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Abstract: Virtual reality (VR) is used in many fields, including entertainment, education, training, and
healthcare, because it allows users to experience challenging and dangerous situations that may be im-
possible in real life. Advances in head-mounted display technology have enhanced visual immersion,
offering content that closely resembles reality. However, several factors can reduce VR immersion,
particularly issues with the interactions in the virtual world, such as locomotion. Additionally, the
development of locomotion technology is occurring at a moderate pace. Continuous research is being
conducted using hardware such as treadmills, and motion tracking using depth cameras, but they are
costly and space-intensive. This paper presents a walk-in-place (WIP) algorithm that uses Mocopi, a
low-cost motion-capture device, to track user movements in real time. Additionally, its feasibility
for VR applications was evaluated by comparing its performance with that of a treadmill using the
absolute trajectory error metric and survey data collected from human participants. The proposed
WIP algorithm with low-cost Mocopi exhibited performance similar to that of the high-cost treadmill,
with significantly positive results for spatial awareness. This study is expected to contribute to solving
the issue of spatial constraints when experiencing infinite virtual spaces.

Keywords: virtual reality; motion capture; walk-in-place; locomotion; absolute trajectory error;
head-mounted display

1. Introduction

Virtual reality (VR) is a technological revolution that combines the real and virtual
worlds to transport users to various novel environments. It can present environments and
situations that may be difficult to experience in real life and offers innovative experiences
in entertainment, education, training, medicine, and many other fields [1]. VR technology
integrates visual, auditory, and physical senses to provide users with an experience that
closely resembles reality, and various technical tools are essential for enabling interactions
that mimic real-world behavior within the VR environment. Currently, accurately reflect-
ing real-world movements in VR is challenging due to spatial and technical constraints
associated with recognizing movements in real environments and reflecting them in virtual
ones [2]. Although large virtual spaces can be theoretically implemented in VR, spatial
constraints are encountered when implementing movements such as walking. These in-
clude tracking hardware and network limitations, physical obstacles, and intricate technical
issues related to conveying user movements to the virtual environment [3].

A potential solution to these challenges is to improve locomotion in VR environ-
ments [4]. Locomotion refers to controlling user movements within the virtual environment
and is a crucial factor for improving user experience [5]. Methods that enable users to move
naturally in VR environments as they would while walking or running during everyday ac-
tivities in the real world are being actively researched. Locomotion research has employed
various methods, with walk-in-place (WIP) being the most actively researched [2,6]. An
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evaluation of locomotion methods demonstrated that users with no prior VR experience
rated WIP as being more immersive than controller manipulation [5]. Various methods
have been proposed for implementing WIP, wherein the Kinect camera, which can measure
depth [7,8], trackers that can track body movements [9], treadmills [10], or body-worn
inertial measurement unit sensors have been employed [11].

Developing WIP techniques that can represent real-world movements in VR environ-
ments has been a long-standing challenge. Despite numerous technological advancements,
several gaps remain, primarily the limited amount of physical space. The main objective
of WIP techniques is to provide an immersive experience by translating real-world move-
ments into the virtual world and simulating an infinite virtual space within a confined
physical space. However, WIP experiences through previously proposed methods require
considerable space to set up the camera and perform actions in a confined space or using
bulky hardware such as a treadmill. Additionally, establishing a WIP environment is
expensive, and accurate tracking technology is required to replicate real-world motion in
VR environments. However, procuring multiple Kinect cameras, trackers, sensors, and
treadmills can entail significant costs.

This paper presents a WIP algorithm that uses low-cost motion-capture equipment
and demonstrates its potential for use in VR applications. By monitoring the walking
behavior in real time using body-worn sensors and applying the collected data to the WIP
algorithm, the system can enhance user immersion by providing meaningful interactions
in virtual worlds. In the performance evaluations, the absolute trajectory errors (ATEs)
were compared with the 3D coordinates obtained by walking along a specified path in VR
using Mocopi and a treadmill. The final performance was evaluated based on the results of
a user survey.

