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Abstract: Pulmonary fibrosis (PF) is a disease characterised by diffuse nonspecific alveolar inflam-
mation with interstitial fibrosis, which clinically manifests as dyspnoea and a significant decline in
lung function. Many studies have shown that the epithelial–mesenchymal transition (EMT) plays a
pivotal role in the pathogenesis of pulmonary fibrosis. Based on our previous findings, hypericin
(Hyp) can effectively inhibit the process of the EMT to attenuate lung fibrosis. Therefore, a series of
hyperoside derivatives were synthesised via modifying the structure of hyperoside, and subsequently
evaluated for A549 cytotoxicity. Among these, the pre-screening of eight derivatives inhibits the
EMT. In this study, we evaluated the efficacy of Z6, the most promising hyperoside derivative, in
reversing TGF-β1-induced EMTs and inhibiting the EMT-associated migration of A549 cells. After
the treatment of A549 cells with Z6 for 48 h, RT-qPCR and Western blot results showed that Z6
inhibited TGF-β1-induced EMTs in epithelial cells by supressing morphological changes in A549 cells,
up-regulating E-cadherin (p < 0.01, p < 0.001), and down-regulating Vimentin (p < 0.01, p < 0.001). This
treatment significantly reduced the mobility of transforming growth factor β1 (TGF-β1)-stimulated
cells (p < 0.001) as assessed by wound closure, while increasing the adhesion rate of A549 cells
(p < 0.001). In conclusion, our results suggest that hyperoside derivatives, especially compound Z6,
are promising as potential lead compounds for treating pulmonary fibrosis, and therefore deserve
further investigation.

Keywords: hypericin derivatives; pulmonary fibrosis; TGF-β1; epithelial–mesenchymal transition
(EMT); cell morphology; adhesion and migration

1. Introduction

Pulmonary fibrosis (PF) is a diffuse interstitial lung disease characterised by inflamma-
tion in the lung interstitium, involving alveolar epithelial cells and pulmonary vasculature.
It manifests clinically with symptoms like chronic cough and hypoxic respiratory failure.
The causative factors and pathogenesis of PF have not yet been fully clarified. Smoking,
environmental pollution, occupational exposure to pollutants, and viral infections have all
been proposed as risk factors for PF. Emerging evidence suggests that progressive fibrosis is
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always associated with the epithelial–mesenchymal transition (EMT) of alveolar epithelial
cells (AECs) [1–3]. Fibrosis is a prevalent pathological mechanism in numerous diseases.
With in-depth studies on the mechanisms of fibrosis, we have found that EMTs play a
key role in the formation of pulmonary fibrosis [4]. The mechanisms of fibrosis may be a
new target for preventing and treating pulmonary fibrosis. The epithelial–mesenchymal
transition (EMT) is a disease-developing process that contributes to the pathogenesis of
many diseases, including lung cancer and other lung injuries [5,6]. EMT-driven plasticity
changes, through transformation into a mesenchymal phenotype, confer metastatic proper-
ties to lung epithelial cells or epithelial-derived tumour cells. This change often leads to
more severe disease progression and a higher risk of mortality [7]. EMTs can be categorised
into three subtypes, depending on the biological setting in which it occurs. One of them, a
type 2 EMT, is caused by persistent injury and inflammation, and is an important process
of organ fibrosis [8]. Transforming growth factor TGF-β is a key molecule in activating
the fibrotic program. TGF-β is up-regulated and activated in fibrotic diseases [9–11]. It
regulates fibroblast phenotype and function by inducing myofibroblast transdifferentia-
tion, inducing EMTs in alveolar epithelial cells and promoting matrix preservation [12–14].
In this process, transforming growth factor β1 (TGF-β1) acts as a pro-fibrotic agent and
induces the epithelial–mesenchymal transition (EMT) in alveolar epithelial cells, which
results in an elongated spindle-shaped skeleton, reduced adhesion, and the increased
migratory capacity of the affected alveolar epithelial cells [15,16].

According to data, severe acute respiratory syndrome coronavirus infection is fol-
lowed by the severe sequelae of pulmonary fibrosis [17]. Currently, only Pirfenidone
and Zidane are approved for the treatment of pulmonary fibrosis [18,19]. However, both
have clinical adverse effects, and they can only alleviate pulmonary fibrosis, but cannot
reverse lung injury [20,21]. Some studies have shown [10,22] that stem cells and others
can treat bleomycin-induced pulmonary fibrosis, but their application effects as well as the
mechanism of action need further experimental studies and still have many limitations.
Therefore, it is necessary to search for natural, safe, and effective therapeutic agents for
treating pulmonary fibrosis [23]. Hypericin is an extremely important class of flavonoids
with medicinal functions. In the past few years, hypericin has become a popular traditional
Chinese medicine monomer in research. As a potential medicinal ingredient, hypericin has
been reported to have a wide range of pharmacological effects against lung cancer, cardiac
injury, renal injury, fibrosis, and diabetes mellitus [23–25]. It also regulates the immune
system, digestive system, and nervous system. Hypericin has a lung-protective function
via mitigating bleomycin-induced lung fibrosis through the AKT/GSK3β pathway and
reducing levels of MDA, TNF-α, and IL-6 [26]. Meanwhile, some studies have shown that
hypericin can exert its anti-hepatocellular carcinoma effect by inhibiting the proliferation
of hepatocellular carcinoma cells, breaking their cell cycle, and effectively inhibiting the
invasion and metastasis of hepatocellular carcinoma cells [27]. Moreover, through screening
and experimental verification, our group has selected several Chinese medicine monomers
with antifibrotic properties, among which hypericin has shown better antifibrotic effects
through inhibiting EMTs [28].

