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Abstract: Significant strides have been made in the field of WiFi-based human activity recognition,
yet recent wireless sensing methodologies still grapple with the reliance on copious amounts of
data. When assessed in unfamiliar domains, the majority of models experience a decline in accu-
racy. To address this challenge, this study introduces Wi-CHAR, a novel few-shot learning-based
cross-domain activity recognition system. Wi-CHAR is meticulously designed to tackle both the
intricacies of specific sensing environments and pertinent data-related issues. Initially, Wi-CHAR
employs a dynamic selection methodology for sensing devices, tailored to mitigate the diminished
sensing capabilities observed in specific regions within a multi-WiFi sensor device ecosystem, thereby
augmenting the fidelity of sensing data. Subsequent refinement involves the utilization of the MF-
DBSCAN clustering algorithm iteratively, enabling the rectification of anomalies and enhancing the
quality of subsequent behavior recognition processes. Furthermore, the Re-PN module is consistently
engaged, dynamically adjusting feature prototype weights to facilitate cross-domain activity sensing
in scenarios with limited sample data, effectively distinguishing between accurate and noisy data
samples, thus streamlining the identification of new users and environments. The experimental
results show that the average accuracy is more than 93% (five-shot) in various scenarios. Even in
cases where the target domain has fewer data samples, better cross-domain results can be achieved.
Notably, evaluation on publicly available datasets, WiAR and Widar 3.0, corroborates Wi-CHAR’s
robust performance, boasting accuracy rates of 89.7% and 92.5%, respectively. In summary, Wi-CHAR
delivers recognition outcomes on par with state-of-the-art methodologies, meticulously tailored to
accommodate specific sensing environments and data constraints.

Keywords: WiFi sensing; cross-domain; few-shot learning; human activity recognition

1. Introduction

Human activity recognition (HAR) plays a pivotal role in emerging Internet of Things
(IoT) technologies, encompassing domains such as smart healthcare, smart homes, and user
identification [1,2]. Numerous HAR systems exist, including camera-based approaches [3],
wearable sensor-based methods [4], radio frequency-based techniques [5,6], ultrasonic-
based solutions [7], and FMCW-based methodologies [8,9]. Despite the commendable
recognition performance demonstrated by these HAR systems, practical deployment poses
several challenges, such as privacy and security concerns, high equipment costs, limited
sensing distances, and installation or wearing requirements.

HAR based on WiFi Channel State Information (CSI) has emerged as a focal point
in intelligent sensing research. In comparison to other sensing technologies, WiFi sensor
devices offer advantages in terms of cost-effectiveness, ubiquity, security, and ease of
deployment. CSI, being highly responsive to human motion, provides detailed amplitude
and phase information across subcarriers in the frequency domain. Leveraging these
technical merits of WiFi, researchers have proposed device-free human sensing applications
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utilizing WiFi CSI, including indoor localization [10], intrusion detection [11], vital sign
monitoring [12], and gesture recognition [13].

Meanwhile, numerous deep learning-based studies [14] have made significant strides
in this domain, particularly in understanding the pattern relationships between CSI pat-
terns and activity types. However, WiFi signals are susceptible to absorption, diffraction,
reflection, or scattering phenomena during propagation, resulting in a strong coupling
relationship between CSI and environmental factors beyond human actions. The CSI pat-
terns elicited by the same action in varying environments or under different conditions
may exhibit disparities. While high accuracy can be achieved if HAR models are trained
and tested in identical locations, their performance drastically declines when confronted
with new activity classes, users, or scenarios, thus presenting a cross-domain challenge [15].
To tackle this issue, numerous studies have proposed WiFi-based cross-domain HAR ap-
proaches. However, some methodologies exhibit inherent limitations. Moreover, in larger
environments featuring multiple WiFi devices, dynamic sensing device selection could
significantly enhance sensing accuracy and efficacy, further bolstering HAR applications.

To address the aforementioned issues, we have designed Wi-CHAR, a WiFi-based
Cross-domain Human Activity Recognition system utilizing few-shot learning. Wi-CHAR
comprises two key modules. Firstly, focusing on scene analysis, it utilizes access points
(APs) and WiFi-enabled sensors to establish transmission pairs. We propose a method
for dynamically selecting the optimal sensing receiver device based on the individual’s
location. The fundamental idea is to utilize multiple WiFi device transceiver pairs to com-
prehensively select sensing devices tailored to the specific environmental layout. Secondly,
Wi-CHAR prioritizes constrained data, thereby avoiding cross-domain pattern alterations
by employing similarity metrics instead of CSI patterns, to some extent resolving the
cross-domain challenge. By capturing a small volume of action data for few-shot learning,
Wi-CHAR can detect human activities across multiple environments without necessitating
retraining in a new domain, thus mitigating data labeling and training burdens, achieving
generalization. A perceptual recognition model can be derived from a limited number of
training samples using a few-shot learning algorithm, thereby enhancing system robust-
ness through the amalgamation of diverse samples and aiding the recognition model in
delineating clearer boundaries. Additionally, this paper proposes a method to enhance the
structure and fortify the noise immunity of the prototype network. Conventional prototype
networks often exhibit poor noise immunity, leading to decreased model accuracy in the
presence of noise interference. However, by reassigning feature embeddings to mitigate
noise impact, Wi-CHAR effectively improves noise immunity, thereby enhancing overall
model performance.