The remainder of this paper is organized as follows. Section 2 presents a detailed
review of related studies. Section 3 describes the proposed configuration and algorithm
for WIP implementation. Section 4 analyzes and discusses the experimental results to
evaluate the performance of the proposed technique. Section 5 discusses the limitations,
and theoretical and managerial implications, of the study. Section 6 summarizes the
significance and findings of the study and presents the conclusions.

2. Related Works

VR is a revolutionary technology that allows users to interact with the real world by
transporting them into virtual environments that differ from the real world. However,
replicating natural movements in these environments remains technically complex. WIP
technology is a key solution for mimicking the walking behavior of a user in a VR environ-
ment, and considerable research and development has been conducted in this field. A key
aspect of WIP research is the development and exploration of various techniques, which
has contributed to improving both the user experience and system performance.

For instance, the use of hardware such as bracelets to track arm movements while
walking has been explored. The obtained data can be interpreted as movement commands
using algorithms that enable movement within a virtual space [12]. Implementing WIP
using hands can be simple and offer high accuracy. However, this implies the standard
hand-based interaction typically used for interaction in the virtual world becomes unfeasi-
ble because the hands are employed for this specific purpose.

Another area of research involves techniques that utilize the leg movements that
accompany regular movements. These WIP methods leverage the physical characteristics
of how humans lift their legs while walking to track the motion of the lifted leg. Thus,
they imitate real-world walking in more detail, and various types of WIP methods are
being developed. Initially, a complex mix of sensors was used, but advances in small-scale
sensor technology have enabled the utilization of sensors built into head-mounted displays
(HMDs), smartphones, and Kinect cameras. These methods can track body movements in
detail and provide users with realistic walking experiences.
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WIP techniques that employ Kinect cameras are divided into single- and multi-camera
methods. Single-camera methods feature high body recognition rates when the user is
looking straight ahead or turning; however, they face issues in tracking occluded areas
when the body is turned at an angle or sideways. Therefore, multicamera methods have
been widely studied to address the limitations of single cameras [13–15].

However, implementing WIP using a Kinect camera presents the challenge of moving
within the camera’s field of view owing to its distance and space limitations [16]. Meth-
ods that employ physical sensors offer a more robust tracking performance; however,
depending on the sensor, they may require external assistance or incur significant costs.
Additionally, various WIP techniques have been studied, including tracking and extracting
data from physical motion or mechanically determining the walking motion [2]. Therefore,
WIP research is ongoing with the aim of understanding the diversity of WIP technologies,
their strengths and weaknesses, and ways to improve them [9].

Researchers have also investigated the use of tracking devices attached to the body,
such as the VIVE tracker, which exhibits high accuracy [17]. However, these trackers
re-quire external sensors owing to their inherent hardware characteristics. Body-attached
tracking devices may miss tracks if the user moves out of the sensor area or the tracker is ob-
structed by an object. Additionally, compatibility issues may arise when using devices other
than the specified device depending on the type of tracker used. Moreover, research on us-
ing treadmills for WIP applications is ongoing with constant hardware advancements [18].
This method offers the advantage of virtually replicating the real-world movements of
users. However, the cost of creating such an environment remains challenging.

Recent research on WIP has focused on 360-degree omnidirectional walking and
treadmills as important locomotion technologies, along with omnidirectional walking
trackers attached to the body to mimic larger-than-life environments [19]. These methods
offer locomotion without the need for a large physical space and induce lower dizziness
than traditional locomotion techniques [20]. However, they are expensive or bulky, making
their commercialization challenging.

These findings indicate that WIP is an important technique for mimicking locomotion
in VR environments and various studies continue to improve its performance and evaluate
its advantages and disadvantages. This continued effort to provide a natural VR experience
plays a significant role in the development of VR technologies.

3. Materials and Methods

This section describes the setup employed for detecting user movements and imple-
menting the proposed WIP technique. Real-time body data obtained through motion-
capture technologies are necessary to ensure smooth virtual interactions. Various devices
exist for obtaining accurate body data, such as Kinect cameras, which capture the body
from the outside, or sensors attached to the body. Therefore, this chapter introduces the
hardware selection and communication methods, along with algorithms for recognizing
body data collected via motion-capture devices and implementing WIP.

