
effectiveness. Lastly, the number of parameters in RMA is influenced by the image scale,
and locating it in layer nine results in a more lightweight network model. DFGPN utilizes a
double-fusion strategy, where the head fusion process gradually combines the final output
of the backbone with feature information from layers 6, 4, and 2 sequentially. This approach
enhances the network’s ability to detect targets of varying scales and preserves the complete
feature information extracted from each feature layer. The head module consists of four
detection heads, each designed to detect targets at different resolutions: 4 x 4, 8 x 8,
16 x 16, and 32 x 32. This allows for the detection of a wide range of traffic target sizes in
traffic road scenes.

4. Experiments
4.1. Introduction to Datasets

In order to assess the efficacy of HRYNet in the domain of autonomous driving traffic
target detection, this study utilizes the BDD100K dataset [42], an open-source dataset for
horizontal acquisition; the Visdrone dataset [43], which consists of high-altitude UAV
acquisitions; and a custom dataset to evaluate the model’s performance.
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The BDD100K dataset, released by the University of California in 2018, is considered
the most comprehensive, diverse, and abundant open-source dataset currently available.
Consisting of a comprehensive dataset of 100,000 images, this collection encompasses vari-
ous temporal variations, weather conditions, and urban backgrounds. As a result, it serves
as an optimal choice for the evaluation of the detection performance of HRYNet. Con-
sidering computational limitations, this study utilizes a reduced version of the BDD100K
dataset, which consists of 10,000 images.

The allocation of these images into training, validation, and test sets follows a ratio of
7:2:1. Categories characterized by a limited number of samples are excluded to mitigate
potential performance issues with the algorithm caused by inadequate data. The dataset
has been categorized into six distinct groups: traffic lights, traffic signs, cars, trucks, people,
and riders. Figure 6 presents a visual representation of the image information about traffic
targets in intricate road scenarios, effectively demonstrating how the complexity of roads
hinders and reduces the distinctive information of these traffic targets.
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In this experimental study, the performance and speed of the network are evaluated
using two primary metrics: mean average precision (mAP) and frames per second (FPS).
The mAP metric provides an average precision value that encompasses all categories. The
computation is derived from the precision—recall (°P-R) curve, where the x-axis represents
recall and the y-axis represents precision. Recall refers to the likelihood of correctly classify-
ing a sample as positive when it is a positive sample. Precision is a measure that indicates
the probability of correctly identifying a sample as positive out of all the samples that were
predicted as positive. The calculations for precision and recall can be determined using the
following formulas:

TP
L 1
Precision TP L EP 1)
TP
Recall = —— 2
“CTTPYEN @)

where TP represents how many samples were correctly predicted to be positive, FP repre-
sents how many samples were incorrectly predicted to be positive, and FN represents how
many samples were incorrectly predicted to be negative.

4.3. Experimental Environment and Parameter Configuration

The environment used in this experiment was as follows: Windows 10 operating
system, RTX3090 graphics card, CUDA (11.6), and Pytorch (1.12). The parameters used in
the experiment were as follows: Lr0 = 0.01, Lrf = 0.2, Momentum = 0.937, Batchsize = 16,
Epoch = 200.

4.4. Methods of Performance Verification

Six sets of experiments were conducted using the BDD100K dataset to assess the
effectiveness of each method. The experimental data are displayed in Table 1. The models
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consist of the baseline algorithms, namely YOLOv3s, YOLOv5s, YOLOv6s, YOLOV7s,
and YOLOVv8s, as well as the models that have been enhanced by integrating three im-
proved methods, namely AFPN, RMA, and DFGPN, into the networks above. Several
observations can be made based on the data presented in the table. Firstly, it is evident
that HRYNet exhibits the highest level of detection performance compared with the other
models. Compared with YOLOvVSs, the proposed model demonstrated a significant per-
formance improvement. Specifically, it achieved a 10.8% increase in mAP_0.5 and a 6%
increase in mAP_0.5:0.95. Additionally, in the experiments conducted by group 5, the RMA
model exhibited a faster detection speed of 9 /s compared with YOLOvSs.

Table 1. Performance verification of the methods.

