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Abstract: Checkpoint inhibitors can be a highly effective antitumor therapy but only to a subset of
patients, presumably due to immunotherapy resistance. Fluoxetine was recently revealed to inhibit
the NLRP3 inflammasome, and NLRP3 inhibition could serve as a target for immunotherapy resis-
tance. Therefore, we evaluated the overall survival (OS) in patients with cancer receiving checkpoint
inhibitors combined with fluoxetine. A cohort study was conducted among patients diagnosed with
lung, throat (pharynx or larynx), skin, or kidney/urinary cancer treated with checkpoint inhibitor
therapy. Utilizing the Veterans Affairs Informatics and Computing Infrastructure, patients were
retrospectively evaluated during the period from October 2015 to June 2021. The primary outcome
was overall survival (OS). Patients were followed until death or the end of the study period. There
were 2316 patients evaluated, including 34 patients who were exposed to checkpoint inhibitors
and fluoxetine. Propensity score weighted Cox proportional hazards demonstrated a better OS in
fluoxetine-exposed patients than unexposed (HR: 0.59, 95% CI 0.371–0.936). This cohort study among
cancer patients treated with checkpoint inhibitor therapy showed a significant improvement in the
OS when fluoxetine was used. Because of this study’s potential for selection bias, randomized trials
are needed to assess the efficacy of the association of fluoxetine or another anti-NLRP3 drug to
checkpoint inhibitor therapy.

Keywords: checkpoint inhibitors; NLRP3; PD-1/L1 immunotherapy; fluoxetine

1. Introduction

The immune system plays a critical role in defending the body against cancer; how-
ever, neoplastic cells’ ability to evade immune surveillance is a hallmark of cancer [1]. A
major mechanism of immune evasion by cancer cells involves dysregulated expression of
immune checkpoint proteins. Inhibition of immune checkpoint proteins has been hailed as
a promising therapeutic strategy for activating therapeutic antitumor immunity [2]. Among
the plethora of immune checkpoint proteins, inhibition of programmed cell death 1 receptor
(PD-1) or its ligand, programmed cell death receptor ligand 1 (PD-L1) has been extensively
studied, and clinical trials have established the efficacy and durability of PD-1/PD-L1
inhibitors [3–6]. Despite the dramatic clinical responses, the benefit of PD-1/PD-L1 in-
hibitors is limited to a subset of patients due to primary or acquired resistance [7,8].
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The mechanism(s) of resistance and evaluating additional targets or adjuvants to
enhance PD-1/L1 therapy effectiveness is a critical research area. Recently, several inflam-
matory cytokines have been implicated in the pathogenesis of immunotherapy resistance.
Inhibiting inflammatory cytokines has been proposed as a potential therapeutic strategy to
augment the clinical efficacy of immunotherapeutic agents and to expand the number of
patients who could benefit from immune checkpoint-inhibiting strategies [9–13]. Among
these inflammatory mediators is the NLR pyrin domain-containing protein 3 (NLRP3)
inflammasome, an intracellular protein complex of the innate immune system that senses
and responds to an array of exogenous and endogenous danger signals [14]. The re-
cently identified tumor-intrinsic PD-L1/NLRP3 inflammasome signaling pathway suggests
that NLRP3 inflammasome inhibition could be a therapeutic target when combined with
PD-1/PD-L1 immunotherapy [15,16]. PD-1 blockade leads to CD8+ T cell activation and
NLRP3 inflammasome activation, which results in the integration of granulocytic myeloid-
derived suppressor cells (PMN-MDSCs) into tumors, and, ultimately, a tumor-permissive
environment [15,16]. Therefore, preventing NLRP3 inflammasome activation, pharma-
cologically, could augment the efficacy of PD-1/PD-L1 immunotherapy and potentially
improve clinical responses and outcomes [16,17].

