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Abstract: During the operation of space gravitational wave detectors, the constellation configuration
formed by three satellites gradually deviates from the ideal 60◦ angle due to the periodic variations in
orbits. To ensure the stability of inter-satellite laser links, active compensation of the breathing angle
variation within the constellation plane is achieved by rotating the optical subassembly through the
telescope pointing mechanism. This paper proposes a high-performance robust composite control
method designed to enhance the robust stability, disturbance rejection, and tracking performance of
the telescope pointing system. Specifically, based on the dynamic model of the telescope pointing
mechanism and the disturbance noise model, an H∞ controller has been designed to ensure system
stability and disturbance rejection capabilities. Meanwhile, employing the method of an H∞ norm
optimized disturbance observer (HODOB) enhances the nonlinear friction rejection ability of the tele-
scope pointing system. The simulation results indicate that, compared to the traditional disturbance
observer (DOB) design, utilizing the HODOB method can enhance the tracking accuracy and pointing
stability of the telescope pointing system by an order of magnitude. Furthermore, the proposed
composite control method improves the overall system performance, ensuring that the stability of
the telescope pointing system meets the 10 nrad/Hz1/2 @0.1 mHz~1 Hz requirement specified for
the TianQin mission.

Keywords: space gravitational wave; breathing angle variation; telescope pointing mechanism; H∞

controller; HODOB; pointing stability

1. Introduction

In 2015, the LIGO (Laser Interferometer gravitational-wave Observation) team de-
tected gravitational waves for the first time, ushering in a new era of exploring gravitational
waves in the universe [1]. The LISA (Laser Interferometer Space Antenna) mission pro-
posed jointly by ESA and NASA consists of three spacecraft deployed on a heliocentric
orbit, aiming to detect space-based gravitational wave sources in the frequency range of
0.1 mHz to 1 Hz [2]. Similar to LISA, the TianQin project plans to deploy three spacecraft
in Earth’s orbit at an altitude of approximately 100,000 km, forming an equilateral triangle
constellation with an arm length of about 170,000 km. By utilizing a telescope system to
receive and transmit laser beams, a laser link is established between each pair of spacecraft.
The detection of space gravitational waves is achieved by measuring the variation in the
distance between two test masses [3].

During gravitational wave detection, the constellation formed by three spacecraft may
gradually deviate from the ideal equilateral triangle shape over time due to the influence
of celestial gravitational perturbations and initial orbital deviations. This deviation is
known as the breathing angle variation. After optimizing the constellation configuration
for stability, the TianQin constellation can control the breathing angle variation within a
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range of ±0.1◦ during each three-month observation window [4]. However, the variation
in the breathing angle remains significantly larger than the far-field beam width of the
telescope (about 5 µrad) [5], leading to a misalignment of the lines of sight for the two
spacecraft, and thereby affecting the normal detection of gravitational waves. Therefore,
to ensure the detection of gravitational waves, the TianQin mission specifies a pointing
stability requirement of 10 nrad/Hz1/2 in the frequency range of 0.1 mHz to 1 Hz [6] and
utilizes the pointing mechanism to actively compensate for the breathing angle variation.

Currently, in space gravitational wave detection, there are two pointing schemes used
to compensate for the breathing angle variation within the TianQin constellation. The
first scheme is the whole telescope pointing scheme, which involves using the telescope
pointing mechanism to rotate the entire mobile optical subassembly (MOSA, consisting of
a telescope, optical bench, gravitational reference sensor, telescope pointing mechanism,
supporting structures, etc.) to compensate for angular changes. The second scheme is the
in-field pointing scheme [7], which entails designing a rotatable mirror within the optical
system of the telescope to compensate for angular changes. However, the second scheme
increases the complexity of the telescope’s optical design and introduces additional stray
light [8], thereby affecting the precision of distance measurement. Therefore, using the
whole telescope pointing to compensate for the breathing angle variation becomes a feasible
solution.

In the whole telescope pointing scheme, the stability of the telescope pointing mech-
anism is compromised due to the influence of unfavorable conditions, such as model
uncertainties, disturbance torque noise, and nonlinear friction. Therefore, it is essential to
mitigate the impact of these adverse factors to improve the precision and stability of the
telescope pointing system. Currently, for the telescope’s high-precision pointing control
methods, Thomas et al. [9] have employed a combination of robust loop shaping and
disturbance observer methods to ensure robust stability across the entire operational range.
This approach enhances the performance of precision satellite systems and reduces the
servo error by a factor of 3.8. Wang et al. [10], using a stacked recursive neural network
adaptive controller, addressed the issue of insufficient control precision, achieving precise
pointing requirements at the nanoradian level between satellites and telescopes. Deng
et al. [11] designed a frequency-divided controller that coordinates the spacecraft attitude
control loop and the telescope attitude control loop, improving the overall performance
and pointing stability of the system. Cao et al. [12] proposed a closed-loop control method
for a fine stabilization system based on dual-port adaptive internal model control, enabling
the disturbance compensation of the space telescope’s fine stabilization system with lower
steady-state error and a broader frequency range. In addition, for robust control in space
applications, Serhii Khoroshylov et al. [13] proposed an attitude controller of a mini-SSAR
with a deployable reflector antenna, which ensures robustness against unmodeled dynam-
ics and frequency variations. Zhao et al. [14] proposed a layered sliding mode fault-tolerant
tracking control method based on a zero-sum game, which improved the response speed
and robustness of the system. Wu et al. [15] proposed a low-computation two-level trig-
gering adaptive control strategy to achieve accurate trajectory tracking and maintain the
boundedness of closed-loop signals.