Ordinal Models P R mAP_0.5 mAP_0.5:0.95 FPS
YOLOv3s 0.637 0.451 0.492 0.255 -
1 YOLOv3s-AFPN 0.585 0.472 0.505 0.260 -
YOLOv3s-RMA 0.617 0.473 0.501 0.260 -
YOLOv3s-AFPN-RMA 0.590 0.470 0.506 0.258 -
YOLOvV5s 0.630 0.460 0.491 0.244 -
5 YOLOv5s-AFPN 0.609 0.506 0.506 0.255 -
YOLOv5s-RMA 0.649 0.480 0.492 0.246 -
YOLOvV5s—-AFPN-RMA 0.268 0.468 0.514 0.265 -
YOLOv6s 0.592 0.452 0.477 0.248 -
3 YOLOv6s-AFPN 0.608 0.448 0.475 0.245 -
YOLOv6s-RMA 0.592 0.447 0.476 0.246 -
YOLOv6s—AFPN-RMA 0.601 0.450 0475 0.450 -
4 YOLOvV7s 0.671 0.493 0.540 0.258 -
YOLOv7s-RMA 0.633 0.527 0.552 0.266 -
YOLOvV8s 0.650 0.440 0.496 0.254 60/s
5 YOLOv8s—AFPN 0.611 0.480 0.513 0.262 32/s
YOLOvV8s-RMA 0.620 0.460 0.494 0.250 69/s
YOLOv8s—AFPN-RMA 0.630 0.480 0.529 0.274 32/s
6 YOLOv8s-DFGPN 0.680 0.550 0.594 0.300 19/s
HRYNet 0.700 0.540 0.604 0.314 20/s

Furthermore, through a comprehensive analysis of multiple sets of experimental
data, it is evident that incorporating RMA into both the original baseline and improved
algorithms consistently enhances the model’s detection performance. This statement
highlights the verification of RMA'’s generalization ability and emphasizes its practicality
in complex backgrounds. Additionally, a comparison between the results of experiments
conducted in group 5 and group 6 reveals that HRYNet substantially improves performance
indicators, particularly in terms of recall rate (R), when compared with YOLOv8s. The
observed increase in recall rate indicates that the implementation of HRYNet significantly
improves the capability to identify traffic targets even when provided with limited feature
information in complex backgrounds.

4.5. BDD100K Comparative Experiments across Categories

To enhance the credibility of the model’s performance, this paper lists the experimental
results of different categories in different models, as illustrated in Table 2. Significant
improvements are observed in each category, particularly in the traffic light, traffic sign, and
rider categories, which show increases in mAP_0.5 of 14.4%, 13.4%, and 13.2%, respectively.
It is worth noting that these three categories have relatively smaller sizes, and that their
characteristic information is more prone to loss. This experiment provides further evidence
that HRYNet demonstrates exceptional performance when detecting traffic targets with
limited and less conspicuous features.
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Table 2. BDD100K—the detection results for each category.
Models Traffic Light  Traffic Sign Car Truck Person Rider mAP_0.5
YOLOVSs [38] 0.462 0.530 0.739 0.476 0.503 0.267 0.496
HRYNet (ours) 0.606 0.664 0.799 0.554 0.602 0.399 0.604

4.6. Example of Heatmap Visualization

In deep learning object detection, heat maps help to understand which part of an
image determine the final classification decision on the output of the model, and they
are also a visual display of the performance of the network model detection. The visual
representation of the network model’s detection performance is an additional function of
the heatmap. To evaluate the feasibility of DFGPN and RMA individually, a selection of
representative samples from both daytime and nighttime scenarios were chosen for heat
map analysis. As depicted in Figure 7, it is evident that the feature information of the traffic
target is significantly obscured in the densely illuminated and strongly lit environment.

Figure 7. Heat maps for different networks. (a) Original image. (b) YOLOvS8s heat map. (c¢) YOLOv8s—
DFGPN heat map. (d) HRYNet heat map.

The heat map generated by YOLOvS8s exhibits limited range and coverage. Conse-
quently, YOLOv8s demonstrates a diminished capacity for feature extraction and attention
when confronted with this particular type of target object. The heat map generated by
YOLOv8s-DFGPN shows moderate coverage and moderate divergence. It can be inferred
that DFGPN mitigates the issue of feature weakening, thereby enhancing the network
model’s ability to extract features from the target. The heat map generated by HRYNet
demonstrates the presence of high coverage and concentration, thereby confirming the
exceptional feature extraction and attention capabilities of HRYNet. Consequently, HRYNet
proves to be more applicable in intricate traffic scenarios.