The NLRP3 inflammasome has been implicated in the pathogenesis of an array of
inflammatory diseases, and the potential of NLRP3 inhibition as a therapeutic strategy for
these diseases is highlighted by the multitude of research and clinical trials [18–23]. In
addition to the myriad of new therapeutic agents developed to target NLRP3, fluoxetine
(FLX), an FDA-approved drug for treating clinical depression, has been recently identified
to bind [24] and inhibit NLRP3 [24–26]. Of note, several preclinical studies have also
highlighted both the independent and synergistic antitumor effects of fluoxetine, suggesting
its use in cancer therapy [27–30]. Given the preclinical research suggesting an enhanced
therapeutic effect of PD-1/L1 therapies when combined with NLRP3 inhibition, we test
the effect of patients taking FLX, a previously discovered NLRP3 inhibitor, on overall
survival among patients treated with PD-1/L1 immunotherapy within the U.S. Department
of Veterans Affairs.

2. Results
2.1. Baseline Characteristics

A total of 2316 patients diagnosed with lung (1598), skin (231), throat (182), liver (106),
and urinary (199) cancer and treated with anti-PD-1/L1 therapy (atezolizumab, avelumab,
durvalumab, nivolumab, or pembrolizumab) were included in the study. Of these PD-1/L1
treated patients, 34 were exposed to fluoxetine when the checkpoint therapy was initiated.
Patients were mostly white (77.68%) and male (97.71%), with a mean age of 68 years
old. Most patients (1959–84.6%) had an Eastern Cooperative Oncology Group (ECOG)
Performance Status (PS) score of 0 or 1 at baseline. Radiation, chemotherapy, or surgery
was identified in 2102 (90.8%) patients (Supplementary Table S1).

To reduce selection bias and minimize differences between the cohorts, we used
propensity score weighting to create cohorts with similar baseline characteristics. The
gradient-boosted propensity model included age, race, gender, body mass index, depres-
sion, Charlson Comorbidity Index, SEER stage, ECOG performance scores at the date of
diagnosis, primary cancer site, year and type of checkpoint therapy, and the number of
prior treatments (Supplementary Table S2). Standardized differences are generally well
below 0.2, indicating covariate balance between the groups. However, depression is poorly
matched between cohorts (standardized difference = 0.643).

2.2. Fluoxetine and PD-1/PD-L1 Therapy Improves Overall Survival (OS) versus PD-1/PD-L1 Alone

Figure 1 displays the PS-weighted Kaplan–Meier survival curves. The
FLX+PD-1/PD-L1 cohort reveals a consistent survival benefit across the entire follow-
up time. The median survival time for those with FLX+PD-1/PD-L1 was 523 days versus
317 days for those with PD-1/PD-L1 alone (Figure 1). Patients exposed to fluoxetine and
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PD-l/PD-L1 therapy had a significantly better OS than those with PD-1/PD-L1 alone in
the PS-weighted Cox proportional hazards model (HR 0.59, 95% CI 0.371–0.936). At the
1-year endpoint, we found a trend toward benefit in OS among the FLX+PD-1/PD-L1
treated patients that did not reach the statistical significance threshold (HR 0.606, 95% CI
0.362–1.015). Patients treated with FLX+PD-1/PD-L1 did have a statistically significant
survival advantage, compared to those with a PD-1/PD-L1 alone, at the 2-year endpoint
(HR 0.60, 95% CI 0.376–0.958) (Table 1).
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As an additional analysis, we present the restricted mean survival time (RMST) cal-
culated on the propensity score matched data. The RMST is a useful measure to quantify
the treatment effect without making assumptions about the underlying distribution of
survival times. Further, it provides a readily interpretable result in terms of additional
survival time. Propensity score matched data were used because RMST analysis is not
adjusted for baseline covariates, and matching minimizes the differences between groups
allowing a reasonable comparison without multivariate model adjustment. The matched
data were generally well balanced, but three covariates did exceed the 0.2 threshold (prior
radiation, 0.245; BMI < 18.5, 0.246; depression, 0.635), which is the target for PS matching
(Supplementary Table S3). Analysis of the restricted mean survival time (RMST) using the
maximum time window (1484 days) showed an average increased survival benefit for those
treated with FLX+PD-1/PD-L1 for 287 days (95% CI 48.1–525.8, p = 0.019, Table 2). Using a
1-year (365-day) follow-up period, we found an average survival benefit for those treated
with FLX+PD-1/PD-L1 of 62.6 days (95% CI 16.6–108.6, p = 0.008), and using a 2-year
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(730-day) follow-up period, we found a survival benefit of 137 days (95% CI 29.7–244.4,
p = 0.012) (Table 2).