The system’s performance is evaluated by conducting a series of experiments on its
own human activity datasets under different conditions. Based on this, the system’s per-
formance is analyzed to recognize new user behaviors and scenarios under fewer sample
conditions. Comparative experiments are also conducted in this paper to verify the reliabil-
ity and robustness of the system for activity recognition with limited training samples. This
paper also performs performance evaluations on the public datasets WiAR [16] and Widar
3.0 [15]. The experimental results show that the system can recognize common human
activities with high accuracy based on the available support sets. In summary, this paper
makes the following contributions:

(1) Consider the problem of sensing restricted data. Wi-CHAR can be used in new
domains using only a small number of labelled samples, eliminating the need to retrain
new models.

(2) Take into account the sensing scenes, design an adaptation model for partial area
sensing capability decrease. This can obtain higher quality data over a greater sensing
region and improve the human activity recognition effect.

(3) We propose a prototype network structure Re-PN to improve the noise immunity
performance of the system. Compared with the basic prototype network, the average
performance of the proposed method is improved by 12%.
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The rest of the paper is organized as follows. Section 2 describes the related work.
Section 3 details the process of implementing the system. Section 4 provides the analysis
and evaluation of the experimental results, and Section 5 concludes the paper.

2. Related Work
2.1. Non-Few-Shot Learning with WiFi HAR

Fine-grained CSI has been widely used for human motion detection in the past few
years. CrossSense [17] utilizes simulated CSI samples from the target environment to
retrain the recognition model, thereby enhancing performance in new environments. Widar
3.0 [15] introduces a generalized deep learning model for cross-domain gesture recognition,
requiring only one-time training and adaptable to diverse data domains. Wang et al. [13]
introduced SS-GAN and ST-GAN, which augment the training sample set by generating
virtual samples to address gesture recognition challenges in novel scenarios. WiDIGR [18]
uses a two-dimensional Fresnel zone to eliminate the effect of walking directly on the
signal spectrogram. CeHAR [19] was proposed as a parameter-free dual-feature fusion
method with compact fusion of CSI amplitude and phase features. Sheng et al. [20] used
a trained source domain model as a pre-trained model in a new scene. Zhang et al. [21]
proposed a Dense-LSTM that expanded the training datasets by eight CSI transform meth-
ods and achieved about 90% accuracy in adapting to recognize new individual activities.
WiLCA [22] implemented a cross-domain authentication system using a small amount of
data. Sun et al. [23] conducted research on WiFi-based human motion detection through
walls, using an iterative adaptive approach to improve Doppler resolution and further ex-
tend the potential of WiFi for through-wall sensing applications. Zhou et al. [11] combined
the Back Propagation Neural Network (BPNN), the Adaptive Genetic Algorithm (AGA),
and CSI tensor decomposition to improve data processing while obtaining high indoor
positioning accuracy.

All these approaches aim at detecting human motion within the sensing range of Wi-Fi
devices. WiFi-based sensing systems have very large sensing ranges and fuzzy sensing
boundaries. These methods are not friendly to additional training for each new domain.
The Wi-CHAR platform in this paper is based on an accurate sensing boundary model
for device selection. It achieves higher accuracy in cross-domain sensing that is robust to
different environments.

2.2. Few-Shot Learning with WiFi HAR

Many recent works use few-shot learning, such as WiLISensing [24], a location-
independent, limited-data human activity recognition system. Inspired by relational
networks, ML-DFGR [25] proposed a WiFi gesture recognition system that is robust to
new users and environments due to its transferable similarity evaluation capability. AFSL-
HAR [26] achieved significant performance in identifying new categories by fine-tuning
the model parameters with a small number of samples. AirFi [27] proposes that the do-
main generalization effect of perception can be further improved by using the method of
few-shot learning. MatNet-eCSI [28] proposes a neural network with enhanced external
memory to improve environmental robustness through one-shot learning. MetaSense [29]
adopts a few-shot learning framework, enabling deep mobile sensing methods to rapidly
adapt to new users and new devices. RF-Net [6] employs a metric-based meta-learning
framework to achieve cross-environment HAR using two pairs of WiFi devices; however,
RF-Net’s cross-domain performance is limited. OneFi [30] adopts a single-sample learning
framework to recognize unseen gestures, yet this requires four receivers to convert existing
gestures into virtual gestures, a process that demands intricate knowledge.

Collecting a large amount of data can be very expensive and, in some cases, even
impossible. Therefore, this paper is inspired by few-sample learning to build models
using fewer samples to reduce the cost of model building and improve scalability in new
environments. Wi-CHAR can be used in new scenarios using only a small number of
labeled samples without the need to train a new model.
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3. System Design

In this section, we present the system design. Firstly, we describe the overall architec-
ture of the framework. Subsequently, we provide a comprehensive overview of the dynamic
selection method, data processing, feature extraction, and the enhanced prototype classifi-
cation network for receiving devices across multiple links within this system. Finally, we
briefly outline the approach for implementing the training of the activity recognition model.