A549 cells are of type II alveolar epithelial cell origin. They are commonly used for
in vitro models to study the process of lung fibrosis after inducing epithelial–mesenchymal
transitions using TGF-β1 [29–31]. Therefore, we have modified the structure of hyperoside
as a lead compound and synthesised a series of derivatives. We evaluated their cytotoxicity
effects in A549 cells in vitro. In addition, we identified the potential of hyperoside deriva-
tive (Z6) in reversing TGF-β1-stimulated epithelial–mesenchymal transitions (EMTs) and
inhibiting EMT-associated adhesion and migration ability in A549 cells. This result has
important implications for the development of drug therapy for pulmonary fibrosis. We
explored whether synthetic hyperoside derivatives exert antifibrotic effects by inhibiting
the TGF-β1-induced EMT process. The aim is to discover novel compounds and derivatives
with anti-EMT properties to provide theoretical support for the treatment of EMTs with
targeted drugs.
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2. Results
2.1. Chemistry

For the basic structure of hyperoside, this paper focuses on the structural modification
of two parts. Molecular docking revealed that the hydroxyl group of the A ring No. 5 points
to the outside of the active pocket [32], which is not directly related to its main activity.
Therefore, it can be eliminated from the structure. Our group have previously studied the
anti-EMT activity of hypericin with saccharin and hesperidin, and found that quercetin
with the B ring attached to the second position was not effective against EMTs, so we
designed the synthesis to be modified at the third position. Based on the advantages of
hyperoside itself acting as a group and its poor water solubility affecting the efficacy of the
drug, we first maintained the basic structural skeleton of hyperoside, keeping the C ring
unchanged. Then, we divided it into two series of compounds according to the presence
or absence of the hydroxyl group at position 7 of the A ring, the type of the substituent of
the B ring, and the position of the linkage [33,34]. In addition to considering its poor water
solubility and lipid solubility, as well as the specificity of the hydroxyl group [35], we also
introduced halogenated elements and methoxy groups at different sites [36].

In the present study, deoxybenzoic acid was obtained by reacting resorcinol or phenol
with phenylacetic acid containing the corresponding substituent groups under nitrogen
in the presence of BF3·Et2O, followed by treatment with Weissmayer’s reagent formed
with methane sulfonyl chloride and DMF (N, N-dimethylformamide) in the presence of
BF3·Et2O to obtain the final products, respectively, which were then obtained using the
mild reaction conditions, short reaction time, and excellent yields. The structures of the
target compounds were confirmed with 1H NMR and 13C NMR.

Compound G0: yellow solid, yield 64%. 1H NMR (600 MHz, DMSO-d6) δ 10.76 (s,
1H), 8.99 (s, 1H), 8.95 (s, 1H), 8.25 (s, 1H), 7.96 (d, J = 8.7 Hz, 1H), 7.01 (d, J = 2.1 Hz, 1H),
6.93 (dd, J = 8.7, 2.3 Hz, 1H), 6.85 (d, J = 2.2 Hz, 1H), 6.80 (dd, J = 8.1, 2.1 Hz, 1H), 6.76
(d, J = 8.2 Hz, 1H). 13C NMR (151 MHz, DMSO-d6) δ 174.04, 161.84, 156.73, 152.14, 144.63,
144.15, 126.67, 123.00, 122.37, 119.21, 116.03, 115.97, 114.65, 114.46, 101.44.

Compound G1: white solid, yield 83%. 1H NMR (600 MHz, DMSO-d6) δ 10.82 (s, 1H),
10.30 (s, 1H), 8.38 (s, 1H), 7.96 (d, J = 4.0 Hz, 1H), 7.59 (s, 1H), 7.36 (d, J = 10.5 Hz, 1H),
7.01 (d, J = 8.4 Hz, 1H), 6.95 (dd, J = 8.8, 2.2 Hz, 1H), 6.88 (d, J = 2.2 Hz, 1H). 13C NMR
(151 MHz, DMSO-d6) δ 172.64, 160.84, 160.51, 155.62, 151.65, 150.96, 128.30, 126.73, 125.50,
122.08, 120.36, 117.48, 114.73, 113.46, 100.35.

Compound G2: yellow solid, yield 58%. 1H NMR (600 MHz, DMSO-d6) δ 10.80 (s,
1H), 8.48 (s, 1H), 8.38 (s, 1H), 7.98 (d, J = 8.8 Hz, 1H), 6.95 (d, J = 11.2 Hz, 1H), 6.88 (s, 3H),
3.79 (s, 6H). 13C NMR (151 MHz, DMSO-d6) δ 175.08, 162.99, 157.79, 153.78, 148.12, 136.05,
127.79, 124.01, 122.44, 117.12, 115.64, 107.13, 102.56, 56.55, 49.07.

Compound G3: light yellow solid, yield 57%. 1H NMR (600 MHz, DMSO-d6) δ 10.82
(s, 1H), 9.98 (s, 1H), 8.38 (s, 1H), 7.97 (d, J = 8.8 Hz, 1H), 7.42 (dd, J = 12.7, 2.0 Hz, 1H),
7.23 (d, J = 8.3 Hz, 1H), 7.01–6.93 (m, 2H), 6.87 (d, J = 2.2 Hz, 1H). 13C NMR (151 MHz,
DMSO-d6) δ 174.91, 163.10, 157.85, 153.93, 150.19, 145.10, 145.02, 127.78, 125.47, 125.45,
123.77, 123.73, 122.73, 117.83, 117.81, 117.12, 117.01, 116.99, 115.72, 102.60.

Compound G4: white solid, yield 62%. 1H NMR (600 MHz, DMSO-d6) δ 10.78 (s, 1H),
9.53 (s, 1H), 8.29 (s, 1H), 7.97 (d, J = 8.7 Hz, 1H), 7.54–7.27 (m, 2H), 6.94 (dd, J = 8.7, 2.3 Hz,
1H), 6.86 (d, J = 2.3 Hz, 1H), 6.84–6.79 (m, 2H). 13C NMR (151 MHz, DMSO-d6) δ 175.16,
162.96, 157.89, 157.64, 153.29, 130.54, 127.76, 123.95, 123.01, 117.10, 115.59, 115.41, 102.56.