However, the aforementioned studies mainly focus on the coordinated control be-
tween spacecraft attitude and telescope pointing, with relatively simple disturbance noise.
This may lead to a decline in control performance in the presence of multiple disturbances,
making it challenging for traditional control methods to ensure high-precision pointing
requirements. In terms of robust tracking control, the provided controller is not specifically
designed for multiple disturbances, and thus, such control methods may be insufficient
in suppressing these disturbances. To improve the system’s disturbance rejection capa-
bility, tracking accuracy, and pointing stability, a composite tracking control method that
guarantees the system’s robust stability and dynamics while attenuating and suppressing
multi-frequency disturbances has been proposed. This method has already been applied in
several engineering fields [16,17].
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In this paper, the problem of trajectory tracking in a telescope pointing system with
ultra-high precision and ultra-high pointing stability under multiple disturbances is inves-
tigated. A composite tracking control method is designed by introducing an H∞ controller
in the outer loop of the control system and integrating a robust disturbance observer in the
inner loop. This method aims to improve the disturbance rejection capability of the system
and ensure that the tracking accuracy and pointing stability of the telescope pointing sys-
tem meet the requirements of gravitational wave detection tasks. The main contributions
of this paper are summarized as follows:

1. Disturbance analysis: Based on the mechanism research, this paper systematically
analyzes the multiple disturbance noises of the telescope pointing system and estab-
lishes a specific disturbance mathematical model. This lays a solid foundation for
suppressing multiple disturbances and improving system pointing stability.

2. Controller design: Based on the dynamic model of the telescope pointing mechanism
and the multiple disturbance model, this paper designs a composite control controller.
By designing an H∞ controller, stability is ensured while suppressing external dis-
turbance noise. To relax the constraints of the feedback controller and enhance the
anti-interference capability of the telescope pointing system, an HODOB method
is proposed. By combining the H∞ controller and HODOB, it not only suppresses
and attenuates multiple interferences but also achieves satisfactory tracking accu-
racy and pointing stability level, compensating for the respiratory angle changes in
gravitational wave detection.

The paper is organized as follows: Section 2 establishes the dynamic models of the
telescope pointing mechanism and analyzes the models of the primary disturbance noises.
Section 3 is dedicated to presenting the primary contributions, where a composite control
scheme is proposed. In Section 4, the simulation results are provided to demonstrate the
effectiveness of the proposed scheme, and Section 5 concludes the paper.

2. Pointing Strategy and Model Establishment
2.1. Pointing Scheme and Maneuvering Requirements

In the scientific mode, to ensure the precision of space gravitational wave detection,
fewer movable components inside the spacecraft are preferred. Each spacecraft in the
TianQin mission consists of two MOSAs. To enhance the detection accuracy, we propose a
single MOSA pointing scheme, as illustrated in Figure 1a. One of the MOSAs is adjusted
through the telescope pointing mechanism to compensate for the breathing angle variation
θ within the TianQin constellation plane. Simultaneously, a pointing adjustment device is
also installed on the other MOSA as a backup mechanism.
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Figure 1. Pointing scheme for breathing angle compensation. (a) Pointing scheme. (b) Coordinate
system relationship.
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Additionally, the out-of-plane angle variations in the TianQin constellation are com-
pensated for by adjusting the spacecraft’s attitude using micro-propulsion devices; however,
this aspect is not considered in this paper. Given the complex coupling relationship be-
tween the spacecraft and the telescope, a decoupling analysis was conducted, treating them
separately. Through the design of a single-input–single-output (SISO) controller, control of
the telescope pointing mechanism’s single degree of freedom is achieved [18].

The spacecraft reference frame (Oi-xiyizi) and the inertial reference frame (O-XYZ) was
established, as shown in Figure 1b. The maneuvering requirements for telescope pointing
were computed using satellite orbit data [19].

The arm length rij between spacecraft i and j, where i, j ∈ (1,2,3), can be expressed in
an inertial reference frame.

rij =
∥∥rij

∥∥ =
∥∥Ri − Rj

∥∥, (1)

where Ri represents the position of the spacecraft SCi in the inertial reference frame. Define
the unit vector as nij = rij/|rij|. The angle αi between the sight lines of the telescopes in the
spacecraft SCi can be expressed as

αi = arccos(nij · nik) = arccos(
rij · rik∥∥rij
∥∥× ∥rik∥

). (2)

Substituting the changes in the satellite orbits in the inertial coordinate system equation
into Equation (2), the trajectory variations in the breathing angle among the three spacecraft
over three months can be obtained, as illustrated in Figure 2. It can be observed in the
figure that the breathing angle variation in the TianQin constellation did not exceed ±0.1◦

over the three months.

Sensors 2024, 24, x FOR PEER REVIEW 5 of 22 
 

 

. 

Figure 2. Time variations in the three breathing angles α1,2,3 of the constellation. 

2.2. Dynamic Model 

2.2.1. Structural Model 

To achieve ultra-high stability tracking compensation for the TianQin breathing an-

gle variation, stringent requirements were imposed on the structural design of the tele-

scope pointing mechanism. To ensure the stability of the pointing mechanism, a flexible 

bearing was chosen for the rotation axis, and high-precision piezoelectric actuators are 

used to drive the MOSA rotation in a direct-drive manner. Figure 3 provides the prelimi-

nary three-dimensional model of the telescope pointing mechanism in the TianQin mis-

sion. 