3.1. Trackers

Various types of hardware at different price points are available that involve attaching
sensors to the body to collect data, including acceleration, gyro, and pressure sensors. This
study employed the Mocopi system comprising six sensors, each weighing approximately
8 g, owing to its ease of use and accurate tracking performance. These sensors must be
attached to the head, waist, wrist, and ankle for tracking. Additionally, Mocopi is 20 times
cheaper than a treadmill and 2.5 times cheaper than the VIVE Sensor and, offers excellent
tracking performance.

3.2. HMDs

An HMD displays a virtual world in 3D through two displays situated in front of the
eyes, thereby creating a realistic and immersive experience. This study focused on Meta



Sensors 2024, 24, 2848 4 of 16

Quest 2 and VIVE Pro HMDs as visual aids for VR; however, other HMDs have also been
developed for this purpose. This paper reports on the experiments conducted using Meta
Quest 2 and VIVE Pro for implementing the proposed WIP algorithm using Mocopi and a
treadmill, respectively.

3.3. Treadmill

A treadmill can be used to implement the walking or running motion of a user in a
VR environment. It provides a realistic experience by allowing users to physically move
around a virtual world. However, it has some disadvantages such as high cost and weight,
bulkiness, and space limitations for installation. However, we selected it as a comparison
device for implementing the proposed WIP algorithm owing to its high tracking accuracy
and immersiveness compared to other locomotion hardware. Additionally, its performance
was compared with that of Mocopi using ATEs and user surveys.

3.4. Data Communication between Smartphone and PC

Next, the process of sending and receiving data through Mocopi is described. There is a
direct connection between Mocopi and a PC, but not in real time, so we used Bluetooth. First,
we ran the Mocopi application on a smartphone and established a Bluetooth connection
between the smartphone and Mocopi. The data were then transferred via Wi-Fi to a PC on
the same network for visualization. The communication and internet protocols used were
the user datagram protocol and IPv4, respectively.

3.5. Data Communication between PC and HMD

To enable 360-degree WIP, the rotation of the user must be unrestricted. This study
aimed to enhance freedom of movement without using a data cable, which limits rotation.
When using Meta Quest 2, the screen data are wirelessly transferred from the PC to the
HMD through the air-link function, which is available when the PC and HMD are on the
same network and uses the 5 GHz channel to prevent communication delays that may
cause cognitive dissonance in the user. VIVE Pro allows unrestricted user movement owing
to the absence of wires connecting the HMD to the PC and, instead, employs a special cable
attached to the ceiling. Additionally, it is connected to a PC via a DisplayPort cable, and
visual data are sent and received through a hub.

3.6. Calibration

Prior to motion capture, the equipment must be calibrated to obtain accurate body
data. Mocopi uses a dedicated application for calibration, which involves a straightforward
process. However, errors can accumulate over time owing to the nature of the equipment,
necessitating regular calibration.

Prior to calibration, data pertaining to the position of the sensors and the user’s
information are collected. This is based on three pieces of information: the user’s height,
their default pose, and their movement from the default pose to the default pose once
more. Based on the aforementioned data, the user’s pose error is calibrated. We performed
calibration at the start of the study and after any change in location.

3.7. Motion Capture

Motion-capture technology extracts 3D data of the body movements using sensors or
cameras, and we used calibrated Mocopi data to estimate the joint positions and postures
of users. Mocopi detects the acceleration and angular velocity of body movements using
six sensors that must be worn on the head, waist, wrists, and ankles to calculate and
apply 3D positions and postures. It uses 3 accelerometers and 3 gyroscopes to digitize the
movements for determining the sensor positions and acceleration data to identify the 3D
position. Up to this point, positioning errors accumulate in the system and reduce accuracy,
but Sony’s proprietary artificial intelligence (AI) model directly estimates the joint positions
to minimize positioning errors [21–23].
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The problem with tracking the positions of joints not attached to the sensors is that
owing to the complexity of the human body and the high degrees of freedom of the
joints, the position and posture of the intermediate joints connecting two specific locations
where the sensors are attached cannot be uniquely determined through simple geometric
calculations. However, the AI models trained on different human movements are calibrated
to the natural positions of the joints. Figure 1 and Table 1 show the human skeletal structure
defined by Mocopi, and Figure 2 shows the positions of the joints without sensors estimated
from the locations of the sensor attachments.
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Table 1. Indexes and names of joints defined in Mocopi.