Compound G5: light red solid, yield 49%. 1H NMR (600 MHz, DMSO-d6) δ 10.81 (s,
1H), 9.45 (s, 1H), 8.35 (s, 1H), 7.97 (t, J = 9.5 Hz, 1H), 7.21 (t, J = 7.9 Hz, 1H), 7.03–7.00 (m,
1H), 6.95 (dd, J = 8.7, 2.2 Hz, 2H), 6.88 (d, J = 2.2 Hz, 1H), 6.79–6.75 (m, 1H). 13C NMR
(151 MHz, DMSO-d6) δ 173.77, 162.02, 156.79, 156.43, 153.09, 132.67, 128.49, 126.74, 123.00,
118.88, 116.06, 115.45, 114.63, 114.12, 101.55, 48.00, 35.18.

Compound G6:white solid, yield 47%. 1H NMR (600 MHz, DMSO-d6) δ 10.79 (s, 1H),
9.02 (s, 1H), 8.29 (s, 1H), 7.97 (d, J = 8.8 Hz, 1H), 7.06 (s, 1H), 6.96 (s, 1H), 6.95 (s, 1H),
6.95–6.92 (m, 1H), 6.87 (d, J = 2.2 Hz, 1H), 3.80 (s, 3H). 13C NMR (151 MHz, DMSO-d6) δ
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175.05, 162.99, 157.85, 153.54, 147.96, 146.49, 127.78, 125.15, 123.82, 120.16, 117.12, 116.91,
115.62, 112.40, 102.57, 56.13, 40.52.

Compound G7: white solid, yield 45%. 1H NMR (600 MHz, DMSO-d6) δ 10.79 (s, 1H),
9.09 (s, 1H), 8.33 (s, 1H), 7.98 (d, J = 8.8 Hz, 1H), 7.17 (d, J = 1.8 Hz, 1H), 6.99 (dd, J = 8.1,
1.9 Hz, 1H), 6.94 (dd, J = 8.8, 2.2 Hz, 1H), 6.87 (d, J = 2.2 Hz, 1H), 6.82 (d, J = 8.1 Hz, 1H),
3.80 (s, 3H). 13C NMR (151 MHz, DMSO-d6) δ 175.15, 162.99, 157.86, 153.55, 147.63, 146.94,
127.79, 123.99, 123.47, 122.00, 117.13, 115.66, 115.63, 113.73, 102.57, 56.14, 40.53.

Compound G8: white solid, yield 83%. 1H NMR (600 MHz, DMSO-d6) δ 10.80
(s, 1H), 8.34 (s, 1H), 7.98 (d, J = 8.7 Hz, 1H), 7.66–7.38 (m, 2H), 7.01–6.98 (m, 2H), 6.95
(dd, J = 8.8, 2.3 Hz, 1H), 6.87 (d, J = 2.2 Hz, 1H), 3.79 (s, 3H). 13C NMR (151 MHz, DMSO-
d6) δ 175.08, 163.03, 159.42, 157.92, 153.63, 130.55, 127.77, 124.70, 123.62, 117.09, 115.65,
114.07, 102.60, 55.61.

Compound G9: white solid, yield 88%. 1H NMR (600 MHz, DMSO-d6) δ 10.84 (s, 1H),
8.41 (s, 1H), 7.99 (d, J = 8.8 Hz, 1H), 7.34 (t, J = 7.9 Hz, 1H), 7.17–7.12 (m, 2H), 6.95 (D, J = 8.3,
4.3, 1.6 Hz, 2H), 6.89 (d, J = 2.2 Hz, 1H), 3.79 (s, 3H). 13C NMR (151 MHz, DMSO-d6) δ
174.83, 163.15, 159.47, 157.89, 154.48, 133.91, 129.62, 127.83, 123.80, 121.66, 117.11, 115.77,
115.10, 113.73, 102.65, 55.56.

Compound G10: white solid, yield 41%. 1H NMR (600 MHz, DMSO-d6) δ 10.87 (s,
1H), 8.49 (s, 1H), 7.98 (d, J = 8.8 Hz, 1H), 7.81 (t, J = 1.8 Hz, 1H), 7.70–7.44 (m, 2H), 7.40
(t, J = 7.9 Hz, 1H), 6.97 (dd, J = 8.7, 2.3 Hz, 1H), 6.90 (d, J = 2.2 Hz, 1H). 13C NMR (151 MHz,
DMSO-d6) δ 174.58, 163.29, 157.91, 155.02, 135.01, 131.88, 130.96, 130.72, 128.36, 127.81,
122.52, 121.79, 116.98, 115.89, 102.71.

Compound Z1: solid, yield 61%. 1H NMR (600 MHz, DMSO-d6) δ 10.35 (s, 1H),
8.55 (s, 1H), 8.15 (dd, J = 7.9, 1.4 Hz, 1H), 7.86–7.81 (m, 1H), 7.69 (d, J = 8.4 Hz, 1H), 7.63
(d, J = 2.1 Hz, 1H), 7.53 (t, J = 7.5 Hz, 1H), 7.40 (dd, J = 8.4, 2.1 Hz, 1H), 7.03 (d, J = 8.4 Hz,
1H). 13C NMR (151 MHz, DMSO-d6) δ 174.56, 154.98, 153.69, 152.30, 133.60, 129.50, 127.95,
124.95, 124.90, 123.12, 123.00, 121.96, 118.75, 117.79, 115.70.