 

Figure 3. Three-dimensional model of the telescope pointing mechanism. 

2.2.2. Coordinate System Definition 

To facilitate the establishment of the dynamic model of the telescope pointing mech-

anism, we established the following coordinate systems as reference frames, and the spa-

tial relationships among these coordinate systems are illustrated in Figure 4. 

Figure 2. Time variations in the three breathing angles α1,2,3 of the constellation.

2.2. Dynamic Model
2.2.1. Structural Model

To achieve ultra-high stability tracking compensation for the TianQin breathing angle
variation, stringent requirements were imposed on the structural design of the telescope
pointing mechanism. To ensure the stability of the pointing mechanism, a flexible bearing
was chosen for the rotation axis, and high-precision piezoelectric actuators are used to
drive the MOSA rotation in a direct-drive manner. Figure 3 provides the preliminary
three-dimensional model of the telescope pointing mechanism in the TianQin mission.
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2.2.2. Coordinate System Definition

To facilitate the establishment of the dynamic model of the telescope pointing mecha-
nism, we established the following coordinate systems as reference frames, and the spatial
relationships among these coordinate systems are illustrated in Figure 4.
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Figure 4. Reference systems.

• The Constellation Reference Frame, CRF = {OC,cx,cy,cz}, with the origin located at the
center of mass of the spacecraft, where cz is perpendicular to the plane formed by the
incident laser vectors L2 and L3, cx is the bisector of the angles defined by the two
incident lasers, and cy satisfies the right-hand rule;

• Two Optical Reference Frames, ORF = {Ooj,oxj,oyj,ozj}. The coordinate origin is defined
on the rotation axis of the optical subassembly, and the center of mass of the optical
subassembly is also located at this point. The oxj axis is oriented along the symmetry
axis of the optical subassembly and points toward the laser emission direction. The oyj
axis is perpendicular to the oxj axis and points in the opposite direction of the angle
between the two optical subassemblies. The ozj axis coincides with the rotation axis of
the optical subassembly, following the right-hand rule;

• The Spacecraft Reference Frame, SRF = {OS,sx,sy,sz}. The coordinate origin is defined
at the center of mass of the entire spacecraft. The sx axis direction is between the
two telescopes, pointing in a direction that forms a 30◦ angle with the optical refer-
ence frames’ oxj axis direction. The sy axis direction is perpendicular to the sx axis
direction and coincides with the planes of the two optical components. The sz axis
direction is perpendicular to both the planes of the optical subassembly and follows
the right-hand rule.
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2.2.3. Mechanism Dynamics Model

The angular acceleration of the telescope pointing mechanism can be obtained accord-
ing to the angular momentum theorem:

.
HO = Jt

..
θO, (3)

where θO is the rotation angle of the pointing mechanism, and Jt is the moment of inertia.
According to the conservation of angular momentum,

.
HO = external torque—internal

torque. Consider using a preliminary second-order model to describe the dynamics of the
telescope pointing mechanism:

..
θO = −2ωNξ

.
θO − ω2

NθO + J−1
t (MO

T + DO
T )− J−1

t (M f
T + MSO

T + MEO
T )

ωN =
√

K
Jt

, ξ = B
2
√

KJt

, (4)

where ωN is the natural frequency, ξ is the damping coefficient, and K, B are the stiffness
and damping, respectively. MO

T is the driving torque generated by the piezoelectric actuator,
DO

T is the external disturbance torque acting on the pointing mechanism, primarily due

to the gravity gradient torque, M f
T is the internal friction torque of the telescope pointing

mechanism, MSO
T is the spacecraft reaction torque on the telescope pointing mechanism,

and MEO
T is the reaction torque of the test mass (TM) on the telescope pointing mechanism.

Since the TM is located inside the telescope pointing mechanism, the magnitude of the
reaction torque on the mechanism is equal to the torque applied to the TM.

2.2.4. Actuator Model

For the telescope pointing mechanism, the selection of its drive device has a signif-
icant impact on the performance of the mechanism. According to the requirements of
gravitational wave detection, the following restrictions are imposed on the drive device:
(1) no electromagnetic noise is allowed, and (2) requirements for driving force, stroke, and
precision must be met. Based on the above analysis, we chose a walking piezo actuator as
the drive device for the pointing mechanism, as shown in Figure 5a. Figure 5b illustrates
the working principle of the walking piezo actuator, where the motion displacement is
formed by the alternating interaction of two pairs of piezoelectric legs with the drive rod.
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The expression for the driving torque of a telescope pointing system is as follows:

MO
T = Fd × R, (5)

where R represents the moment arm, which refers to the distance between the actuator’s
point of action and the axis of rotation of the telescope pointing mechanism, and Fd
represents the driving force generated by the actuator. Figure 5c illustrates the equivalent
model of the piezoelectric actuator, from which a mathematical model can be derived. Due
to space limitations, this paper does not provide the specific derivation process [20].