Index Joint Name Index Joint Name

0 root 14 left_hand
1 torso_1 15 right_shoulder
2 torso_2 16 right_up_arm
3 torso_3 17 right_low_arm
4 torso_4 18 right_hand
5 torso_5 19 left_up_leg
6 torso_6 20 left_low_leg
7 torso_7 21 left_foot
8 neck_1 22 left_toes
9 neck_2 23 right_up_leg
10 head 24 right_low_leg
11 left_shoulder 25 right_foot
12 left_up_arm 26 right_toes
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3.8. WIP Algorithm with Mocopi

Various physical movements can be observed while a person walks, such as arms
swinging, knees bending, and the soles of the feet lifting off the ground. This study
proposes an algorithm based on the behavior of a user walking in place to analyze body
movements during walking using data from sensors attached to the ankle and waist. It
involves the user walking in place, with one foot on the ground and the other off the
ground. The imaginary line formed by the foot on the ground and the waist sensor is called
“baseline A,” whereas that formed by the foot off the ground and the waist sensor is called
“baseline B.” The angle between the two reference lines is measured to determine the user
movement, as illustrated in Figure 3. The angle formed by the two baselines is calculated
as follows:

cosθ =
A·B

∥A∥∥B∥ , (1)

θ = cos−1
(

A·B
∥A∥∥B∥

)
, (2)

where (1) represents the dot product, and (2) represents the transformation of (1).
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Although the angle between the two baselines was used to determine the gait of the
user, using this method alone can cause malfunctions in certain situations. For instance, the
angle change that occurs while the user is standing, as shown in Figure 4, can be mistaken
for a walking motion. This confusion can arise when the user is performing a WIP motion
or raising and lowering their legs. To address these issues, this study presents a technique
for detecting the moment when a foot touches the ground and falls by attaching a collider
component to the 3D model. A collider is a physical collision-detection component in the
Unity game engine that precisely detects the interactions between the foot and the ground.
The “OnTriggerStay” function is activated when the foot comes into contact with the
ground, whereas the “OnTriggerExit” function is activated when it falls. In Unreal engine,
we can use “OnComponentBeginOverlap” and “OnComponentEndOverlap” functions.
This allowed us to precisely determine the user’s movement based solely on the internal
angle when the foot is not in contact with the ground. Figure 5 shows the process of
implementing WIP using the aforementioned internal angles.
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3.9. Designing the WIP User Interface

A visualization method was employed to display the captured motion data to users.
Figure 6a shows a 3D Unity model of the user’s body data collected via Mocopi, whereas
the user’s point of view while wearing the HMD and experiencing it is shown on Figure 6b.
Figure 7 shows how to visually verify the walking motion, and the angles of the right
and left feet. That is shown in Figure 6b as text on the top left and right corners of the
screen, respectively. A sub-camera was placed at the bottom right to track the entire body
and verify the direction of movement. The white dotted line at the center of the road was
generated based on the target data. The width of the road, marked with a yellow solid line,
was set to 1 m.
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4. Experiments
4.1. Experimental Setup

The experiment used the Vector3 values generated by traveling along the three pre-
created paths shown in Figure 8 to evaluate the performance of the proposed WIP technique
with Mocopi. The 1 m wide path was created using the Bézier Path Creator asset, which is a
free asset. Comparative data were extracted through comparisons with a treadmill, which is
a device, and the results are presented through graphs and values. The experiment included
16 participants of both sexes with varying ages, ranging from 20 to 70. The participants
were divided into two groups of eight each, using a between-subjects design comprising
Mocopi and treadmill conditions. To ensure that the participants did not gain knowledge
of the maps and the WIP technique during the experiment, they experienced either the
Mocopi or treadmill, and the maps were presented in a random order. Furthermore, an
objective survey was employed to evaluate both methods. The experiment was conducted
under the following conditions:

• Application: Unity 2021.3.8.f1.
• System specifications: AMD Ryzen 5 5600×/32 GB RAM/AMD RX 6700 XT GPU

with 12 GB of GDDR6 memory.
• HMDs: Meta Quest2 and VIVE Pro.
• Trackers: Mocopi and KAT Walk Mini S.
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To obtain the Vector3 values of the map, the position values were extracted point-
by-point in the CSV format for the x-, y-, and z-axes, with the y-axis set to zero to align
it with the ground. Table 2 summarizes the number and size of the Vector3 values of the
target path.

Table 2. Target path extraction data.

Path Butterfly Korean Peninsula Star

CSV Vector3 index 2681 2392 2067
Map size 44 × 43 m 34 × 58 m 72 × 70 m

The line renderer feature was used to visualize the user’s path and extract the collected
data in the CSV format, as shown in Figure 9. Only the x and z values were required for
data comparison; therefore, the y value was set to zero.
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4.2. Experimental Results
4.2.1. Performance Evaluations

This study employed ATE, a commonly used metric for path evaluations, using data
obtained from the target and actual path values of the user. The ATE is an important metric
in various applications and is primarily related to path tracking. It measures the error
between the target and user paths, wherein a smaller value indicates higher matching
between the paths.

The user index must remain constant to obtain an accurate cumulative distance ATE.
However, the obtained Vector3 index is always different because not all users travel the
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same path. In this study, new points were created after every 1 m based on the distance of
the user path to obtain accurate ATE values. Additionally, new points were created for the
target path at 1 m increments for the same environment, and the absolute path lengths are
listed in Table 3.

Table 3. Target path total distance (m).

Path Butterfly Korean Peninsula Star

Path distance 180 160 250

Sixteen users participated in the experiment, consisting of a variety of ages ranging
from their 20s to 60s, and included both genders. To ensure a fair trial, the participants
were split into two groups: eight users experienced the Mocopi and the other eight used
the treadmill.

To obtain the ATE values, the target and user path data were matched in a 1:1 ratio,
and ATE (m) was calculated by measuring and adding the distances between points.
Figure 10 illustrates the target (blue) and user (red) paths with each point matched. The
difference in the distance between the target and user paths is indicated by the green
line. Figure 11 illustrates the Mocopi, treadmill, and target paths for one of the users who
experienced the butterfly-shaped path, and Table 4 presents their ATEs. Comparisons with
the corresponding ATE values show that Mocopi was more accurate, with a mean ATE of
61.48 compared to 66.30 for the treadmill. However, the standard deviation between the
treadmill users is better. Figure 12 shows the Mocopi, treadmill, and target paths for one of
the users who experienced the Korean Peninsula-shaped path, and Table 5 presents their
ATEs. The average ATE of the treadmill users was 64.48, whereas that of Mocopi users was
63.59, indicating that Mocopi outperformed the treadmill. However, the standard deviation
between the treadmill users is better. Figure 13 illustrates the Mocopi, treadmill, and target
paths for one of the users who experienced the star-shaped path, and Table 6 lists their
ATEs. The average ATE of the treadmill was 64.48 points, whereas that of Mocopi was
63.59 points, indicating that Mocopi outperformed the treadmill; however, the standard
deviation between treadmill users was better.
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Table 4. ATEs for the butterfly-shaped path.

Mocopi Treadmill

User ATE User ATE

user1 50.24 user1 76.66
user2 63.73 user2 70.79
user3 61.84 user3 68.05
user4 78.35 user4 69.99
user5 57.01 user5 56.10
user6 53.75 user6 65.81
user7 67.22 user7 69.16
user8 59.66 user8 53.81
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Table 5. ATEs for the Korean Peninsula-shaped path.