Compound Z3: white solid, yield 47%. 1H NMR (600 MHz, DMSO-d6) δ 8.65 (s, 1H),
8.16 (dd, J = 8.0, 1.5 Hz, 1H), 7.88–7.85 (m, 1H), 7.84 (d, J = 1.8 Hz, 1H), 7.72 (d, J = 8.1 Hz,
1H), 7.63 (d, J = 7.7 Hz, 1H), 7.60 (D, J = 8.0, 1.9, 0.9 Hz, 1H), 7.56–7.52 (m, 1H), 7.43
(t, J = 7.9 Hz, 1H). 13C NMR (151 MHz, DMSO-d6) δ 175.37, 156.10, 155.87, 134.91, 134.77,
131.90, 131.16, 130.82, 128.41, 126.24, 126.01, 124.24, 122.92, 121.88, 118.95.

Compound Z5: white solid, yield 34%. 1H NMR (600 MHz, DMSO-d6) δ 10.82 (s, 1H),
8.41 (s, 1H), 7.98 (d, J = 8.7 Hz, 1H), 7.32 (t, J = 7.9 Hz, 1H), 7.15–7.11 (m, 2H), 6.96–6.92
(m, 2H), 6.89 (d, J = 2.3 Hz, 1H), 4.06 (d, J = 6.9 Hz, 1H). 13C NMR (151 MHz, DMSO-d6) δ
173.76, 162.01, 161.69, 156.78, 156.41, 153.08, 132.66, 128.47, 126.72, 122.98, 118.87, 116.05,
115.44, 114.62, 114.10, 101.54.

Compound Z6: white solid, yield 60%. 1H NMR (600 MHz, DMSO-d6) δ 9.05 (s, 1H),
8.47 (s, 1H), 8.16–8.13 (m, 1H), 7.84–7.80 (m, 1H), 7.68 (d, J = 8.4 Hz, 1H), 7.52 (t, J = 7.5 Hz,
1H), 7.09 (s, 1H), 6.99 (s, 1H), 6.97 (s, 1H), 3.80 (s, 3H). 13C NMR (151 MHz, DMSO-d6) δ
175.85, 156.04, 154.41, 147.71, 147.09, 134.55, 126.00, 125.91, 124.38, 124.29, 123.20, 122.05,
118.84, 115.71, 113.68, 56.17.

Compound Z7: light solid, yield 26%. 1H NMR (600 MHz, DMSO-d6) δ 9.13 (s, 1H),
8.51 (s, 1H), 8.15 (dd, J = 8.0, 1.6 Hz, 1H), 7.84–7.80 (m, 1H), 7.69 (d, J = 8.2 Hz, 1H), 7.53–7.50
(m, 1H), 7.20 (d, J = 2.0 Hz, 1H), 7.04 (dd, J = 8.1, 2.0 Hz, 1H), 6.84 (d, J = 8.1 Hz, 1H), 3.81 (s,
3H). 13C NMR (151 MHz, DMSO-d6) δ 175.85, 156.04, 154.41, 147.71, 147.09, 134.55, 126.00,
125.91, 124.38, 124.29, 123.20, 122.05, 118.84, 115.71, 113.68, 56.17.

2.2. Biological Evaluation
2.2.1. Effects of Hyperoside Derivatives on Cell Viability

The anti-pulmonary fibrosis drugs that we hope to modify in the experiment must first
be specific, well tolerated during the experiment, and exert their effects stably and effectively
without affecting the growth of normal alveolar epithelial cells. Therefore, before the evalua-
tion of the effect of anti-pulmonary fibrosis drugs, a preliminary screening of the compound
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concentrations was first carried out using the effect of the drugs on the survival rate of alveolar
epithelial cells. The concentrations without significant inhibitory effects on alveolar epithelial
cells were screened for subsequent anti-fibrotic effects. In this experimental study, the sensitivity
of the cells to the compounds was determined using the MTT assay to determine the effect of
the compounds on cell viability. The experimentally synthesised hyperoside derivatives were
configured into 10 mmol/L and 40 mmol/L solutions with dimethyl sulfoxide (DMSO), respec-
tively, and stored at −20 ◦C for backup. A concentration gradient in the range of 0–400 µmol/L
was set up to measure the survival rate of A549 cells at each concentration, and the concentration
of IC10 was obtained (Table 1).

Table 1. Antiproliferative activities (IC10, µM) of compounds Hyp-Z7 on A549 cells for 48 h.

Serial No. Compounds IC10 (mean ± SD, µmol/L)

Hyp
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The preliminary screening was conducted according to the experimental results of
MTT, and the effect on the survival rate of A549 cells was analysed. In this paper, the
subsequent dosage concentration was discussed based on the experimental data of the
MTT concentration gradient. The results showed that some compounds did not show
obvious inhibition in a certain range of concentrations, but these compounds either showed
a certain inhibition in the concentration range of 50–400 µmol/L, or showed a concentration-
dependent inhibition in the concentration range. According to the preliminary experimental
study of the research group, the drug concentration was 10 µmol/L, and although it
displayed an anti-fibrosis effect, the effect was not obvious. In the later stage, hypericin
and 16 compounds were determined using MTT, and the concentration of IC10 was roughly
30 µmol/L, following which, the concentration of the drug increased to 20 µmol/L and
30 µmol/L, respectively. After observing that some compounds were too lethal to cells
at 30 µmol/L, it was finally determined that the dosage concentration was 20 µmol/L.
The subsequent experimental study on the anti-pulmonary fibrosis effect of hypericin and
16 derivatives through inhibiting the TGF-β1-induced EMT process was conducted.