4.7. Comparative Experiment of Detection Effect

To evaluate the feasibility of utilizing DFGPN and RMA in intricate road environments,
authentic images captured from diverse, complex roads were chosen to validate the model’s
actual detection capabilities, as depicted in Figure 8. A comparison between YOLOv8s
and YOLOv8S-DFGPN shows that the latter exhibits greater confidence when detecting
identical target objects. Compared with the previous two methods, HRYNet performs
better when detecting the same target, exhibiting higher confidence levels. Additionally,
HRYNet effectively reduces the missed detection rate and false detection rate. The empirical
findings of the detection results provide evidence for the practicality of HRYNet in the
automatic driving target detection domain. The proposed method exhibits high robustness
when confronted with intricate background interference, making it suitable for various
road scenes.
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(a) (b) (c)

Figure 8. BDD100K actual detection effect on the dataset. The red arrow and border in the figure are

post-processing, which aims at a quick and intuitive reading contrast effect. (a) Detection effect of
the original algorithm YOLOVSs. (b) Detection effect of YOLOv8s-DFGPN. (c) Detection effect of
HRYNet.

4.8. Ablation Experiments

In this study, the control variable method is employed to conduct ablation experiments
on the BDD100K datasets. The objective is to analyze the impact of various innovation
points on the algorithm’s performance. The results are presented in Table 3, below, with the
symbol “/” denoting the utilization of the module optimization method and “ x” indicating
the absence of module optimization. When comparing experiment 0 and experiment 4, it is
evident that the performance indices of the original algorithm YOLOvVS have significantly
improved. Specifically, there is a 3% increase in precision (P), an 11% increase in recall (R),
a 9.8% increase in mAP_0.5, and a 4.6% increase in mAP_0.5:0.95. These data demonstrate
that the utilization of the DFGPN dual fusion strategy effectively enhances the feature
aggregation capability of the network model and addresses the issues of the inadequate
feature learning ability and feature information attenuation in the original algorithm.
Consequently, it significantly enhances the accuracy and recall rate of the network.

Table 3. Ablation experiments.

Original AFPN DFGPN RMA P R mAP_0.5 mAP_0.5:0.95
0 X X X 0.65 0.44 0.496 0.254
1 Vv X X 0.611 0.48 0.513 0.262
2 X vV X 0.68 0.55 0.594 0.30
3 X X v 0.62 0.46 0.494 0.25
4 Vv X v 0.63 0.48 0.529 0.274
5 X Vv v 0.70 0.54 0.604 0.314

When comparing experiments 0, 3, and 5, it becomes evident that the PANet strategy
of the original algorithm did not yield satisfactory results for RMA. However, when com-
bined with the DFGPN strategy, the anti-interference capability of RMA was effectively
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demonstrated across different network areas. As a result, the algorithm’s performance was
significantly enhanced, with a 5% increase in P, a 10% increase in R, and a 6% increase
in mAP_0.5 and mAP_0.5:0.95. The data analysis indicates that, while YOLOv8s demon-
strates satisfactory detection capabilities, its performance is constrained in intricate traffic
scenarios, resulting in a significant number of missed and erroneous detections. HRYNet
exhibits robust feature extraction capabilities and strong resistance to interference, making
it particularly suitable for target detection in autonomous driving.

4.9. Experimental Comparison of Improvements in Different Attention Mechanisms

In order to independently validate the suitability of MHSA for autonomous driving
target detection in the RMA module, this study replaces MHSA with various attention
mechanisms currently considered superior. In order to exclude the interference caused by
DFGPN, the module is positioned in the ninth layer of the YOLOv8s-AFPN feature extrac-
tion area following replacement. The training outcomes of each residual attention module
on the BDD100K dataset are presented in Table 4. Experimental findings demonstrate that
using RMA yields superior performance in intricate traffic scenarios. Note: the subscript
on the right denotes the origin of this attention mechanism.

Table 4. Experimental comparison of different attention mechanisms.