Mocopi Treadmill
User ATE User ATE

user1 98.38 user1 49.83
user2 55.81 user2 70.58
user3 70.24 user3 53.18
user4 56.15 user4 67.97
user5 61.45 user5 58.91
user6 50.11 user6 86.61
user7 67.84 user7 61.78
user8 48.71 user8 66.94

Average 63.59 Average 64.48
Standard deviation 14.98 Standard deviation 10.76
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Table 6. ATEs for the star-shaped path.

Mocopi Treadmill

User ATE User ATE

user1 117.85 user1 70.45
user2 102.85 user2 105.00
user3 84.02 user3 112.73
user4 96.10 user4 126.35
user5 80.26 user5 104.38
user6 110.11 user6 99.64
user7 79.94 user7 100.01
user8 74.48 user8 75.48

Average 93.20 Average 99.26
Standard deviation 14.89 Standard deviation 17.21

By comparing the WIP performances of the Mocopi and treadmill users with the ATE
results, slight variations were observed among individuals; however, they were insufficient
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to be noticeable in VR. However, the graph and the tables indicate that some users recorded
higher than average ATE values. We investigated the causes for this through interviews, and
found that this was primarily caused by inexperience. Reasons other than poor treadmill
manipulation were identified as unwanted movements caused by the sensor reacting to
objects other than the feet, such as clothing, resulting in mis-operation.

4.2.2. User Evaluations

Although ATE figures provide statistical representations of the target and user paths,
they do not include several evaluation metrics such as user immersion, wearability, and
spatiality. This study comprehensively evaluated the user experiences of using the pro-
posed WIP in conjunction with Mocopi and a treadmill through a survey comprising nine
questions regarding immersion, wearability, convenient, reality, difficulty, responsiveness,
connectivity, freedom, and spatiality, as follows:

• Immersion: Is the level of immersion in your WIP experience satisfactory?
• Wearability: Did you experience any physical discomfort during your WIP experience?
• Convenience: Were you physically comfortable during your WIP experience?
• Reality: Are you satisfied with the realism of WIP?
• Difficulty: What were some of the challenges you encountered while trying out WIP?
• Responsiveness: Are you satisfied with the real-time movement of WIP?
• Connectivity: How would you evaluate the connection between the physical and

virtual worlds when using WIP technology?
• Freedom: What is your evaluation of the increased freedom provided by WIP?
• Spatiality: Are you satisfied with the space allocated in WIP?

Each question could be answered with a rating on a scale of 1–5, and a higher score
indicated a better evaluation. The survey was administered to all 16 participants.

Among the nine survey questions, as shown in Table 7, Mocopi scored higher than
the treadmill in four. The treadmill scored higher for immersion, realism, responsiveness,
and connectedness because it employed a normal walking motion on a slip pad rather than
just walking in place. However, the treadmill scored lower than Mocopi for wearability,
difficulty of use, ease of use, and space because it requires considerable energy to operate
and is bulky, making it difficult to move it from one place to another.

Table 7. Survey results.

Evaluation
Elements

Mocopi Treadmill

Average Std. dev Average Std. dev

Immersion 4.375 0.484 4.625 0.484
Wearability 4.625 0.695 4 0.707

Convenience 4.5 0.5 3.625 0.695
Reality 4.125 0.78 4.5 0.707

Difficulty 4.375 0.484 4.125 0.599
Responsiveness 4.25 0.433 4.625 0.484

Connectivity 3.875 0.599 4.5 0.5
freedom 3.875 0.599 4 0.5
Spatiality 4.75 0.433 3.375 0.484

5. Discussion
5.1. Limitations

The low-cost motion-capture device employed in this study, Mocopi, exhibits several
advantages. However, it is important to note that it also presents several technical limita-
tions. One such limitation is the potential for delays to occur in the real-time processing
and transmission of sensor data. This is largely due to the inherent limitations of data
transmission over Bluetooth connectivity. Such delays can potentially lead to a reduction
in the immersion and user experience of VR, which is a significant factor in this regard.
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This represents a significant challenge, particularly for VR applications that necessitate
dynamic and real-time responses. Consequently, future research should focus on technical
improvements to minimize this delay. Furthermore, the development of more reliable and
faster data transfer protocols is essential to address connectivity issues. These technologi-
cal advances will contribute significantly to the commercialization of VR technology and
improve the quality of the user experience.