3.1. Overall System Architecture

Figure 1 presents an overview of the Wi-CHAR framework, divided into two main
components: the data processing part and the motion sensing part. In the data acquisition
and processing stage, it verifies the suitability of device arrangement in the scene, ensures
the proper functioning of Tx–Rx pairs, and selects devices based on specific locations. The
data from the most suitable receiving device is utilized for recognition. During the activity
recognition phase, input features of the PN model are constructed to train the sensing
model. Recognition results can be further obtained by adjusting the weights assigned to
the PN.
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3.2. Dynamic Selection of Rx in n-Links

The prevalence of WiFi sensor devices in indoor environments makes the optimal
solution choice possible. Not all Tx–Rx pairs are equally good at sensing because the
position and orientation of the target relative to the Tx–Rx pair affect the sensing accuracy,
and the sensing recognition under a single transmit–receive link suffers from a position-
dependent problem. Sensing-Signal-to-Noise-Ratio (SSNR) [31] can quantify the sensing
capability. Assuming that the settings of the WiFi transceiver pair are known and the
distance from the sensed target to the transmitter and receiver is the Line of Sight (LoS)
path length, then we have:

SSNR ∝
rD

2

(rTrR)
2 , (1)

where rD is the distance between the transmitter and receiver, i.e., the path length of the
LoS, rT and rR are the distances from the target to the transmitter and receiver, respectively.
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In a real indoor environment, there are many other objects on reflection. To extend the
sensing coverage model to a multipath-rich environment, Equation (2) is used to represent
the power variation due to multi-path:

(rTrR)b =

√
K

4π(γ(PLoS + ∆P) + b)SSNRmin
, (2)

where γ is the slope of the linear curve, b is a constant, γ, K, and b have a fixed value for
each pair of transceiver, and PLoS is the static path signal power. It is shown that the SSNR
is related to the distance from the target to the transceiver device and the distance of the
transceiver setup. The dynamic receiver device selection step is as in Algorithm 1. Removal
of receivers with poor sensing capability according to the above SSNR and iteration to
obtain the optimal receiver location.

To verify the device selection model, the dynamic selection of sensing devices is
performed after determining the area. The best sensing–receiving device within a certain
area is obtained, as shown in Figure 2. The data are obtained to pave the way for later
activity recognition.
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3.3. Data Processing and Feature Extraction

CSI has finer subcarrier-level granularity than RSSI [32] and is easily accessible through
commercial WiFi devices. WiFi CSI has multi-path propagation and can be represented as a
linear superposition of all paths, including noise (Hn( f , t)), dynamic paths (Hd( f , t)), and
static paths (Hn( f , t)):

H( f , t) = |Hs( f , t)|e−jθs + |Hd( f , t)|e−j·2π
d(t)

λ + |Hn( f , t)|e−jθn , (3)

where θs and θn denote the amplitudes of the static path signal and noise, respectively.
Doppler frequency shift (DFS) can be obtained after a short-time Fourier transform (SFFT)
of the channel frequency response of the CSI signal as follows:

fD = − 1
λ

d
dt

d(t), (4)

where λ is the wavelength and d(t) is the length of the reflection path. The CSI after
time-frequency analysis can be expressed as the Doppler shift D( f , t):

D( f , t) ≈ Hs( f ) + ∑
k∈Hd

αk(t)B( fDk (t)) + Hn( f ), (5)
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Algorithm 1 Dynamic Device (Rx) Selection Algorithm

Input: Tx and Rxs position PTx, PRx{1, . . . , N}, Rx number N, Parameters rT , rR, rD, Position of
the target x at t:Pt, The static path signal power of Rx at moment t: Pt

Los.
Output: Res (selection result) of the Rxs selected at time t.
//First exclude Rx outside the induction zone.
1: Angle At of the target at position Pt and rT with Tx;
2: for i in {1, . . . , n} do
3: Angle At

i of the target at position Pt and rR with Rx;
4 : r2

D/(rTrR)
2 → SSNR ; //Preliminary SSNR.

5: end for
6: for j in {1, . . . , Res_Rx} do
7: Get position relationship → SSNR{j} ;//Candidates.
8: Computation (rTrR)b and (γ(Pt

Los + ∆P) + b)SSNRmin;
9: An equivalent Rx←Res(Pt);
10: end for
11: Select an optimal Rxs with direction: Res.

where B( fDk (t)) is the window function for cutting the new number segment of interest.
The raw CSI data often contains noise, and hardware devices may introduce offsets that
can adversely affect experimental results when used directly. In this paper, upon acquiring
the raw CSI data, we initially denoised the CSI signal using a high-pass filtering method,
followed by PCA for extracting principal component feature data. Active samples were
then extracted using a threshold-based segmentation method. Finally, a short-time Fourier
transform (STFT) was performed to extract the discrete Fourier spectrum (DFS) of the
action signal. This paper uses the MF-DBSCAN clustering algorithm to cluster the obtained
Doppler spectrograms and correct or remove the anomalies twice. Compared with the
K-means algorithm, the DBSCAN algorithm does not need to specify the number of classes
for clustering in advance. It can be applied to a wider range of data with arbitrary shapes
and can also find outliers. In our experiments, we achieved improved results with reduced
arithmetic processing for specific sensing data. The MF-DBSCAN algorithm is detailed
in Algorithm 2, and the clustering results are illustrated in Figure 3. As CSI samples for
different actions may vary in length, it is crucial to normalize the sample lengths to a
fixed duration.