Fx = Kxxp = Kxcpx∆U
F1 − 2Fx = M

..
xr + B

.
xr + Kxr

F1 = Bc
( .
xr −

.
xs
)
+ Kc(xr − xs)

F1 + Fd = Ms
..
xs + Bs

.
xs + Ksxs

, (6)

where Fx is the piezoelectric electromotive force, F1 represents the external force applied to
the piezoelectric actuator from the connection part, Kx is the equivalent spring coefficient,
cpx is the voltage coefficient, ∆U is the voltage difference, M, B, and K are the equivalent
mass, damping, and stiffness in the horizontal direction of the piezoelectric actuator, Kc
and Bc are the equivalent damping and stiffness of the connecting components, and Ms,
Bs, and Ks are the equivalent mass, damping, and stiffness, respectively, of the mechanical
stage in the horizontal direction.

2.3. Disturbance Analysis and Descriptions
2.3.1. Reaction Torque from the Spacecraft on the Telescope Pointing Mechanism

When the spacecraft adjusts its attitude in orbit, the forces and torques applied by
the micro-thrusters will have a certain impact on the telescope pointing mechanism. The
influencing torque MSO

T can be expressed as:

MSO
T = TOj

S Jt
.

ωSI, (7)

where ωSI represents the spacecraft’s inertial angular velocity in the SRF coordinate system,
which can be obtained through dynamic modeling of the spacecraft. TOj

S is the transforma-
tion matrix from the spacecraft to the pointing mechanism, and according to coordinate
definitions, the matrix is a rotation matrix about the ozj axis.

The attitude dynamics equations of a spacecraft:

.
ωSI = −J−1

S ωSI × JSωSI + J−1
S (MS

T + DS
T + DS

⊙press)

−J−1
S ∑

j=1,2

(
TS

OjJt
..
θ

j
O + TS

OjM
Oj
Ej + bS

j × TS
OjF

Oj
Ej )

, (8)

where JS is the spacecraft’s inertia matrix, MS
T is the torque provided by thrusters, DS

T is the
torque noise from thrusters, Ds

⊙press is the torque noise from solar radiation pressure, MOj
Ej

represents the torque generated on the TM, FOj
Ej represents the force generated on the TM,

bS
j denotes the position of the center of mass of the TM relative to the spacecraft, TS

Oj is the
transformation matrix between the telescope pointing mechanism and the spacecraft.

The solar radiation pressure torque on the spacecraft refers to the torque generated by
the pressure exerted by sunlight on the spacecraft’s surface. This torque induces deviations
from the pure gravitational orbital motion of the spacecraft. The solar radiation pressure
torque can be expressed as:

DS
⊙press =

n

∑
i=1

l × F⊙press, (9)
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where F⊙press is the solar radiation pressure, and l is the distance between the center of
pressure and the center of mass of the illuminated surface. The solar radiation pressure
torque model [21] used in this paper is depicted in Figure 6a. Additionally, in Equation (8),
the spacecraft is subject to the thrust noise from micro-propulsion thrusters [21], and its
noise model is illustrated in Figure 6b.
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2.3.2. Nonlinear Friction Torque

During the operation of the telescope pointing mechanism, the contact and movement
between various components can result in the presence of frictional forces. Frictional torque
induces speed fluctuations in the system, causing phenomena, such as dead-zone crawling,
nonlinearity, and steady-state errors when the system operates at low speeds. Considering
the trajectory of the breathing angle, the telescope pointing mechanism typically operates
at low speeds. The presence of nonlinear friction can prevent the telescope pointing system
from meeting high-precision pointing requirements. To enhance the control performance
of the system, it is necessary to reduce or eliminate the impact of friction on speed stability.

The LuGre model can accurately and comprehensively describe the static friction
characteristics and the presence of dynamic friction phenomena in the telescope pointing
mechanism [22]. This model employs an elastic bristle u to simulate the structure of the
contact surface, and the frictional torque can be represented as:

M f
T = λ0z + λ1

.
u + λ2v

.
u = v − u

∣∣v∣∣/g(v)
λ0g(v) = Fc + (Fs − Fc)e−(v/vs)

2
, (10)

where λ0 is the stiffness coefficient, λ1 is the damping coefficient, λ2 is the velocity-
dependent damping between the contact surfaces, Fc is the coulomb friction force, Fs
is the static friction force, v is the relative velocity between the contact surfaces, vs. is the
Stribeck velocity, u is the average deformation of the contact surface asperities, and g(v)
is a function related to the variable v. According to Equation (10), the friction force is a
disturbance related to the rotational speed of the pointing mechanism.

2.3.3. Gravity Gradient Torque

Each small mass element within the MOSA experiences the gravitational force of
the Earth. Due to the non-coincidence of the rotation center of the telescope pointing
mechanism with the center of mass of the spacecraft, the resultant gravitational force acting
on the entire MOSA does not pass through the center of mass of the spacecraft. The torque
caused by the gravitational gradient is referred to as the gravity gradient torque. The
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presence of the gravity gradient torque can degrade the tracking precision and stability of
the telescope pointing system. The torque model can be expressed as follows:

DG =
3µ

|r|5
r × (Jt · r), (11)

where µ is the gravitational constant of the Earth, and r is the vector pointing from the
center of the Earth to the center of the probe.