Table 1. Propensity score weighted Cox model: All cancers.

Variable All Follow Up HR (95% CI) 1 yr HR (95% CI) 2 yr HR (95% CI)

FLX +PD-1/L1 vs. PD-1/L1 alone 0.59 (0.371–0.936) 0.606 (0.362–1.015) 0.6 (0.376–0.958)
Age 1.002 (0.997–1.008) 1.001 (0.995–1.008) 1.002 (0.997–1.008)

Race: Other/unknown vs. Black 1.569 (1.188–2.072) 1.781 (1.331–2.382) 1.587 (1.195–2.108)
White vs. Black 1.282 (1.128–1.456) 1.33 (1.137–1.555) 1.258 (1.103–1.435)

Sex: Male vs. Female 0.958 (0.703–1.306) 1.056 (0.711–1.571) 0.977 (0.703–1.357)
BMI: 18.5–24.9 vs. <18.5 0.779 (0.648–0.936) 0.85 (0.678–1.066) 0.809 (0.666–0.983)

25–29.9 vs. <18.5 0.655 (0.543–0.79) 0.691 (0.547–0.874) 0.678 (0.554–0.829)
30+ vs. <18.5 0.669 (0.55–0.814) 0.687 (0.538–0.878) 0.684 (0.554–0.844)

Missing vs. <18.5 1.498 (0.498–4.504) 2.377 (0.991–5.704) 1.724 (0.61–4.868)
Depression 0.978 (0.869–1.101) 0.988 (0.86–1.136) 0.989 (0.876–1.117)

Charlson comorbidity index 1.051 (1.036–1.067) 1.06 (1.042–1.08) 1.056 (1.04–1.072)
seer summary: localized vs. distant

metastasis 0.978 (0.841–1.137) 0.841 (0.701–1.009) 0.943 (0.804–1.106)

Regional vs. distant metastasis 0.938 (0.837–1.052) 0.863 (0.753–0.989) 0.894 (0.793–1.007)
ECOG performance at diagnosis

ECOG 1vs. 0 1.06 (0.953–1.179) 1.088 (0.957–1.238) 1.076 (0.963–1.203)

ECOG 2 vs. 0 1.277 (1.084–1.505) 1.379 (1.14–1.668) 1.281 (1.077–1.523)
ECOG 3 vs. 0 1.544 (1.134–2.102) 1.748 (1.278–2.39) 1.54 (1.118–2.12)
ECOG 4 vs. 0 1.971 (0.784–4.956) 2.081 (0.805–5.383) 2.194 (0.951–5.062)

Liver vs. Kidney/other urinary 1.627 (1.212–2.185) 1.696 (1.205–2.388) 1.704 (1.269–2.287)
Lung vs. Kidney/other urinary 1.631 (1.356–1.961) 1.699 (1.341–2.151) 1.668 (1.37–2.031)
Skin vs. Kidney/other urinary 0.699 (0.538–0.909) 0.861 (0.622–1.191) 0.705 (0.531–0.937)

Throat vs. Kidney/other urinary 1.487 (1.151–1.919) 1.471 (1.067–2.026) 1.529 (1.172–1.994)
Year of PD-1/PD-L1 start 0.85 (0.811–0.892) 0.924 (0.874–0.977) 0.877 (0.834–0.922)

AVELUMAB 0.8 (0.156–4.116) 0.975 (0.209–4.545) 0.882 (0.174–4.464)
DURVALUMAB 0.241 (0.151–0.386) 0.169 (0.092–0.309) 0.252 (0.157–0.406)
NIVOLUMAB 0.811 (0.591–1.113) 0.739 (0.536–1.019) 0.813 (0.59–1.12)

PEMBROLIZUMAB 0.66 (0.476–0.914) 0.588 (0.422–0.819) 0.66 (0.475–0.918)
Total prior TX 2 vs. 1 1.153 (1.028–1.295) 1.122 (0.979–1.286) 1.154 (1.023–1.302)

3 vs. 1 1.091 (0.812–1.465) 1.12 (0.792–1.585) 1.122 (0.824–1.526)
0 vs. 1 0.928 (0.763–1.129) 0.952 (0.755–1.201) 0.938 (0.764–1.15)

Table 2. Restricted mean survival time (RMST) in days; Propensity score matched cohort.