Algorithm 2 MF-DBSCAN Algorithm

Input: Raw DFS data.
Output: Pre-processed DFS (MF-DBSCAN results)
1: Kernel density estimation, eps_list; mathematical expectation, Minpts_list; raw data label_num;
2: do
3: Splitting by minimum interval eps_list, Minpts_list;
4: Calculate number of clusters ζ according to eps_list, Minpts_list;
5: if ζ = lable_num Calculation contour coefficient λ;
6: Compare λ, select maximum λ_Max;
7: Get MinPts and Eps corresponding λ_Max;
8: Get the globally optimal MinPts, Eps:
9: else marked as noise;
10: until no tagged objects.
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In existing few-shot learning studies, two types of feature embedding models are
commonly used, including the four-layer convolutional network structure (Conv4) and
ResNet18 [33]. The ResNet18 model has a deeper network structure than Conv4 and has
significant advantages in generalization performance, so ResNet18 convolutional architec-
ture is used as the action segmentation post-backbone of the feature extractor to extract
the feature data of the segmented DFS sequence. Let fθ . be the feature extraction network,
where θ is the learnable parameter. Given the input data x, the feature representation
z = fθ(x).

3.4. Re-PN Module

This paper aims to improve the generalization of the classifier obtained by training
with a small amount of data. The prototype network (PN) is the focus of the metric learning
network, which is simple and effective, avoiding the complexity of recursive networks
and reducing memory requirements. All data samples in the training and test sets will be
divided into support and query sets. Suppose there is a support set of N labeled samples
S = {(x1, y1), . . . , (xN , yN)}, where xi ∈ RD is the D-dimensional feature vector of the
samples and yi ∈ {1, . . . , k} is the corresponding label. Sk ∈ S denotes the set of samples
labeled as class k. The D-dimensional original data are first mapped to the M-dimensional
embedding space θ. For the support set, all |Sk| sample images of the same class are
extracted by the neural network feature mapping function fθ features. For the query set
sample

_
x , it is projected into the same feature embedding space fθ(

_
x ) as the support set

sample, and the distance is measured by clustering prototypes µk with each class of the
query set and giving a prediction of the class label

_
y to which it belongs to:

pθ(
_
y = k|_x ) = exp(−d( fθ(

_
x ), µk))

∑k′ exp(−d( fθ(
_
x ), µk

′))
, (6)

where µ′k denotes the prototype of the action type. The optimization of the prototype
network model is achieved by minimizing the negative log probability of correct labels by
the gradient descent method:

J(θ) = − log pθ(
_
y = n|_x ), (7)

where n is the true label of the training sample. The updated loss function of the prototype
network model is expressed as:

J ← J +
1

λn
[d( fθ(

_
x ), µ′k) + log ∑

k′
exp(−d( fθ(

_
x ), µ′k′))], (8)
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CSI data obtained in real-world scenarios often contain significant noise and inter-
ference, leading to a notable degradation in the accuracy of traditional PN models under
such conditions. Wi-CHAR introduces a method to enhance the PN structure, termed
Re-PN, aiming to bolster its noise immunity performance through a reassignment approach.
Algorithm 3 outlines the Re-PN methodology, wherein adjustments are made adaptively.
This adaptive adjustment endows Re-PN with the capability to differentiate between cor-
rect and noisy data samples. It emphasizes the importance weight of correct samples
while simultaneously mitigating the interference caused by potential noisy samples on the
feature prototype representations. The schematic diagram illustrating Re-PN is depicted
in Figure 4, given a test set T of samples xT

j , a support set S =
{
(xS

i , yS
i )
}M

i=1, and a query

set Q =
{
(xS

j , yS
j )
}N

i=1
. For the support set feature embedding fθ(xi), the improved design

introduces a weight parameter αi to measure the degree of influence of a certain sample xi
feature embedding of the support set on the feature prototype computation. The feature
embedding computation based on the reassignment method network model is expressed as:

µ′k =
∑
|Sk |
i=1 αi fθ(xi)

∑
|Sk |
i=1 αi

, (9)

where Sk denotes all similar images belonging to the category k in the support set.

αi =
1

d( fθ(xi), 1
|Sk |−1 ∑

|Sk |
j=1,j 6=i fθ(xj))

, (10)

where d(·) is the distance metric function. The predicted probability distribution of the
test sample xT

j over each class is calculated by Equation (7). Replacing the test set Q with
the query set T in the training phase, the loss can be obtained by the central loss function
as follows:

Lc =
1
2

m

∑
i=1
||xi − cyi||22, (11)

where cyi denotes the feature embedding center of the yi category sample and xi denotes
the feature before the fully connected layer. The final loss function of the model is:

Loss = − log(ŷT
jk) + ηLc, (12)

where η is the hyperparameter and is taken as η = 1 in the experiment. We use an
episode-based strategy to train the Re-PN model. Finally, the loss function of Equation (12)
is calculated. The training of the model is implemented using the Adam optimization
algorithm to update the parameters of the model, and the learning rate parameter Lr is
updated using the cosine annealing learning rate update strategy:

Lr = Lr ×
1
2
(1 + cos(π

epoch
max_epoch

)). (13)

where epoch is the number of current iterations and max_epoch is the total number of
training sessions. The above process is repeated until the parameters of the network model
do not change much.
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Algorithm 3 Re-weighting prototypical network model (Re-PN model)

Input: Training set P = {(x1, y1), . . . , (xN , yN)}, Number of categories N contained in the
support set, K is the number of classes in the training set.
Output: Re-PN Loss J of Classifier Model.
1: V ← Rs({1, . . . , K}, NC) ; //Few-shot task set.
2: for k in {1, . . . , NC} do
3: Sk ← Rs(PVk, NS) ; //Select support set.
4: for i in Sk do
5: Calculate Equation (10) αi; // Get weight parameters.
6: end for
7: Calculate µ′k = ∑

|Sk |
i=1 αi fθ(xi)/∑

|Sk |
i=1 αi feature prototype;