2.3.4. Other Noise

In addition to the aforementioned primary disturbance noises, the telescope pointing
system is also subject to other noise influences: (1) actuator drive noise, which is the torque
noise generated by the piezoelectric actuators in the telescope pointing mechanism [11], as
illustrated in Figure 7a; (2) sensor noise. To achieve angle measurements at the nanoradian
level, we utilized differential wavefront sensing (DWS) for angular measurements [23], with
the DWS signal serving as the feedback control signal for the telescope pointing system.
Figure 7b presents the DWS measurement noise [21].
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Based on the above analysis, the telescope pointing system is subject to a complex and
numerous set of disturbances, and these disturbance parameters may change continuously
with varying operational conditions. Consequently, relying on model parameter identifica-
tion to eliminate or reduce the impact of multiple disturbances on the telescope pointing
system may not be an optimal choice. Moreover, the disturbances affecting the system span
different frequency bands, posing a significant challenge for controller design. Traditional
anti-disturbance methods are primarily designed for single disturbance sources and are less
effective in attenuating and suppressing disturbances across multiple frequency bands. In
this paper, a high-performance controller is designed to ensure that the pointing stability of
the system meets the requirements of the TianQin mission when compensating for changes
in the breathing angle by the telescope pointing mechanism.

3. Design of Composite Control Method

To ensure that the telescope pointing mechanism achieves high-precision and stable
tracking under multiple disturbances, this section proposes a composite tracking control
method. Firstly, an H∞ controller is designed to ensure the robust stability of the system,
enhance disturbance rejection, and suppress sensor noise. Subsequently, a method based on
H∞ norm optimization disturbance observer is designed to further suppress the disturbance
noise of the telescope pointing mechanism, especially non-linear friction. Figure 8 illustrates
the block diagram of the composite control method for telescope pointing.
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3.1. H∞ Mixed Sensitivity Controller Design

In general, system models often involve uncertainties, making the robust stability
of the control system crucial. H∞ is a frequency-domain optimization method used for
designing robust controllers to ensure stability and meet certain performance requirements
in the presence of uncertainties and disturbances. In this paper, we have designed an H∞
mixed-sensitivity controller to address disturbance rejection and robust stability issues.
The H∞ mixed-sensitivity control diagram is illustrated in Figure 9.
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In Figure 9, K(s) is the designed feedback controller, Pn(s) is the nominal model of
the plant, r is the reference input model, n represents the sensor noise, and ds, df, dg, and
dp respectively denote the spacecraft reaction torque, nonlinear friction, gravity gradient
torque, and piezoelectric actuator noise.

The sensitivity function S0(s) and complementary sensitivity function T0(s) of the
system are defined as follows:

S0(s) =
1

1 + Pn(s)K(s)
, T0(s) =

Pn(s)K(s)
1 + Pn(s)K(s)

. (12)

The sensitivity function S0(s) characterizes the transmission influence of the external
input r on the control error e and the transmission influence of the measurement noise
n on the measurement output y. The smaller the singular values of S0(s), the stronger
the system’s tracking ability and the better the robust performance in suppressing input
disturbances. To ensure small singular values of S0(s), it is required to minimize the ∞-norm
of the sensitivity function, that is,

∥WS0(jω) · S0(jω)∥∞ < 1, ∀ω, (13)

where WS0(s) is a weighted function of S0(s), aiming to improve the tracking accuracy and
attenuate low-frequency disturbance.

The complementary sensitivity function T0(s) characterizes the robust stability of the
system in response to model multiplicative uncertainty. The smaller the singular values of
T0(s), the better the robust performance. To ensure the stability of the telescope pointing
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system under multiplicative perturbation ∆(s), according to the small gain theorem [24],
the robust stability condition of the closed-loop system is given by:

σ(∆(jω)T0(jω)) < 1, ∀ω, (14)

where σ represents the maximum singular value. Assuming that the upper bound function
of the magnitude frequency response for σ(∆(jω)) < WT0(jω) is WT0(s), the sufficient
condition for robust stability is

∥WT0(s)T0(s)∥∞ < 1, (15)

where WT0(s) represents the weighting function of T0(s), which represents the robustness
against system uncertainty and measurement noise.

Due to the relationship S0(s) + T0(s) = 1 between S0(s) and T0(s), it is not possible
for both of them to be small simultaneously. Therefore, there is a trade-off between the
robustness and the performance of the system. In practical applications, a mixed sensitivity
performance index is utilized for representation [25].

min
K(s)

∥∥∥∥WS0(s)S0(s)
WT0(s)T0(s)

∥∥∥∥
∞
< γ0, (16)

where 0 < γ0 < 1 represents the performance level of H∞. Based on the above analysis,
the weighted function WS0(s) should possess low-pass characteristics to attenuate low-
frequency disturbances. Meanwhile, the weighted function WT0(s) should possess high-
pass characteristics to handle multiplicative disturbances and sensor noise.

The TianQin space gravitational wave detection frequency range is from 0.1 mHz to
1 Hz. In order not to affect the normal measurement of gravitational waves, the pointing
control frequency of the telescope can be designed outside of the scientific frequency range.
Specifically, the weighting function can be chosen as:

WS0(s) =
0.3 s+381.6

s+3.816 × 10−4 , WT0(s) =
s+2.309 × 102

0.001s+4.619 × 102 . (17)

By utilizing the robust toolbox of Matlab, the H∞ controller can be computed as
follows:

K(s) =
1.037 × 1013s3 + 4.788 × 1018s2 + 2.253 × 1019s+3.661 × 1019

s4 + 5.865 × 105s3 + 5.901 × 1010s2 + 6.547 × 1014s + 2.498 × 1011 . (18)

Figure 10 shows the frequency response of the weighting function and sensitivity
function. In the low-frequency region (−∞∼400 rad/s), the amplitude of S0(s) is small,
which shows that H∞ control can eliminate the steady-state error in the system and suppress
low-frequency disturbance to a certain extent. Similarly, in the high-frequency region
(400 rad/s∼∞), the magnitude of T0(s) is also small to prevent the telescope pointing
system from becoming sensitive to high-frequency noise.