Attention P R mAP_0.5 mAP_0.5:0.95
R-EMA (cypr2023) 0.60 0473 0.512 0.257
R-TA (cypra020) 0.62 0.490 0.522 0.269
R-CA (cypr2021) 0.63 0.482 0.523 0.269
R-ECA (cypr2020) 0.635 0.484 0.521 0.269
R-BRA (cvpr2023) 0.63 0.485 0.523 0.271
R-5GE (cypr2020) 0.61 0.483 0.521 0.27
R-MHSA (RMA) 0.650 0.487 0.529 0.274

4.10. Experimental Results on the VisDrone Dataset

To enhance the evaluation of the model’s capabilities and minimize the potential
influence of dataset bias, this study utilized the VisDrone dataset for conducting tests and
training on both YOLOv8s and HRYNet. The VisDrone dataset, acquired by the ALSKYEYE
team at Tianjin University through a drone camera, is renowned for its extensive coverage,
varied collection environments, and restricted target features. The utilization of HRYNet
for assessing the generalization capabilities is an optimal choice. The detection results of
both models on the VisDrone dataset are depicted in Figure 9. To facilitate comparison,
a red border has been added to the figure. YOLOVS8s exhibits significant challenges in
terms of both detection and missed detection. In contrast, the HRYNet model demonstrates
higher confidence in each target frame, effectively addressing the challenges of detecting
small targets and targets with weaker feature information. The experiments confirm that
the dual-feature fusion strategy and RMA anti-interference module of HRYNet are more
suitable for meeting the requirements of traffic target detection.
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Figure 9. VisDrone actual detection effect on the dataset. The red borders in the figure are post-
processing, which aims at a quick and intuitive reading contrast effect. (a) Detection effect of the
original algorithm YOLOVSs. (b) Detection effect of HRYNet.

4.11. Loss Curves Comparison Experiment

The loss function plays a pivotal role in evaluating the efficacy of a model’s learning
process, as it quantifies the discrepancy between the predicted values and the actual
values. The loss value in YOLOVS is calculated as a weighted sum of the classification
loss, localization loss, and confidence loss. The loss curves for both algorithms on the two
datasets are illustrated in Figure 10, where the x-axis denotes the number of iterations,
and the y-axis represents the cumulative loss value. The loss value for both algorithms
experienced a substantial decrease during the initial training phases on various datasets.
During the training process, it was observed that HRYNet initially had a slightly higher
loss compared with YOLOvS8s. However, as the training progressed, the loss value for
HRYNet gradually surpassed that of YOLOVSs, indicating better performance in the middle
and later stages. This observation suggests that HRYNet demonstrates a better learning
capability.

12 12
— Yolov8s — Yolov8s
10 —— HRYNet 10 — HRYNet
©n
§ 8 &8
A —
6 6
4 4
2 . 2
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
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Figure 10. VisDrone actual detection effect on the dataset. (a) Loss curve of the BDD100K. (b) Loss
curve of the VisDrone.
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4.12. Comparative Experiments of Multiple Advanced Models

As the present study utilizes the lightweight BDD100K dataset, comparing the experi-
mental results with the advanced network architectures will not be meaningful. Thus, this
paper utilizes the experimental results of HRYNet on the Visdrone dataset to conduct a com-
parative analysis with other advanced models trained on Visdrone in the same experimental
setting. The findings are succinctly presented in the table provided below. According to
the findings presented in Table 5, the HRYNet model exhibits superior detection perfor-
mance compared with the advanced network. Notably, the HRYNet model outperforms
the CGMDet network, currently recognized for its exceptional detection performance, by a
margin of 4.8 points.

Table 5. Model comparison results.