8: end for
9: Loss J ← 0 ;
10: for c in {1, . . . , NC} do
11: Qk ← Rs(PVk\Sk, NQ) ; //Select query set.
12: for (x, y) in Qk do //Calculate losses and update model parameters.
13: Calculate losses Lp, Lc;
14: update Loss J ← J + Lp + Lc .
15: end for
16: end for

Sensors 2024, 24, x FOR PEER REVIEW 9 of 19 
 

 

The distribution of data 
samples

PrototypesEmbedding SpaceSample Space

Action-related feature 
representations

Re-PN modifies the calculation of the prototype 
to make it suitable in noisy scenarios

Source Domain

 
Figure 4. Schematic diagram of activity recognition based on few-shot learning. 

where yic  denotes the feature embedding center of the iy  category sample and ix  de-
notes the feature before the fully connected layer. The final loss function of the model is: 

ˆlog( ) ,T
jk cLoss y Lη= − +  (12)

where η  is the hyperparameter and is taken as 1η =  in the experiment. We use an ep-
isode-based strategy to train the Re-PN model. Finally, the loss function of Equation (12) 
is calculated. The training of the model is implemented using the Adam optimization al-
gorithm to update the parameters of the model, and the learning rate parameter rL  is 
updated using the cosine annealing learning rate update strategy: 

1
(1 cos( )).

2 max_r r

epoch
L L

epoch
π= × +  (13)

where epoch  is the number of current iterations and max_ epoch  is the total number 
of training sessions. The above process is repeated until the parameters of the network 
model do not change much. 

Algorithm 3 Re-weighting prototypical network model (Re-PN model) 
Input: Training set 1 1{( , ),...,( , )}N NP x y x y= , Number of categories N  contained in the 

support set, K  is the number of classes in the training set. 
Output: Re-PN Loss J  of Classifier Model. 
1: ({1,..., }, )Cs KV R N← ;               //Few-shot task set. 
2: for k  in {1,..., }CN  do 
3:     ( , )k Vk SS Rs P N← ;                //Select support set. 
4:      for i  in kS  do 
5:          Calculate Equation (10) iα ;  // Get weight parameters. 
6:      end for 

7:      Calculate 
| | | |'

1 1
( ) /k kS S

k i i ii i
f xθμ α α

= =
=   feature prototype; 

8: end for 
9: Loss 0J ← ; 
10: for c  in {1,..., }CN  do 
11:     ( \ , )k Vk k QQ Rs P S N← ;   //Select query set. 

12:   for ( , )x y  in kQ  do    //Calculate losses and update model parameters. 
13:      Calculate losses ,p cL L ; 

Figure 4. Schematic diagram of activity recognition based on few-shot learning.

4. Experiments and Performance Analysis

In this section, we first present the experimental setup. Then, the effectiveness of Wi-
CHAR on owned and public data is evaluated in intra-domain and cross-domain scenarios.
The performance of different hyperparameter settings is also compared with the most
advanced HAR systems to validate system performance.

4.1. Experimental Setup

A TP-LINK AX3000 router was used as a transmitter (Tx), and multiple Google Nexus
6P smartphones with Nexmon [34] framework and Thinkpad X201i devices with Intel
5300 Tools [35] were used as receivers (Rx) to collect CSI samples of human activity during
the experiments.

In order to systematically evaluate the performance of Wi-CHAR, this study was
conducted with several subjects. In the movement monitoring phase, a variety of common
postures were evaluated in this paper, i.e., sitting still, walking and standing up, and sitting
down. Sudden states such as falls were measured. Data were available for six categories of
human activities, as shown in Table 1.
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Table 1. Types of human activity.

No. Details

Categories Sit, Stand, Push, Fall, Walk, Wave
Scenarios Conference (6 m × 10 m), Classroom (10 m × 12 m)

Users Six adults (three males, three females, height: 1.55–1.90 m, weight: 42–110 kg)

The samples were collected in three scenarios: a conference room and a large classroom,
as depicted in Figure 5. A total of six subjects (three male and three female) participated in
the experiment, and we also examined the impact of their physical parameters (e.g., height,
weight, age) on the experiment. Wi-CHAR necessitates at least two receivers in each region
to capture the complex changes in path velocity induced by the target’s motion. Initially,
three thousand movement data points were generated to form the sample set. Subsequently,
only a small number of data samples were collected within the experimental scenario to
facilitate motion sensing. Furthermore, the performance of the Re-PN model was validated
on the public datasets Widar 3.0 [15] and WiAR [16]. No additional restrictions were
imposed on the participants during the experiments. Each environment was equipped with
a camera to record all target activities as a reference for the experiment. The training and
testing phases were conducted on a Windows desktop featuring an Intel Core i9-10700kF
CPU, 24GB RAM, NVIDIA GeForce GTX 3080ti GPU, and PyTorch-1.8.0 framework.
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Figure 5. Scenarios for collecting human activity datasets.

4.2. Performance Overview

To accurately and comprehensively evaluate the performance of Wi-CHAR, numerous
experiments were conducted under various conditions. Initially, the effectiveness of the Wi-
CHAR system within the same domain was tested. Subsequently, the system’s performance
with new users, new scenarios, and different datasets was assessed. In each cross-domain
experiment, only one domain factor was altered.