The unmodeled part of the telescope pointing system contains a delay element (∆(s) =
e−0.001s − 1). Figure 11 illustrates that the system uncertainty ∆(s) is enveloped by WT0(s)),
indicating that the designed feedback controller ensures the stability of the telescope
pointing system.
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3.2. Optimized Design of Disturbance Observer

It can be seen in Figure 11 that in the low-frequency band, WT0(s) is not completely
close to the system uncertainty ∆(s). This implies that the low-frequency disturbance
suppression capability does not meet the ultra-high pointing stability requirements of the
telescope pointing system. The reason for this lies in the presence of nonlinear friction;
the H∞ controller cannot completely suppress the influence of nonlinear friction torque.
To enhance the telescope pointing system’s ability to suppress nonlinear friction torque,
a disturbance observer (DOB) was introduced to the inner loop of the control system.
Additionally, to relax the constraints of the feedback controller and enhance the system’s
disturbance rejection capability, the H∞ norm was utilized to optimize the filter Q(s) of the
DOB system.

3.2.1. Analysis of the Two-Degrees-of-Freedom System with DOB

The feedback control system with the DOB system is shown in Figure 12, which
consists of the DOB inner loop and the outer loop of the general feedback controller K(s). In
the figure, r, d, ξ, and y are the reference input, disturbance, and DWS measurement noise
and output signals, respectively.
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Figure 12. Feedback control system with DOB.

The purpose of DOB is to eliminate the impact of external disturbance and model
mismatch on the system. The low-pass filter Q(s) not only makes the inverse model
physically realizable but also suppresses measurement noise and ensures the system’s
robust stability to model mismatch. When matching the model (Pn = P), the output
equation of the two-degree-of-freedom system is

y =
Pn(s)K(s)

1 + Pn(s)K(s)
r +

Pn(s)(1 − Q(s))
1 + Pn(s)K(s)

d +
Pn(s)K(s) + Q(s)

1 + Pn(s)K(s)
ξ. (19)

From Equation (19), it can be inferred that the influence of system disturbances and
measurement noise on the system output is not only related to the filter Q(s) but also to
the external feedback system of the system. The sensitivity function and complementary
sensitivity function of a two-degrees-of-freedom system are defined as follows: S(s) = 1−Q(s)

1+Pn(s)K(s)
= S0(s) · SDOB(s)

T(s) = Pn(s)K(s)+Q(s)
1+Pn(s)K(s)

= T0(s) + S0(s) · TDOB(s)
, (20)

In Equation (20), SDOB(s) = 1 − Q(s)) and TDOB(s) = Q(s) represent the sensitivity and
complementary sensitivity functions of the inner-loop return DOB system, respectively.

3.2.2. Evaluation Function Definition

1. Evaluation function for a two-degree-of-freedom system:

According to Equations (19) and (20), the impact of disturbance d on the output de-
pends on the sensitivity function S(s), and the effect of sensor noise ξ on the output depends
on the complementary sensitivity function T(s). Meanwhile, based on the small gain the-
orem (see Equation (14)), the robust stability conditions of the closed-loop system also
depend on T(s). In a two-degrees-of-freedom control system, we define the performance
function of the disturbance observer with order and structure constraints as [26]:

maxγ, min
Q(s)

∥∥∥∥[ γWS(s)S(s)
WT(s)T(s)

]∥∥∥∥
∞
=

maxγ, min
Q(s)

∥∥∥∥∥
[

γWS(s)(1 + Pn(s)K(s))
−1(1 − Q(s))

WT(s)(Pn(s)K(s) + Q(s))(1 + Pn(s)K(s))
−1

]∥∥∥∥∥
∞

< 1
. (21)

In the evaluation function of the two-degrees-of-freedom system, the transfer function
has a complex form, especially concerning the complementary sensitivity function related
to the robust stability conditions. Due to the robust stability conditions and structural
constraints, this H∞ control problem cannot be directly solved through systematic methods.
It is necessary to transform this problem into a form that can be systematically solved.
The performance function of the two-degrees-of-freedom system can be converted into the
performance function of the inner-loop DOB system for solving.

2. Evaluation function for the inner loop DOB system:
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The inner-loop DOB system, as indicated by the red dashed box in Figure 12, has an
input–output equation when the controlled object and the model are consistent (Pn = P):

y = P
1+Q[P−Pn]P−1

n
u − P(1−Q)

1+Q[P(s)−Pn]P−1
n

d − PQ
Pn+Q[P−Pn]

ξ

= P(s)u − P(s)(1 − Q(s))d − Q(s)ξ
. (22)

In the DOB system, without considering the outer loop, disturbances d and detection
noise ξ pass through the sensitivity function (SDOB(s) = 1 − Q(s)) and complementary
sensitivity function (TDOB(s) = Q(s)) of the DOB system, respectively, affecting the system.
To ensure that the system was not influenced by external disturbances and measurement
noise, the terms involving d and ξ in the equation above had to be minimized. This involved
making 1 − Q(s) and Q(s) sufficiently small; however, the sum of these two terms is always
equal to 1, making it impossible for both to be minimized simultaneously. Therefore, a
trade-off needed to be considered during the design. Similar to the H∞ control mixed
sensitivity problem, a weighted function was used to address the frequency trade-off issue.
The evaluation function for the DOB system is defined as follows:

maxγ, min
Q(s) ∈ Ωk

Q(s) ∈ RH∞

∥∥∥∥[γWC(s)(1 − Q(s))
WQ(s)Q(s)