Exposure Restricted Mean Survival Times
(95% CI)

Mean Survival Difference
(95% CI) p-Value

All follow-up
(1484-day truncation time) FLX+PD-1/L1 794.6 (593.5–995.8) 287 (48.1–525.8) 0.019

PD-1/L1 507.7 (378.8–636.5)
1 year

(365-day truncation time) FLX+PD-1/L1 296.7 (261.5–332) 62.6 (16.6–108.6) 0.008

PD-1/L1 234.1 (204.6–263.7)
2 year

(730-day truncation time) FLX+PD-1/L1 482.2 (395.4–569) 137.1 (29.7–244.4) 0.012

PD-1/L1 345.2 (282.1–408.2)

2.3. Other Antidepressants Do Not Increase OS

We explored whether two other commonly used antidepressants, sertraline and ven-
lafaxine, had similar OS benefits as fluoxetine when combined with checkpoint therapy.
This analysis was conducted to test for a potential generic antidepressant effect and to
determine whether there might have been a selection bias among those with an antide-
pressant medication that could have been a confounder for the beneficial effects observed
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with fluoxetine use. PS weighted baseline characteristics for sertraline and venlafaxine
are displayed in Supplementary Tables S4 and S5. The balance between the cohorts was
excellent for the sertraline analysis, with the maximum standardized difference being
less than 0.1 (Supplementary Table S4). The balance was not optimal in the venlafaxine
analysis, with standardized differences indicating an imbalance in variables such as race,
SEER summary, and ECOG performance status (Supplementary Table S5). PS-weighted
Cox models are presented in Supplementary Tables S6 and S7. There was no signifi-
cant improvement in OS with either of these two antidepressants (sertraline, HR 1.069,
95% CI 0.829–1.38, venlafaxine, HR 1.162, 95% CI 0.76–1.776) (Tables S8 and S9). Whether
standardized differences were ideal, we adjusted for those variables in our models.

2.4. Fluoxetine without PD-1/PD-L1 Therapy Reveals No Benefit on OS

We tested whether fluoxetine without PD-1/PD-L1 therapy could affect OS. We cre-
ated a new cohort with patients diagnosed with the same cancer types (lung, skin, throat,
liver, and urinary) and excluded those treated with any checkpoint therapy. The baseline
characteristics of the original sample and the PS-weighted samples are presented in Sup-
plementary Tables S8 and S9, respectively. The balance of the PS-weighted sample was
excellent, with the largest standardized difference being 0.175, for the age variable. In the
PS-weighted Cox models, we found no statistically significant difference in the OS between
patients exposed and unexposed to fluoxetine (HR 1.069, 95% CI 0.933–1.223). The 1-year
and 2-year endpoints were consistent with the overall model (1-year HR 1.107 95% CI
0.939–1.305; 2-year HR 1.104 95% CI 0.954–1.276) (Table S10).

3. Discussion

PD-1/PD-L1 inhibitors have emerged as a new treatment paradigm for a range of
cancer types. These therapies target the PD-1 signaling pathway, including the PD-1
receptor on T cells and the ligand expressed on tumors. PD-1 signaling plays a critical role
in modulating the immune response to cancer cells. By blocking this pathway, PD-1/PD-L1
inhibitors enhance the ability of the immune system to recognize and destroy cancer
cells. Therapies targeting PD-1 signaling represent a significant advancement in cancer
therapy. Despite the remarkable success of PD-1/PD-L1 inhibitors on cancer morbidity
and mortality, the benefit of these therapies is limited to a subset of patients because
of primary or acquired resistance [7,8]. Thus, there is a critical need to understand the
mechanisms of PD-1/PD-L1 resistance and develop strategies to enhance treatment efficacy.
The recently identified tumor-intrinsic PD-L1/NLRP3 inflammasome signaling pathway
suggests that NLRP3 inflammasome inhibition could be a therapeutic target in combination
with PD-1/PD-L1 immunotherapy [15,16].