2.2.2. Preliminary Screening of Hyperoside and Its Derivatives with Anti-EMT Activity

The cell morphology was observed under the 10× objective of the inverted phase
contrast microscope. The results were shown in Figure 1A. The cell morphology of the
blank control group was complete, with tight connections between the cells, which became
cobblestone-like typical epithelial cell morphology. After the TGF-β1 induction, the cell
morphology gradually changed from cobblestone-like polygonal to long spindle-shaped
fibroblasts, and the cell-to-cell gap was gradually enlarged. When compared with the model
group, the cells in the hypericin group had a shortened cell morphology, tight inter-cellular
junctions, and smaller gaps. When compared with the cells in the hypericin group, the cell
morphology of G0, G3, G9, G10, Z1, Z3, Z5, and Z6 changed after the intervention, the cells
showed cobblestone-like cell shapes, and the inter-cellular gaps became smaller; whereas,
after the intervention of the other compounds, the cell morphology was not significantly
shortened, the inter-cellular gaps were loose, and there was no apparent cobblestone-
like morphology. Preliminary evidence suggests that these candidate derivatives inhibit
TGF-β1-induced EMTs.

To investigate whether the 16 derivatives inhibited TGF-β1-induced EMTs in A549
cells, we examined the effects of the compounds on EMT-associated mRNAs in TGF-β1-
induced A549 cells using the qRT-PCR assay. EMTs play a vital role in the formation
of organ fibrosis [37–41]. It has been shown that the down-regulation of the epithelial
marker E-cadherin, an important intercellular adhesion protein, is one of the hallmarks of
the EMT process. In addition, the up-regulation of the mesenchymal marker waveform
protein is also a hallmark of the EMT process [39,42–44]. Therefore, the inhibitory effect
of hyperoside and the 16 derivatives of the EMT process can be assessed by detecting the
changes in the expression of the above markers. We initially showed that some compounds
were able to alter the morphology of TGF-β1-induced A549 cells to different degrees. G0,
G9, G10, Z1, Z3, Z5, Z6, and other compounds were able to increase the expression of E-
cadherin mRNA and decrease the expression of Vimentin mRNA in TGF-β1-induced A549
cells (Figure 1B,C). During the screening process, we found that the anti-EMT activity of
hyperoside was increased after the removal of the hydroxyl group at position 7 of the A ring.
The activity was increased after the introduction of halogenated elements as well as methoxy
at position 3 of the B ring. It was found that the level of pharmacological activity was highly
related to the number and position of the substitution of the methoxy group. Generally,
the methoxy group on the B ring would have a close relationship with the increase in
activity. This point of view also verified the results of our preliminary screening. After
analysing the data and so on, we chose eight derivatives from the two series of compounds
and continued the post-experiment.
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morphology of A549 cells. Images were acquired using a 10× objective. Expression of EMT-related 

Figure 1. (A) Representative images. Effects of hypericin and its derivatives on TGF-β1-induced
morphology of A549 cells. Images were acquired using a 10× objective. Expression of EMT-related
markers after treatment with hypericin and its derivatives. (B) Treatment of A549 cells with different
compounds for 48 h. Expression of E-cadherin mRNA after the 48 h incubation of A549 cells with
different monomeric compounds. (C) Expression of E-cadherin Vimentin mRNA after the 48 h
incubation of A549 cells with different monomeric compounds. (means ± SEM; n = 5; * p < 0.05;
** p < 0.01).

2.2.3. Validation of Hyperoside and Its Derivatives with Anti-EMT Activity

After the candidate compounds were identified, their ability to combat pulmonary
fibrosis was investigated using Western blot experiments. Since an important part of the
disease process of pulmonary fibrosis is cell activation, TGF- β1 was used to stimulate the
activation of A549 cells to construct a cell model of pulmonary fibrosis. TGF-β1-induced
EMT not only induced changes in the morphology of the lung epithelial cells, but also
caused changes in the EMT-related markers and cell function. When the EMT occurs,
the most significant changes in the expression level of intracellular proteins include the
increased expression of E-cadherin (Figure 2A,B) and the decreased expression of Vimentin
(Figure 2C,D). These proteins, as important factors regulating the process of the EMT, are
also of great significance in terms of their expression levels. When combined with the
results of the qRT-PCR quantitative analysis, we found that the eight canaryl glucoside
derivatives were able to increase the relative expression of E-cadherin mRNA and protein
to different degrees. At the same time, they decreased the relative expression of Vimentin
mRNA and protein.

The EMT process is characterised by a phenotypic transformation of epithelial cells to
mesenchymal cells, which occurs at high rates in fibrotic tissues and cancers. This transfor-
mation increases the invasive capacity and migratory potential of the cells. It is characteristic
of a worsening disease process, and it accelerates drug resistance in cancer [45–48].

We believe that the preliminarily screened myricetin derivatives can alter the expres-
sion of EMT-related markers in TGF-β1-induced A549 cells, and can delay pulmonary
fibrosis by targeting EMTs. Our modified myricetin significantly altered the expression



Pharmaceuticals 2024, 17, 584 8 of 16

levels of E-cadherin and Vimentin, proving that the synthesised myricetin derivatives could
inhibit the EMT process at the molecular level.
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pulmonary fibrosis agent without affecting the growth of A549 cells stably and effectively. 

Figure 2. Expression of EMT-related markers after treatment with hypericin and its derivatives. A549
cells were treated with hypericin and its derivatives for 48 h. Representative Western blot images:
β-actin was used as a loading control, and the blots are the results of two separate experiments.
(A) Representative immunoblots analysis. Treatment with G series derivatives at 20µM for 48 h
promoted E-cadherin’s expression and inhibited Vimentin’s expression in A549 cells. (B) Changes in
the protein expression of E-cadherin and Vimentin in A549 cells after 48 h of treatment with 20µM
G series derivatives. (means ± SEM; n = 4; * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001).
(C) Treatment with Z series derivatives at 20 µM for 48 h promoted E-cadherin’s expression and
inhibited Vimentin’s expression in A549 cells. (D) Changes in the protein expression of E-cadherin
and Vimentin in A549 cells after 48 h of treatment with 20 µM Z series derivatives. (means ± SEM;
n = 3; * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001).