]∥∥∥∥
∞
< 1. (23)

The evaluation Function (23) involves complex norm conditions and constraints related
to orders and relative orders, making it impractical to solve using standard H∞ control
problem-solving methods. Reference [27] transformed the optimization problem with
order constraints into a standard H∞ control problem. Thus, Equation (23) can be further
transformed into an unconstrained optimization problem:

maxγ, min
K̃(s)

∥∥∥∥∥
[

γWC(s)(1 + P̃(s)K̃(s))
−1

WQ(s)P̃(s)K̃(s)(1 + P̃(s)K̃(s))
−1

]∥∥∥∥∥
∞

< 1, (24)

where
∼
P(s) and

∼
K(s)) represent the virtual plant and virtual controller of the open-loop

system. This problem, without any order constraints and satisfying the assumptions of the
standard problem, can be solved systematically using an optimization algorithm to obtain
the optimal filter Q(s). This design approach not only meets all the order requirements of
DOB’s filter Q(s), such as order conditions, relative order conditions, and internal model
order conditions, but also ensures global optimality and convergence in the systematic
solving process.

3. Transformation of evaluation functions:

In the performance functions of the two-degrees-of-freedom system (see Equation (21))
and the DOB system (see Equation (23)), there is a fundamental difference in terms of
robust stability. However, in terms of form, it is possible to transform the performance
function of the two-degrees-of-freedom system into that of the DOB system. The specific
steps are as follows:

On one hand, the condition ∥WT(s)T(s)∥∞ < 1 in Equation (21) is a sufficient condition
for the robust stability of the system. By the sensitivity function S(s) and the properties of
the absolute value of complex numbers, we can derive the inequality:

|Q(jω)| <
∣∣∣W−1

T (jω)(1 + L(jω))
∣∣∣− |L(jω)|, ∀ω, (25)

where L(s) = Pn(s)C(s) is the open-loop transfer function of the feedback system at the
nominal state, only if the filter Q(s) satisfies this inequality, the entire control system will be
stable. In other words, Equation (25) is a sufficient condition for the robust stability of the
closed-loop system. Choosing a stable weighting function WTD(s) that satisfies
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∣∣∣W−1
TD(jω)

∣∣∣ < ∣∣∣W−1
T (jω)(1 + L(jω))

∣∣∣− |L(jω)| ≜ E(ω), ∀ω. (26)

The sufficient condition for robust stability in Equation (25) can be reformulated as

∥WTD(s)Q(s)∥∞ < 1. (27)

On the other hand, the term max γ, min
Q(s)

∥γ·WS(s)S(s)∥∞ < 1 in Equation (21) repre-

sents the performance evaluation function for disturbance rejection. According to Equation (20)
with T(s), the evaluation function can be expressed as:

maxγ, min
Q(s)

∥∥∥γ · Ws(s)(1 + L(s))−1(1 − Q(s))
∥∥∥

∞
< 1. (28)

Choose a weight function WSD(s) that satisfies∣∣∣Ws(jω)(1 + L(jω))−1
∣∣∣ ≤ |WSD(jω)|, ∀ω. (29)

Then, the sufficient condition of Formula (28) can be expressed as

maxγ, min
Q(s)

∥γ · WSD(s)(1 − Q(s))∥∞ < 1. (30)

According to Equations (27) and (30), the evaluation function of the two-degrees-of-
freedom system can be expressed as

maxγ, min
Q(s)

∥∥∥∥[γWSD(s)(1 − Q(s))
WTD(s)Q(s)

]∥∥∥∥
∞
< 1. (31)

Equation (31) is the same as the evaluation function for the DOB system (see Equation (23)).
Therefore, the original design problem for the two-degrees-of-freedom system’s filter Q(s)
(see Equation (21)) can be transformed into a standard design problem for the inner-loop
DOB system. The optimal filter for Equation (31) can be obtained through the standard H∞
control framework (see Equation (24)).

3.2.3. Filter Design

In the HODOB system, the choice of the weighting function in the optimal filter Q(s)
is crucial. First, considering the model uncertainties, for the telescope pointing system, the
unmodeled part includes the system delay and parameter variations in the dynamic model
(rotational inertia and rotational stiffness). The curve in Figure 13 reflects the frequency
and amplitude variations in model perturbations caused by uncertainties in the rotational
inertia and rotational stiffness. Considering the possible parameter variations in Figure 13,
the upper limit function WT(s) for uncertainties satisfying the frequency characteristic
condition |∆(jω)| < |WT(jω)| can be obtained. As shown in the figures, it is verified that
the function

WT(s) =
(s + 140)(s + 2800)

2.5 × 106 , (32)

can be used as an upper limit function.
The choice of WTD(s)) should satisfy Equation (26), i.e., |W−1

TD(jω)|<E(ω)| approach-
ing E(ω) as closely as possible at high frequencies (beyond the cutoff frequency). In
addition, the relative order of W−1

TD(s) should be equal to the relative order of the open-loop

system’s controlled virtual plant
∼
P(s). According to the dynamic model of the telescope

pointing mechanism in Section 2.3, the order of the controlled plant is 2. Considering the
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overall order n = 3 and the relative order q = 1 of the filter Q(s), the weighted function
WTD(s) that satisfies Equation (26) can be chosen as:

WTD(s) =
s2 + 2700s + 8.1 × 104

2 × 106 . (33)
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TD(s).