Preclinical data suggest that myeloid-derived suppressor cells (MDSCs) are responsible
for tumor-associated immunosuppression and are highly correlated with poor clinical
outcomes [31–34]. The migration of MDSCs, in particular the migration of granulocytic
MDSCs (PMN-MDSCs), to the tumor bed relies on chemokines such as the CXCR2 receptor
and blockade of this receptor improved PD-1 efficacy [35–37]. Recent reports suggest
that the mechanistic link by which MDSCs constrain the immune system response to
PD-1/L1 therapy is through the NLRP3/PD-L1 tumor intrinsic signaling pathway [15,16].
A recent study found that in response to PD-1 immune therapy, the tumor intrinsic signaling
pathway results in CD8+ T cell activation, which results in the migration of PMN-MDSCs
to the tumor bed and, ultimately, resistance to PD-1 therapy [16]. This study also reported
that systemic NLRP3 inhibition suppressed PMN-MDSC recruitment and, along with PD-1
therapy, inhibited tumor progression more effectively than PD-1 monotherapy [16].

The NLRP3 inflammasome has been implicated in the pathogenesis of numerous
inflammatory diseases, and the potential of NLRP3 inhibition as a therapeutic strategy for
these diseases is highlighted by the multitude of clinical trials currently underway [18–21].
Fluoxetine (FLX), an FDA-approved drug for clinical depression, has been recently identi-
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fied to possess anti-NLRP3 activity, in contrast to several other antidepressants that do not
block NLRP3 [24].

Given these data, we sought to compare the OS between patients who used FLX in
combination with PD-1/L1 therapy and those who received PD-1/L1 without FLX. We
conducted a retrospective drug–disease study using a national cohort of patients treated
with immunotherapy by the U.S. Dept. of Veterans Affairs. Here, we report that, among
patients with lung, throat, skin, or kidney/urinary cancer, the combination of fluoxetine
and PD-1/L1 therapy is associated with an overall survival benefit compared to PD-1/L1
therapy without fluoxetine. Our findings are consistent with preclinical data showing that
NLRP3 inhibitors augment the efficacy of PD-1/L1 inhibitors and suggest that combination
therapy could be beneficial for the treatment of these cancers. Our data also suggest the
beneficial effects of FLX are limited to when combined with PD-1/L1 immunotherapy as
no effect of FLX was found in patients without PD-1/L1 therapy.

While this research reveals a potential survival benefit with FLX and PD-1/L1 treat-
ment, the results should be interpreted cautiously. Importantly, given the limited sample
size, we were not able to test for differences in PD-1 and PD-L1 therapy. While both target
PD-1 signaling, the two treatments are different in that PD-1 therapies target the PD-1
receptor on T cells, while PD-L1 therapies target the ligand expressed in tumors. The
majority of patients in this sample were treated with PD-1 therapies, precluding the testing
of differences between the two. Future research could compare NLRP3 inhibition between
PD-1 and PD-L1 therapy.

Moreover, while FLX has been shown to directly bind and prevent the activation of
NLRP3, this study did not consider other potential NRTI inhibitors, notably nucleoside
reverse transcriptase inhibitors (NRTIs). NRTIs are used primarily in the treatment of
HIV, and prior studies have shown these medications could have beneficial effects in other
disease states. Future research could examine the effects of NRTIs on PD-1/L1 therapy as
well. Further, the present study did not consider the effect of FLX dosage. Prior research has
shown that the ability of FLX to inhibit NLRP3 is dose-dependent. Moreover, the duration
of FLX therapy was not considered in this analysis and could impact overall survival.

Limitations of this study also include those intrinsic to all health insurance claims
database analyses. First, medication usage was extracted from filled prescriptions; thus,
we cannot verify that patients took these medications as required. Second, the study
sample comprised predominately males with a mean age of 68. These findings may not be
generalizable to patients with different demographics. Importantly, response to PD-1/L1
therapy could be different between men and women, and future research should consider
this possibility. Third, the study utilized data from the Veterans Affairs Informatics and
Computing Infrastructure (VINCI); thus, its applicability to other populations is unknown.