Models mAP_0.5 mAP_0.5:0.95
RetinaNet [17] 35.9 194
Cascade R-CNN [44] 39.9 23.2
Faster R-CNN [8] 40.0 20.6
YOLOvV3 [13] 314 16.4
YOLOvVX [39] 45.0 26.7
YOLOVS5I [45] 36.2 20.5
HawkNet [46] 443 25.6
Queryder [47] 48.1 28.3
Edge YOLO [48] 44.8 26.2

NWD [49] 40.3 --

ClusDet [50] 50.6 26.7
DMNet [51] 47.6 28.2
CEASC [52] 50.7 28.7
CDMNET [53] 49.5 29.2
YOLOV7 [16] 49.0 28.1
YOLOVS [38] 39.0 23.0
CGMDet [26] 50.9 29.3
HRYNet (ours) 55.7 35.0

4.13. Lightweight Experiments

Increasing the number of channels in a model can result in a substantial increase in pa-
rameters and computational complexity. To validate the rationality of the HRYNet structure
and eliminate the potential influence of increased parameters on the improvement in detec-
tion accuracy, this study adjusted the hyperparameter “width_multiple” (control model
width) from 0.50 to 0.15. This adjustment resulted in the creation of the LHRYNet. The find-
ings are presented in Table 6. Compared with the YOLOv8s model, the LHRYNet model
demonstrates a reduction of approximately 2 million parameters. Despite this reduction,
the LHRYNet model significantly improved mAP_0.5, with an increase of 6.7% and 10.9%
on the two datasets, respectively. Even when compared with various algorithm models on
the experimental platform of this study, the lightweight HRYNet consistently demonstrates
superior detection accuracy while maintaining real-time detection capabilities.

Table 6. Experimental results of lightweight models on two datasets.

Dataset Model mAP_0.5 mAP_0.5:0.95 Params (M) FPS (S)
YOLOvS8s [38] 0.496 0.254 11.1 60
BDD100K HRYNet (ours) 0.604 0.314 80.2 20
LHRYNet (ours) 0.563 0.29 9.3 33
YOLOvS8s [38] 0.390 0.23 11.2 53
Visdrone HRYNet [ours] 0.557 0.350 80.2 19

LHRYNet [ours] 0.499 0.311 9.4 30




Sensors 2024, 24, 642

17 of 20

4.14. Comparison of Training Results on Custom Datasets

The training results on a custom dataset are further analyzed and validated in this
article to assess the detection performance of the proposed algorithm. The custom dataset
comprises 8940 images with 11 different categories, providing a diverse and rich collection
of images for algorithm performance verification. Figure 11 illustrates the testing results
of three algorithms on the custom dataset: YOLOS8s, HRYNet, and LHRYNet. The upper
part displays the precision-recall (P-R) curves for each category. In contrast, the lower part
shows the average precision (AP) values for individual categories and the mean average
precision (mAP) across all categories. A comparison between (a) and (b) reveals that
HRYNet improves AP_0.5 for various categories, leading to a 5.5% increase in mAP_0.5.
Comparing (a) with (c), LHRYNet demonstrates improvements for all categories except for
“truck”. The mAP@Q.5 has increased by 2.5%. The data presented in this figure indicate

a significant enhancement in detection performance compared with YOLOvSs for the
proposed algorithm.
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Figure 11. Comparison of experimental results with a customized dataset. (a) YOLOv8s experimental
results. (b) HRYNet experimental results. (c) LHRYNet experimental results.

4.15. Comparison of Detection Effects of Custom Datasets

Figure 12 illustrates the practical detection performance comparison between the
algorithm proposed in this paper and the original baseline algorithm. As shown in the
figure, the proposed algorithm demonstrates higher confidence. Furthermore, it highlights
the advantages and generalization performance of the proposed algorithm.
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Figure 12. Comparison of detection effects of custom datasets. (a) YOLOvS8s detection effects.
(b) HRYNet detection effects. (c) LHRYNet detection effects.

5. Conclusions

In order to address the problem of the inadequate detection of traffic targets in complex
road scenarios, this paper presents HRYNet as a solution. HRYNet introduces the DFGPN
as a critical contribution to counter the feature attenuation in complex road scenarios. This
novel architecture enhances the network’s capability to extract features from traffic targets,
thereby addressing challenges such as detection, missed detection, and false detection.
Consequently, it significantly improves the overall performance of detection. RMA was
implemented to augment the network’s ability to focus on essential features. This addition
contributes to the acquisition of more resilient features and mitigates the impact of intricate
road environments, thereby enhancing detection performance. In subsequent research, the
primary objective will be to optimize the model to attain an improved equilibrium between
detection performance and computational efficiency, thereby enhancing its suitability for
implementation in real-world scenarios.
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