The selection of WSD(s) considers the overall order of Q(s) as n = nw + k − 1, where nw
is the order of WSD(s) and k is the relative order of the controlled object. In the suboptimal
solution, when maximizing γ to approach the optimal solution, the order is reduced by
1 [27]. Therefore, the weighting function WSD(s)) for low-frequency disturbance rejection
performance can be chosen as:

WSD(s) =
0.5(s + 1000)2

10(s + 0.001)2 . (34)

According to Equations (33) and (34), the optimal filter Q (s) can be obtained by using
a robust control toolbox in Matlab (version R2021b) software

Q(s) =
1.9845 × 106s + 4.316 × 108

s3 + 3129s2 + 1.9845 × 106s + 4.316 × 108 . (35)
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The above formula satisfies the order condition n = 3 and the relative order condition
k = 2. For the general quadratic coefficient filter design [28], the form that satisfies the same
conditions is

Qb(s) =
3σs + 1

(σs)3 + 3(σs)2 + 3(σs) + 1
(36)

We chose σ = 0.005 and compared the low-frequency characteristics of this filter with
the optimal filter from Equation (35) while ensuring consistency in the high-frequency
characteristics.

Figure 15 presents a comparison of the low-frequency performance between 1 − Q(s)
and 1 − Qb(s). In the frequency range below 900 rad/s, the magnitude of 1 − Q(s) is smaller
than that of 1 − Qb(s). Specifically, in the frequency range below 200 rad/s, the amplitude
difference is approximately 20 dB. This implies that under the same order condition, the
disturbance suppression capability of the filter Q(s) optimized by the H∞ norm is 10 times
higher than that of the traditional filter Qb(s).
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4. Simulation and Analysis

This paper constructed a dynamic model of the telescope pointing mechanism in
Matlab/Simulink (version R2021b) software, introduced disturbance noise into the model,
and validated the effectiveness of the control method through numerical simulations. The
reference signal in the simulation was derived from the respiratory angle variation in the
TianQin constellation plane, using the calculated respiratory angle variation from orbital
data as the ideal reference angle, as shown in Figure 2. The main parameters used in the
simulation are listed in Table 1.

Table 1. Key simulation parameters.

Parameter Value Parameter Value

Jt 15 kg·m2 (FOj
Ej )max 5.7 × 10−9 N

Js
Diag{800,800,100}

kg·m2 (MOj
Ej )max 3 × 10−11 Nm

ωN 2.9439 rad/s bS
j 3.6 × 10−1 m

ξ 0.9058 µ 398,600.44 km3/s2

In the numerical simulations, the tracking errors of the telescope pointing mecha-
nism were compared under three scenarios: without DOB, traditional DOB design, and
optimized DOB design, as shown in Figure 16a. In the graph, it can be observed that
the tracking accuracy of the telescope pointing mechanism can be improved by approx-
imately one order of magnitude using the HODOB method compared to the traditional
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DOB method. Converting the tracking errors into power spectral density, the simulation
results in Figure 16b demonstrate that the use of HODOB significantly outperformed the
traditional DOB in suppressing disturbance noise. This ensures that the stability of the tele-
scope pointing system meets the pointing requirements of 10 nrad/Hz1/2 for the TianQin
mission.
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are compared. (a) The tracking error. (b) The pointing stability.

To verify the effectiveness of the proposed composite control method, a comparison
was made between the HODOB-based H∞ and the HODOB-based PID. Figure 17 illustrates
the comparison results of the stability of the telescope pointing system under these two
control methods. It can be observed in the figure that, within the detection frequency range,
the proposed composite control method performed better in terms of pointing stability
compared to the HODOB-based PID. In other words, the proposed composite controller
exhibited greater robustness against multi-frequency band disturbances, thereby further
enhancing the control performance of the telescope pointing system.
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5. Conclusions

This paper presents a study of the high-precision pointing and tracking problem
of a telescope pointing system subject to multiple disturbances. Addressing the model
uncertainties and multiple disturbance challenges faced by the telescope pointing system,
the study proposes a high-performance robust composite control approach, aiming to
enhance the system’s robust stability and disturbance rejection capabilities. Firstly, the
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dynamic models for the telescope pointing mechanism and the actuator were established,
and an analysis of the primary disturbance noise models affecting the telescope pointing
system was conducted. Subsequently, considering the system’s uncertainties and torque
disturbances, an H∞ mixed-sensitivity controller was designed. Additionally, to further
attenuate and suppress nonlinear friction torque noise, an H∞ norm-optimized disturbance
observer was introduced. The simulation analysis indicates that the HODOB method,
compared to the traditional DOB design, improved the system’s tracking accuracy and
pointing stability by an order of magnitude. Furthermore, the proposed composite control
method enhanced the overall performance of the system, ensuring that the stability of the
telescope pointing system far exceeds the requirements of the TianQin mission.

Therefore, utilizing this composite control approach enables the telescope pointing
system to exhibit excellent control performance in terms of tracking accuracy, pointing
stability, and robustness against multiple disturbances. This is of good reference value for
the pointing control of the space gravitational wave detection’s respiration angle compen-
sation. In our further works, we will conduct experimental research on the drive device of
the telescope pointing system to validate the effectiveness of the control algorithms and
improve the operational stability of the drive device.
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