Although our study exhibits limitations common to retrospective analysis, our find-
ings are in line with preclinical data supporting the benefit of NLRP3/PD-1 combination
therapy. Our study also has many strengths, including the use of patient-level data and
the availability of clinical factors from the VA oncology data. In particular, we studied
patients in a nationally integrated healthcare system, thereby reducing the potential biases
of single-center studies.

As a retrospective study, the possibility of selection bias or residual confounding
remains. We performed additional analyses to minimize and evaluate the risk of this bias.
We used propensity score weighting, widely used to draw causal inferences in retrospective
studies, via a gradient-boosted model, to minimize bias in our results. We further evaluated
the possibility of an antidepressant effect or selection bias for those with an antidepressant
prescription by extending our analysis to two other NLRP3 non-inhibiting antidepressants,
sertraline and venlafaxine. The results of those analyses do not suggest any bias or a
greater treatment effect for those with an antidepressant prescription in general. While
our findings suggest the potential benefit of combining fluoxetine treatment with cancer
immunotherapy, prospective randomized trials are needed to demonstrate the efficacy of
FLX+PD-1/L1 treatment compared to monotherapy.
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4. Materials and Methods
4.1. Data Source

We conducted a drug–disease retrospective cohort study examining the overall sur-
vival (OS) of cancer patients from the United States Department of Veterans Affairs. We
obtained individual-level data on demographics, medical history, and pharmacy dispen-
sation using the Veterans Affairs Informatics and Computing Infrastructure (VINCI). The
study was conducted in compliance with the Department of Veterans Affairs requirements
and received Institutional Review Board and Research and Development approval.

4.2. Cohort Creation

Patients were included in the study if they had a single cancer in the VA oncology data
with a primary site of lung, throat (pharynx or larynx), skin, or kidney/urinary and if they
had initiated a checkpoint therapy (nivolumab, pembrolizumab, cemiplimab, dostarlimab,
atezolizumab, avelumab, durvalumab) prior to 1 January 2020. The study index was based
on the first checkpoint therapy prescription, ranging from October 2015 to December 2019.
Patients were followed until death or end of study follow-up on 1 June 2021. Patients
were enrolled if they were treated with checkpoint therapy as a first or further-line therapy.
We excluded patients with (a) multiple tumors in the cancer registry or (b) missing SEER
summary status or Eastern Cooperative Oncology Group (ECOG) performance status.

4.3. Exposure Definition

Patients were considered fluoxetine-exposed if they had a supply of fluoxetine when
initiating PD-1/PD-L1 therapy. Fluoxetine dispenses were extracted from the VA outpatient
pharmacy data.

4.4. Covariate Data

We included demographic variables such as age, race, sex, year of study entrance,
and overall comorbid health burden as measured by the Charlson Comorbidity Index,
body mass index (BMI), and depression. We also included clinical information extracted
from the VA oncology data related to cancer, including the SEER summary stage, ECOG
performance status, cancer type, and prior treatment, including radiation, chemotherapy,
and surgery.

4.5. Outcomes

The primary outcome was overall survival (OS) and was constructed by evaluating
the time to death or study endpoint from PD-1/PD-L1 therapy initiation. The date of death
was extracted from the VA vital status files and is a composite of data from sources such as
Medicare, the Social Security Administration, and death certificates [38].

4.6. Statistical Analysis

To analyze the association between FLX use and overall survival, we first generated
summaries of the baseline demographic, comorbid, and clinical characteristics by FLX
exposure status. We present means and standard deviations for continuous variables as
well as counts and percents for categorical. Categorical variables with cell size counts
less than 5 were masked in the summary tables. We utilized p-values from the chi-square
or t-test along with the standardized difference, a more sample size invariant metric, to
evaluate the differences among the FLX exposed and unexposed cohorts. The standardized
difference was calculated by subtracting the treatment means and then dividing by the
pooled standard deviation. We estimated Kaplan–Meier survival curves and adjusted
Cox proportional hazards models. Cox models are fit using all follow-up time as well as
1- and 2-year follow-up endpoints.