One of the limitations of this study is the small sample size. The dataset used is
not large enough to allow for generalizability of the results. In particular, a larger and
more diverse sample is needed to assess the effectiveness of the algorithm in different
settings and conditions. This could be an important factor in assessing the universality and
reliability of the algorithm, and future research should be conducted using a larger sample.

5.2. Theoretical Implications

This research extends existing theories on VR technology through the development
of a low-cost VR tracking algorithm. In particular, it is significant in that it advances
our understanding of how to make VR technology more cost-effective and accessible. By
exploring the impact of low-cost technologies on the performance and user experience of
VR systems, this research strengthens the theoretical foundations of technology acceptance
models and user experience. Furthermore, it contributes to the theoretical debate on the
impact of technological innovation on user adoption by presenting different approaches to
lowering the barriers to VR technology through efficient cost structures.

5.3. Managerial Implications

The results of this study have significant implications for companies that are consider-
ing the commercial exploitation of VR technology. The development of low-cost algorithms
provides an opportunity to make VR technology accessible, especially to small and medium-
sized enterprises and startups with limited budgets. This will enable companies that are
interested in utilizing VR in education, training, marketing, product development, and
other areas to deliver high-quality VR experiences at a lower cost. The research also pro-
vides useful guidance for the development of marketing strategies to promote the adoption
of VR technology and reach a wider range of users. Companies can use the findings to
develop more affordable VR solutions and create strategies to increase user acceptance of
the technology.

5.4. Significance of the Results

The low-cost VR tracking algorithm developed in this research represents a significant
step forward in lowering the cost barrier for VR technology and making it accessible to a
wider range of users. By demonstrating that efficient tracking can be achieved at low cost,
it opens the door to a wider range of applications for VR technology in education, training,
and entertainment. This study also provides empirical evidence of the positive impact that
the development of a low-cost tracking solution has on the user’s VR experience. These
data are of significant value for theoretical discussions on technology acceptance models
and user experience. Future research can further develop these techniques and contribute
to the commercial utilization and widespread adoption of VR technology.

6. Conclusions

VR technology has significantly advanced over the years. Although improvements in
hardware performance have enhanced its visual impact, providing realistic and natural
interactions between the user and VR environment remains challenging. We aimed to
allow users to move freely between the real and virtual environments, thereby providing
an excellent experience without physical constraints.

This study employed Mocopi, a low-cost motion-capture device, to collect and analyze
user movements in real time. Mocopi comprises six small sensors that must be attached to
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the user’s body and can operate without external sensors. The proposed WIP algorithm can
control user movements in a VR environment more naturally without spatial constraints.

To compare the performance of the WIP algorithm, the participants were asked to
walk along three target paths using an expensive treadmill, and their ATE values were
compared. The results showed that Mocopi performed better than the treadmill. To further
evaluate the user experience, we conducted a user survey and found that the treadmill
was superior in terms of immersion and realism, whereas Mocopi was superior in terms of
spatiality, convenience, and wearability. These results demonstrate the superiority of the
proposed WIP algorithm when using Mocopi in VR environments.

In this study, we attempted to mitigate the limitations of the sample size by employing
multiple paths, including a star, butterfly, and peninsula shapes. Despite these efforts, we
recognize that the small sample size may affect the results of the study. In future studies,
we will strive to overcome this limitation by increasing the sample size.

This study strived to make immersive VR experiences more accessible by introducing
a low-cost, real-time, full-track technology that can reduce costs by at least 3 times and
up to 20 times compared with other WIP techniques. Thus, it can allow users to have an
excellent VR experience and break the boundaries between real and virtual environments
without incurring excessive costs. As a potential avenue for future research, it is necessary
to investigate the possibility of seamlessly experiencing real-world movements in a VR
environment without additional motion recognition devices and controllers.
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