Among these hyperoside derivatives, Z6 was the most promising to act as an anti-
pulmonary fibrosis agent without affecting the growth of A549 cells stably and effectively.
Therefore, to determine whether compound Z6 acts as an inhibitory compound for EMTs
in epithelial cells. We chose Z6 to validate its anti-EMT activity against TGF-β1-induced
A549 cells. Based on the previous experiments, Z6 at a concentration of 20 µM was selected
to further validate its action as an anti-EMT agent by studying its effect on the adhesion
ability in TGF-β1-stimulated A549 cells.
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The loss of cell–cell adhesion is one of the causes of excessive epithelial cell migration.
Given the promising effect of Z6 in inhibiting TGF-β1-induced EMT in epithelial cells,
we investigated whether Z6 affects the adhesion ability of A549 cells. To this end, we
performed a cell adhesion assay to assess whether Z6 could increase the adhesion capacity
of A549 cells (Figure 3A,B).
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A549 cells were treated with compound Z6 (20 µM) in the presence or absence of 5 ng/mL TGF-β1,
the nuclei were stained with Hoechst 33342 after 48 h. The cell adhesion ability was detected with
immunofluorescence. (A) Representative microphotographs. Cells were exposed to 1640 medium,
TGF-β1, TGF-β1+Hyp, and TGF-β1+Z6 treatment for 48 h. Cell adhesion ability was observed
with immunofluorescence in formaldehyde-fixed cells. Scale bar = 100 µm (B) The graph shows the
number of cells adhering, which was calculated through counting the number of cells using ImageJ1.0
software and then finding the ratio compared to a blank control group. (means ± SEM; n = 6;
* p < 0.05; *** p < 0.001; **** p < 0.0001).

Given the promising results of Z6 in inhibiting the TGF-β1-induced EMT in epithelial
cells, we investigated whether Z6 affects the EMT-related migratory capacity in A549 cells.
To this end, an in vitro wound healing assay was performed to assess whether Z6 acts as
an anti-metastatic agent in A549 cells (Figure 4A,B).
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** p < 0.01; **** p < 0.0001).

As shown in Figure 4A,B, TGF-β1-treated cells exhibited increased wound closure at
48 h when compared with cells not treated with TGF-β1. The treatment of cells with 20 µM
Z6 for 48 h significantly reduced the migration of TGF-β1-stimulated cells, a phenomenon
confirmed through the qualitative assessment of wound closure.

3. Discussion

In this study, we designed and synthesised 16 hyperoside derivatives and assayed their
cytotoxicity. Subsequently, EMTs were induced in A549 cells using TGF-β1. The expression
of EMT-related marker genes E-cadherin and Vimentin was detected with qRT-PCR. The
results showed that hyperoside derivatives G0, G3, G9, G10, Z1, Z3, Z5, and Z6 could
significantly increase the expression of E-cadherin and decrease the expression of Vimentin.
The results of the Western blot experiments also proved this. From the above results, we
concluded that all of the above eight derivatives exhibited anti-EMT activity, and the most
effective one was Z6. Therefore, based on the above experiments, we continued the cell
function assay of Z6. The results showed that Z6 could significantly enhance cell adhesion
and reduce cell migration. Thus, it can be seen that Z6 has good anti-EMT activity and can
delay the TGF-β1-induced EMT process.

Pulmonary fibrosis is a disease that can cause serious damage to people’s health, and
is no less harmful than oncological diseases [4,6]. Since the prevalence of C pneumonia,
patients have shown symptoms of pulmonary fibrosis to varying degrees, making the
treatment of pulmonary fibrosis a focus of research. According to numerous studies, the
process of a epithelial–mesenchymal transition (EMT) is one of the most important aspects
in the pathogenesis of pulmonary fibrosis. EMTs confer metastatic properties on lung
epithelial cells. This often indicates more severe disease progression and a higher risk of
mortality [42,49]. Many growth factors are currently known to induce EMTs, among which
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the transforming growth factor TGF-β is considered a key molecule in the initiation of
the fibrotic program [9]. TGF-β is up-regulated and activated in fibrotic diseases, and it
is capable of inducing pulmonary fibrosis through the stimulation of both classical and
non-classical signalling pathways, which triggers the activation of myofibroblasts and the
overexpression of the extracellular matrix. TGF-β is a key molecule for the initiation of the
fibrotic program [10,16].

Natural compounds are abundant and diverse, and they are an extremely important
class of compounds with useful functions, having many applications in anti-inflammatory,
antifibrotic, and anticancer fields [23,24]. We have synthesised two series of compounds
through modifying hyperoside, linking bioactive groups to the A and B rings of the parent
nucleus, introducing electron-withdrawing groups such as halogen and carboxylic acid
at different sites, and introducing electron-donating groups such as methoxy to improve
the lipid- and water-solubility of the drug [33,36]. Our preliminary findings suggest that
synthesised hypericin derivatives may alleviate pulmonary fibrosis via inhibiting the EMT
process. The expression of signature proteins involved in the EMT directly influences
the degradation of transition deposition, facilitating the reversal of pulmonary fibrosis by
inhibiting the activation of A549 cells. Thus, these derivatives hold promise for playing
an anti-pulmonary fibrosis role. It was found that the presence or absence of the hydroxyl
group on the A ring also played an essential role in the inhibition of the EMT process,
and the substituent group on the B ring displayed the activity of methoxy > halogenated
elements for the inhibition of EMTs. In conclusion, the active hyperoside derivative Z6 was
obtained with structural modification, which provides a lead compound for the research
and development of derivatives as targeted drugs for treating pulmonary fibrosis. The
search for novel and effective compounds that can be used to treat pulmonary fibrosis
remains a major scientific challenge. Further studies are needed to determine the feasibility
of Z6 as a treatment for pulmonary fibrosis.