As a retrospective clinical study, the treatment assignment was not randomized. We
utilized inverse probability treatment weights to minimize potential bias from non-random
treatment assignments. To estimate the propensity score weights, we used a machine
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learning algorithm, a generalized boosted model (GBM) implemented in the R package
twang [39–41]. As an ensemble method, generalized boosted models consist of multiple
regression trees, which are aggregated into a final model. We used the standardized mean
difference as the model-stopping rule. All covariates were included in the propensity score
model. Weighted Kaplan–Meier survival curves and weighted Cox proportional hazards
models were estimated. To provide doubly robust estimates, we included all variables
included in the propensity score model in the final weighted models.

As an additional analysis, we created propensity score matched cohorts using variable
ratio matching, with at least 1 and at most 4 matched controls. We calculated the restricted
mean survival time (RMST) using the propensity score matched data. RMST analysis is
unadjusted; therefore, we used propensity score matching to minimize the differences
between groups. Follow-up times include the overall sample period with a minimum of the
greatest survival time as the truncation time, the 1-year endpoint (365-day truncation time),
and the 2-year endpoint (730-day truncation time). We present the RSMT, 95% confidence
intervals, and mean survival difference between the cohorts, along with associated 95%
intervals. We used the R package survRMS2 to estimate the RMST and MatchIt for the
matching [42,43].

4.6.1. Other Antidepressants and OS

To account for the possibility of a global antidepressant medication effect, or selection
bias for those on antidepressants, we conducted an additional analysis of commonly
used antidepressants: sertraline and venlafaxine, which do not inhibit NLRP3 [24]. We
replicated the analysis conducted on FLX with both sertraline and venlafaxine. If the results
for sertraline or venlafaxine reveal a statistically significant survival benefit, it could be
suggestive of an underlying bias in the analysis related to the use of antidepressants among
immunotherapy-treated patients.

4.6.2. Secondary Analysis: Fluoxetine without PD-1/PD-L1 Therapy

Further, because NLRP3 inhibition is also found to drive cancer progression indepen-
dently of checkpoint inhibition, we tested whether patients on FLX without PD-1/PD-L1
were conferred any OS benefit. We extracted a cohort of patients who were each diagnosed
with a single cancer in the VA oncology data, with a primary site of lung, throat (pharynx
or larynx), skin, or kidney/urinary. Patients who initiated PD-1/PD-L1 therapy were
excluded from the analysis. FLX exposure was indicated if patients had a supply of FLX at
cancer diagnosis. We compared OS, from cancer diagnosis to study endpoint, in the FLX
exposed and unexposed cohorts. The statistical analysis was replicated from the primary
analysis. Propensity score weighted samples were generated, and subsequently, weighted
Cox models were fit, estimating the hazard ratio for FLX exposure versus no exposure.

5. Conclusions

Among patients with lung, throat, skin, or kidney/urinary cancer, combination ther-
apy with fluoxetine, a recently identified direct NLRP3 inhibitor, when taken concurrently
with PD-1/L1 therapy, is associated with an overall survival benefit compared to PD-1/L1
therapy alone. These results are consistent with preclinical data suggesting a treatment
benefit for the combination of NLRP3 inhibition and PD-1/L1 therapy beyond PD-1/L1
monotherapy. Additional studies and prospective trials are warranted.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/ph16050640/s1, Table S1: Baseline characteristics. Table S2: PS weighted
baseline characteristics. Table S3: Matched sample characteristics. PS weighted baseline character-
istics: Sertraline +PD-1/PD-L1 vs. PD-1/L1 alone. Table S4: PS weighted baseline characteristics:
Sertraline +PD-1/PD-L1 vs. PD-1/L1 alone. Table S5: PS weighted baseline characteristics: Venlafax-
ine +PD-1/PD-L1 vs. PD-1/PD-L1 alone. Table S6: PS weighted Cox model: Sertraline +PD-1/L1
vs. PD-1/L1 alone. Table S7: PS weighted Cox model: Venlafaxine +PD-1/L1 vs. PD-1/L1 alone.
Table S8: Baseline characteristics among patients without PD-1/L1 therapy. Table S9: PS-weighted
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baseline characteristics among patients without PD-1/L1 therapy. Table S10: PS-weighted Cox
models. FLX and OS among patients without PD-1/L1 therapy.
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