This study primarily relies on recognition accuracy as an evaluation metric. It sig-
nifies the probability of correctly recognizing an action sample and is calculated using
the equation:

Accuracy =
TP + TN

TP + TN + FP + FN
× 100%. (14)

where TP and FP represent true positive and false positive, respectively. TN and FN
represent true negative and false negative, respectively. TP + TN is the number of correctly
identified signal samples, and the denominator is the number of all samples tested. The
higher Accuracy it is, the better the performance of our system.

4.2.1. Evaluation within the Intra-Domain

We first evaluate the performance of the proposed method traditionally, i.e., all CSI
sample sets are from activities performed by a single user in the same scenario. Figure 6
shows the confusion matrix evaluated in the same domain on Widar 3.0, WiAR, and our
own datasets. The proposed system, Wi-CHAR, achieves 93.9%, 92.5%, and 89.7% accuracy
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on its own datasets, Widar 3.0 and WiAR, respectively. The Euclidean distance metric is
used in the experiments, and each action category in the support set contains only five
samples. This section uses 80% of the remaining data as the training data and 20% as the
test set.
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4.2.2. Cross-Scene Recognition Effect

Empty rooms were chosen as the source domain, while conference rooms and large
classrooms were designated as the target domains. Each experiment was repeated 10 times,
and the objective evaluation results are depicted in Figure 7. The average accuracy of
practical actions on our own data surpasses 93%, with the highest accuracy exceeding 96%
(five-shot).
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Figure 7. Recognition accuracy of actions in different environments.

In the Widar 3.0 datasets, M1, M2, and M3 represent the lounge, conference room,
and laboratory, respectively, while W1, W2, and W3 denote the classroom, office, and hall,
respectively. The experimental results obtained are presented in Tables 2 and 3, respectively.
As observed in Table 2, the additional scene data collected also exhibits superior recognition
rates with Wi-CHAR, further highlighting the system’s cross-scene capability.

Table 2. Accuracy of HAR in different scenes.

Train Set Test Set
Action Recognition Rate (%)

1-Shot 5-Shot

M1
M2 60.2 ± 1.2 92.3 ± 1.5
M3 63.4 ± 0.9 93.5 ± 1.3

M2
M1 62.1 ± 0.8 92.5 ± 1.1
M3 64.3 ± 1.3 94.1 ± 0.9

M3
M1 59.6 ± 1.8 92.8 ± 1.5
M2 60.6 ± 1.4 92.1 ± 1.6
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Table 3. Accuracy of HAR in different scenes (Widar 3.0).

Train Set Test Set
Action Recognition Rate (%)

1-Shot 5-Shot

W1
W2 53.2 ± 1.3 89.1 ± 1.2
W3 51.1 ± 0.8 92.1 ± 1.3

W2
W1 56.4 ± 0.9 91.2 ± 1.1
W3 58.6 ± 0.7 92.6 ± 1.8

W3
W1 57.4 ± 0.8 90.8 ± 1.1
W2 55.2 ± 0.7 91.5 ± 1.3

4.2.3. Cross-User Recognition Effect

To evaluate the cross-user performance of Wi-CHAR, this study trained the model
using CSI samples collected from one user and tested the system’s performance using CSI
activity samples from other users (u1, u2, u3, u4, u5). One of the sixteen experimenters (p0)
from the Widar 3.0 dataset was randomly selected as the training set, and the activities of
five participants (p1, p2, p3, p4, p5) were tested in the classroom and hall environments.

Wi-CHAR achieved the highest accuracy of 93% in the five-shot condition. The
average accuracy in the "one sample per category" condition was approximately 55%. The
performance difference between testing on our data and Widar 3.0 can be attributed to
the number of users and types of actions. Widar 3.0 had sixteen users for testing, whereas
this experiment only included six users, and there were differences in the types of actions
included in the two datasets. The experimental results are depicted in Figure 8.
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4.2.4. Cross-User and Cross-Scene Recognition Effect

In this set of experiments, the training and testing categories remain consistent, but
both users and scenarios are altered. These experiments aim to identify the activity of a
new user in a new scenario. The results of these experiments are illustrated in Figure 9.
“Classroom-Conference” denotes the utilization of activity samples collected in the class-
room scenario to train the Wi-CHAR system, while samples obtained from the conference
room scenario are used to assess the system’s performance. For instance, “u2” represents
the second user.
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4.3. Discussion and Analysis

As observed in Section 4.2 above, the system implemented in this study demonstrates
satisfactory performance under varied conditions. The recognition accuracy on our datasets
is marginally higher than that of the Widar 3.0 and WiAR datasets. This discrepancy may
stem from the fact that the samples in this paper are derived from data post-multi-WiFi
device selection, resulting in improved data quality compared to the public datasets. Addi-
tionally, the action types examined in this paper primarily comprise common daily activities,
which are coarse-grained and relatively less susceptible to environmental influence.