4. Materials and Methods
4.1. Chemical Methods

All commercially available solvents, substrates, and reagents were used without
further purification. Thin layer chromatography (TLC) was performed on TCL Silica
gel 60 F254 (0.20 mm; Qingdao Ocean Chemical Factory, Qingdao, China). Thin layer
chromatography (TLC) was performed on TCL Silica gel 60 F254 (0.20 mm; Qingdao Ocean
Chemical Factory, China). Chemical HG/T2354-92 silica gel (200–300 mesh, Qingdao) was
used for chromatography. Spots on TLC plates were visualised with UV light. 1H and
13C nuclear magnetic resonance (NMR) spectra were recorded on a Bruker Avance 400
spectrometer (Bruker Company, Bremen, Germany) with DMS0-d6 as the solvent.

4.2. Synthesis

The phenol derivative (1eq, 5 mmol) and acetic acid derivative (1eq, 5 mmol) were
weighed and added to a 500 mL round bottom flask, to which we added boron trifluoride
ethyl ether solution (2 mL) at a concentration of 46.5%, and then was heated under nitrogen
at 110 ◦C for 4 h for the reaction. The heating was completed and cooled to room tempera-
ture. Methyl sulfonyl chloride (MeSO2Cl) solution (4.5 mL) and DMF (22 mL) were added
to the magnet in advance at room temperature and stirred for 30 min; vilsmeier reagent,
stirring, and mixing were completed within 15 min, added drop by drop to the round-
bottomed flask. When the dropwise addition was completed, the temperature was raised
to 110 °C, and the reaction continued under nitrogen conditions for 4–7 h. The reaction was
detected using the TLC method. After the reaction was completed, 20 mL of pre-cooled
distilled water was added to the round-bottomed flask, which was then poured into a
separatory funnel; 80 mL of ethyl acetate was then added, and the extraction was carried
out to collect the upper layer of liquid in the separatory funnel. The combined organic layer
was washed with H2O (100 mL), dried over anhydrous Na2SO4, and evaporated until dry.
TLC was performed to detect the reaction, and after the reaction was fully detected via thin
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layer chromatography, it was purified by silica gel column (DCM:CH3OH = 75:1→10:1) to
obtain the corresponding hyperoside derivatives (Scheme 1A,B).
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4.3. Cell Culture and Drug Configuration

A549 cells (Procell, Wuhan, China) were cultured in an incubator at 37°C in 5% CO2
with RPMI-1640 (Gibco, Sigma Aldrich, Søborg, Denmark) containing 10% foetal bovine
serum (Gibco, Sigma Aldrich, Denmark) and 1% penicillin-streptomycin (Gibco, Sigma
Aldrich, Denmark). The experimentally synthesised G-series and Z-series compounds were
configured into 10 mmol/L and 40 mmol/L solutions with dimethyl sulfoxide (DMSO),
respectively, and stored at −20 ◦C.

4.3.1. Effect of Compounds on A549 Cell Activity by MTT Assay

The effect of hyperoside derivatives on the activity of A549 cells was determined with
the MTT assay. The cell density was adjusted to 5 × 104 cells/mL, and 150 uL per well was
added to a 96-well plate (PerkinElmer, Waltham, MA, USA) and placed in the incubator
for 24 h. Derivatives were added to the 96-well plate to make the concentration 0, 25, 50,
100, 200, 400 umol/L, and continued to incubate in the incubator for 48 h. Furthermore,
90 uL of the culture solution and 10 uL of the MTT solution (Solabio, Beijing, China) were
added to each well, incubated for 4 h under light protection, and then the incubation was
terminated. Additionally, 110 µL of the Formazan dissolution solution was added to each
well after aspirating the supernatant. The solution was dissolved by shaking on a shaking
table at a low speed for 10 min, and the absorbance (OD) of each well was measured at
490 nm. The OD of each well was measured at 490 nm, and the cell viability was calculated
according to the formula.

4.3.2. qPCR Assay

A549 cells were inoculated in 6-well plates at a cell density of 1.0 × 105 cells/mL
and were then incubated in a cell culture incubator for 24 h for subsequent priming. Cells
were divided into three groups: control (cell culture medium containing 1% FBS and no
TGF-β1); TGF-β treated (cell culture medium containing 1% FBS and 5 ng/mL TGF-β1);
and compound treatment (cell culture medium containing 1% FBS with 5 ng/mL TGF-β1
and 20 µM monomeric compounds), and were then incubated for 48 h. Total RNA was
extracted from A549 cells using an RNA extraction kit (Vazyme, Nanjing, China) according
to the manufacturer’s instructions, and the RNA was reverse transcribed into cDNA using
a HiScript III RT SuperMix for qPCR kit with gDNA wipe (Vazyme, Nanjing, China). The
mRNA expression levels were determined with qRT-PCR using a QuantStudio™ 5 qRT-
PCR system (Thermo Fisher, Waltham, MA, USA). E-cadherin waveform protein expression
levels were normalised to β-actin. Primer sequences are listed in Table 2.
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Table 2. Primer sequences for use in qRT-PCR.