4.3.1. Effect of the Number of Rx and Dynamic Selection

To elucidate the impact of the number of WiFi devices, the experiments in this section
vary the number of Rx from two to seven (five-shot) in both the conference room and the
classroom environments. Increasing the number of Rx devices leads to higher accuracy
and less variation, as dynamic device selection mitigates the performance degradation
caused by improper device placement. It can be observed that the improvement diminishes
when the number of receiving devices exceeds five. Therefore, it can be inferred that
having more WiFi devices in a typical home environment is beneficial, as long as there
is sufficient space. However, when there are more than five devices, the enhancement in
perceptual accuracy is not as pronounced. Each group of experiments comprises three cases
of dynamic device selection (Dynamic Selection), selection by distance (Distance Selection),
and no selection (No Selection), as depicted in Figure 10. Even in cross-domain scenarios,
the recognition error rate of dynamic device selection remains predominantly below 0.1,
which is significantly superior to non-dynamic selection.
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4.3.2. Effect of Different Sample Sizes

The experiments in this section examined the impact of different sample values on
the accuracy of the Wi-CHAR platform by adjusting various K values (sample values in
each category) of the training prototype network, as shown in Figure 11a. Additionally, the
effect of different subjects on various sample sizes was verified, as depicted in Figure 11b.

Sensors 2024, 24, x FOR PEER REVIEW 14 of 19 
 

 

diminishes when the number of receiving devices exceeds five. Therefore, it can be in-
ferred that having more WiFi devices in a typical home environment is beneficial, as long 
as there is sufficient space. However, when there are more than five devices, the enhance-
ment in perceptual accuracy is not as pronounced. Each group of experiments comprises 
three cases of dynamic device selection (Dynamic Selection), selection by distance (Dis-
tance Selection), and no selection (No Selection), as depicted in Figure 10. Even in cross-
domain scenarios, the recognition error rate of dynamic device selection remains predom-
inantly below 0.1, which is significantly superior to non-dynamic selection. 

0.0 0.1 0.2 0.3 0.4
0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Error rate(Conference)

 Dynamic Selection
 Distance Selection
 No Selection

 
0.0 0.1 0.2 0.3 0.4

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Error rate(Classroom)

 Dynamic Selection
 Distance Selection
 No Selection

 
(a) Conference (b) Classroom 

Figure 10. Comparison of device selection accuracy across domain conditions. 

4.3.2. Effect of Different Sample Sizes 
The experiments in this section examined the impact of different sample values on the 

accuracy of the Wi-CHAR platform by adjusting various K values (sample values in each 
category) of the training prototype network, as shown in Figure 11a. Additionally, the effect 
of different subjects on various sample sizes was verified, as depicted in Figure 11b. 

From the aforementioned experimental results, it can be deduced that our network 
demonstrates minimal influence between different environments and subjects. The aver-
age accuracy exceeds 93% in the five-shot condition, while in the ten-shot condition, the 
average recognition rate surpasses 97%. In other words, recognition accuracy increases 
gradually as the number of samples increases. 

0 2 4 6 8 10
40

50

60

70

80

90

100
A

cc
ur

ac
y(

%
)

K-shot

 Conference
 Classroom

 
u1 u2 u3 u4 u5 u6

50

60

70

80

90

100

A
cc

ur
ac

y(
%

)

User

 1-shot
 4-shot
 5-shot
 10-shot

 
(a) (b) 

Figure 11. (a) Different sample sizes–different environments; (b) Different sample sizes–different user. 

4.3.3. Effect of MF-DBSCAN Algorithm 
To validate the degree of impact of improved clustering-based data processing algo-

rithms on the system, this section compares density-based clustering (DBSCAN), im-
proved density-based clustering (MF-DBSCAN), Gaussian mixture models (GMMs-EM), 

Figure 11. (a) Different sample sizes–different environments; (b) Different sample sizes–different user.

From the aforementioned experimental results, it can be deduced that our network
demonstrates minimal influence between different environments and subjects. The average
accuracy exceeds 93% in the five-shot condition, while in the ten-shot condition, the average
recognition rate surpasses 97%. In other words, recognition accuracy increases gradually
as the number of samples increases.

4.3.3. Effect of MF-DBSCAN Algorithm

To validate the degree of impact of improved clustering-based data processing algo-
rithms on the system, this section compares density-based clustering (DBSCAN), improved
density-based clustering (MF-DBSCAN), Gaussian mixture models (GMMs-EM), K-mean
clustering algorithms (K-means), learning vector quantization algorithms (LVQ), and hi-
erarchical clustering methods (AGNES). The comparison results are shown in Figure 12a.
From the comparison results, we can see that the accuracy of the traditional DBSCAN
algorithm is above 85%, and the improved MF-DBSCAN algorithm can reach more than
92%, which is higher than other clustering algorithms. Therefore, the improved DBSCAN
algorithm is selected for the data clustering process in this paper.
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Next, we analyzed the effect of the MF-DBSCAN algorithm on the classification
network used in this paper, and the experimental results in Figure 12b show that the classi-
fication model (DBSCAN + PN) with only traditional DBSCAN and traditional prototype
network processing is relatively poor (the AUC is only 0.667), while the classification model
using the improved DBSCAN method under the traditional prototype network condition
has an AUC of 0.739 and 0.802 under the DBSCAN+Re-PN condition. The AUC of the
classification model using the improved DBSCAN method under the traditional prototype
network condition is 0.739, and the AUC under the DBSCAN + Re-PN condition is 0.802.
It can be concluded that the improved prototype network is obvious for the classification
effect of this paper, and the model advantage is significantly improved. Furthermore, the
AUC under the MF-DBSCAN + Re-PN condition can reach 0.926, showing that the impact
of MF-DBSCAN on the classification model is also larger. Our improvement of the two
traditional methods has had a significant performance improvement.

4.3.4. Comparison of Different Metrics Models

The cornerstone of the HAR system Wi-CHAR proposed in this paper is the reassign-
ment of a prototype network (Re-PN), an improvement upon the original PN. To assess the
effectiveness of this enhancement, the experiments in this section compare the performance
of the conventional PN, the Re-PN within the current system configuration, and other
similar computing network structures (Siamese Network (SN), Matching Network (MN),
and Relation Network (RN)). Additionally, as depicted in Figure 13a, the average accuracy
of Re-PN is 12% higher than that of the traditional PN.
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The choice of similarity metric is another crucial factor. This experiment compares the
effects of two metrics, namely Euclidean distance and cosine similarity. The experiments in
this section were conducted multiple times within the domain for three datasets, with the
data input type being DFS. As illustrated in Figure 13b, the average accuracy of Wi-CHAR
based on cosine similarity is lower than that of Wi-CHAR based on Euclidean distance.
Therefore, it is more appropriate to employ Euclidean distance rather than cosine similarity
in the Re-PN model.

4.3.5. Algorithm Complexity Analysis

For Algorithm 1 and Algorithm 2, the time complexity of Algorithm 1 is O(n2), where
n denotes the number of candidate Rx’s, of which there are only a small number. For MF-
DBSCAN, the basic time complexity is related to the amount of clustered data, deriving the
points whose densities are connected according to eps_list, Minpts_list, and then iterating
until all core sample points have a corresponding class, related to the time required to
find the points, but this is of a smaller order of magnitude. The worst case is O(m2),
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where m is the number of points, and its space complexity is O(m). Our feature extraction
uses Resnet18 [33] and then operates by Euclidean distance metric, softmax, etc. The
time complexity mainly comes from convolutional operations; the time complexity of this
framework is 1.8× 109. This shows that our framework is significantly better than methods
such as CNN + LSTM in terms of time overhead.

4.3.6. Comparison with Existing Methods

We have compared Wi-CHAR with several other recent cross-domain recognition
methods in various ways to demonstrate the performance of our approach. These in-
clude transfer learning frameworks (Sheng et al. [20]), traditional CNN/RNN frameworks
(CLAR [36], CDAR [37]), adversarial learning architectures (CrossGR [38]), and meta-
learning frameworks (MatNet-eCSI [28], ML-WiGR [39]). We focused on the core metrics
common to the above methods: accuracy, recognition target, main algorithm, and input
features, using them as benchmarks for comparison while avoiding the introduction of
other presentations and parameters. Although each method achieves some degree of
cross-domain effect, the Wi-CHAR method can handle multiple domain factors, such as
users and environments. Despite using DFS features, the MF-DBSCAN method does not
consume more time. In terms of algorithms, for the basic feature extraction model, we only
used CNN, which saves more training time compared to frameworks that commonly utilize
CNN + LSTM methods. Additionally, the few-shot learning method can adapt to new
domains with fewer samples, while transfer learning and adversarial learning methods
require additional data samples.

Wi-CHAR achieves high recognition accuracy, demonstrating that our model is robust
and can achieve acceptable generalization with a small number of training samples. Further
details are provided in Table 4.

Table 4. Comparison of Wi-CHAR with other cross-domain systems.

Methods Target Features Algorithms Accuracy (%)

Sheng et al.
[20] 4 Actions; Environment CSI Amplitude

and phase
CNN + multilayer

Bi-LSTM >90

MatNet-eCSI [28] 6 Actions; Users Enhanced CSI CNN + LSTM,
One-Shot Learning 93.4

CLAR [36] Actions; Locations CSI
Amplitude

Singular Spectrum
Analysis, BLSTM >86

CrossGR [38] 15 Gestures; User, Environment CSI
Amplitude Data Augment, GAN >82.6

CDAR [37] 6 Actions; User, Position,
Direction, Environment

CSI
Amplitude

CNN + LSTM, DTW,
MMD >80

ML-WiGR [39]
5 Actions; Location,

Environment, Orientation,
Person

DFS, BVP CNN + LSTM,
Meta-learning >87

Wi-CHAR (Proposed) 6 Actions; User, Environment,
User + Environment DFS CNN, Few-Shot

Learning >93

5. Conclusions

This paper proposes the Wi-CHAR system, a WiFi-based cross-domain HAR system
focusing on scenes and restricted data. It achieves high accuracy and generality in HAR
over large areas with fewer samples. Wi-CHAR demonstrates robustness and versatility,
delivering effective results across various scenes. It overcomes the challenge of significant
degradation in model accuracy in cross-domain scenarios and eliminates the need for
retraining when data acquisition in real environments is limited.
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The system’s performance is evaluated in various real-life scenarios in this research.
Even with a limited amount of training marker data, Wi-CHAR achieves a cross-domain
average accuracy of 93.2% in recognizing human activity in a multi-WiFi link setting. This
development represents progress in applying HAR technologies to smart homes, smart
healthcare, and smart senior care, holding practical significance. However, further vali-
dation of our system’s performance on a broader scale is needed due to the limitations of
experimental settings and experimenters. How to achieve more lightweight cross-domain
activity awareness that is closer to real-life scenarios is a topic for future research. The
technology also requires further enhancement and optimization for use in more realistic set-
tings.
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