Target Sequence

E-cadherin Forward 5′-GAGTGCCAACTGGACCATTCAGTA-3′

Reverse 5′-CACAGTCACACACGCTGACCTCTA-3′

Vimentin Forward 5′-TGACATTGAGATTGCCACCTACAG-3′

Reverse 5′-TCAACCGTCTTAATCAGAAGTGTCC-3′

β-actin Forward 5′-TGACGTGGACATCCGCAAAG-3′

Reverse 5′-CTGGAAGGTGGACAGCGAGG-3′

4.3.3. Western Blot

When A549 cells grew to about 80–90%, they were washed three times with PBS
(Solarbio, Beijing, China) and digested with 0.25% trypsin (Gibco, Sigma Aldrich, Denmark).
Then, they were inoculated in six-well plates at a density of 150,000 cells/well, and then
incubated in a cell culture incubator for 24 h for subsequent priming. Set the groups as
follows: control (cell culture medium containing 1% FBS and no TGF-β1); TGF-β treated
(cell culture medium containing 1% FBS and 5 ng/mL TGF-β1); and compound treatment
(cell culture medium containing 1% FBS with 5 ng/mL TGF-β1 and 20 µM monomeric
compounds). Cells were treated for 48 h. Protein samples were collected using lysing
cells with RIPA containing 1% protease inhibitor (PMSF) and 1% phosphatase inhibitor
(Beyotime, Beijing, China) for 30 min on ice. The cell suspension was shaken every 5 min.
The cell suspension was centrifuged at 13,000 rpm for 25 min at 4°C. After centrifugation,
the protein-containing supernatant was slowly aspirated and denatured in a dry metal
bath at 100 ◦C for 10 min, and then stored at −20 ◦C for later use. Furthermore, 35 µg
of total protein was separated using 10% separating gel and 5% concentrating gel. The
proteins were transferred onto 0.45 µm PVDF membranes (Millipore, MA, USA) and
closed via slow shaking for 2 h in 10% skim milk powder. The PVDF membrane was then
washed five times in a TBST buffer solution for 5 min each time, and the membrane was
blocked with the primary antibody at a 1:5000 ratio overnight at 4 ◦C. The PVDF membrane
was washed with the TBST buffer solution and incubated with a secondary antibody at
1:20,000 on a shaker for approximately 1.5 h at room temperature. The membrane was
analysed using an automated chemiluminescence imaging analyser (Tanon, Shanghai,
China) to analyze the immunoblots, and the grey values were analysed using densitometry
(Image J 1.8.0 software).

4.3.4. Determination of Adhesion

A549 cells (2 × 105 cells/mL) were inoculated into 6-well plates and incubated for 24 h.
Then, three subgroups were set up as follows: the control group (cell culture medium with
1% FBS and no TGF-β1); the TGF-β treatment group (cell culture medium with 1% FBS
and 5 ng/mL TGF-β1); and the compound treatment group (cell culture medium with 1%
FBS and 5 ng/mL TGF-β1 and 20 µM Z6 compound), and the cells were further incubated
for 48 h. The cells were then incubated for 2 h in the RPIM1640 medium. Fibronectin
(FN; 0.2 mg/mL, Solarbio, Beijing, China) was diluted with PBS into 100 uL per well and
punched into 96-well plates to a final concentration of 2 µg/cm2, dried in an oven for
60 min, and left at 4 ◦C overnight. Cells were harvested from 6-well plates, collected
and inoculated into 96-well plates, and incubated in an incubator for 45 min for staining.
Cells were fixed with a 4% formaldehyde solution for 10 min at room temperature, and
permeabilised with 0.5% Triton X-100 solution for 5 min. Cell nuclei were stained with
50 µL of Hoechst 33342 at a concentration of 10 µg/mL 30. Images were captured using
a fluorescence microscope with an objective lens of 20×. Pictures of the number of cells
adhering after treatment with different monomer compounds were analysed using Image J.

4.3.5. Cell Migration

A549 cells (1.5 × 105 cells/mL) were inoculated into 6-well plates (Corning, NY, USA)
and cultured with a serum-free cell culture medium for 24 h. Furthermore, 200 µL of
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sterilised lance tip was taken and scratched vertically according to the previous pen marks
to construct an in vitro scratch model, and the same strength and width were controlled
in each well; after the scratching was completed, it was washed with PBS buffer until
the scratched area had no cell residue, and the images were captured under an inverted
microscope. In group settings, according to the determination of adhesion, a serum-free
medium containing the drug was added to the corresponding wells and incubated for 48 h
for image capture under an inverted microscope. The quantification of the scratched area
was performed at different time points using ImageJ1.0 software. The quantification of the
scratched area was completed using formulas to calculate cell migration.

Healing rate(%) =
0 h scratch distance − 48 h Scratch distance

0 h Scratch distance
× 100%

4.3.6. Statistical Analysis

Experimental data were analysed and plotted using GraphPad Prism 9.0 software.
Statistical analysis was performed using one-way ANOVA and Tukey’s multiple compar-
ison test. The experimental data were expressed as mean ± standard deviation (x ± s).
Differences were considered statistically significant at p < 0.05.

5. Conclusions

In summary, we designed and synthesised two series of 16 hyperoside derivatives
and assessed their cytotoxicity. Subsequently, we induced A549 cells with TGF-β1 to
construct an in vitro lung fibrosis model, utilizing changes in cell phenotype during the
epithelial–mesenchymal transition (EMT) as a criterion. Through qRT-PCR, microscopy,
marker gene determination, and Western blot analyses, we identified eight derivatives
exhibiting superior efficacy to Vimentin, with potential anti-EMT activity, all of which could
significantly increase the expression of E-cadherin and decrease the expression of Vimentin
in A549 cells. In addition, compound Z6 is currently considered to be the most potent
EMT-inhibiting derivative of hyperoside, and the potentially active compounds were later
validated using our cellular function assays and other means. The results showed that Z6
could enhance the cell adhesion ability, reduce the cell migration ability, and significantly
inhibit the development of the EMT process. We utilised hyperoside as the lead compound,
retained its basic backbone structure, and modified and optimised it. Z6 has improved
solubility and bioavailability when compared to the prototype compound. This study
initially investigated its derivatives and their possible pharmacological properties. It
also provides relevant experimental data and a theoretical basis for the research and
development of flavonoid derivatives as target drugs for anti-EMT therapy.
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