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Abstract: Background: Neddylation, a post-translational modification process, plays a crucial role in
various human neoplasms. However, its connection with kidney renal clear cell carcinoma (KIRC)
remains under-researched. Methods: We validated the Gene Set Cancer Analysis Lite (GSCALite)
platform against The Cancer Genome Atlas (TCGA) database, analyzing 33 cancer types and their link
with 17 neddylation-related genes. This included examining copy number variations (CNVs), single
nucleotide variations (SNVs), mRNA expression, cellular pathway involvement, and methylation.
Using Gene Set Variation Analysis (GSVA), we categorized these genes into three clusters and exam-
ined their impact on KIRC patient prognosis, drug responses, immune infiltration, and oncogenic
pathways. Afterward, our objective is to identify genes that exhibit overexpression in KIRC and are
associated with an adverse prognosis. After pinpointing the specific target gene, we used the specific
inhibitor MLN4924 to inhibit the neddylation pathway to conduct RNA sequencing and related
in vitro experiments to verify and study the specificity and potential mechanisms related to the target.
This approach is geared towards enhancing our understanding of the prognostic importance of ned-
dylation modification in KIRC. Results: We identified significant CNV, SNV, and methylation events
in neddylation-related genes across various cancers, with notably higher expression levels observed
in KIRC. Cluster analysis revealed a potential trade-off in the interactions among neddylation-related
genes, where both high and low levels of gene expression are linked to adverse prognoses. This
association is particularly pronounced concerning lymph node involvement, T stage classification,
and Fustat score. Simultaneously, our research discovered that PSMB10 exhibits overexpression in
KIRC when compared to normal tissues, negatively impacting patient prognosis. Through RNA
sequencing and in vitro assays, we confirmed that the inhibition of neddylation modification could
play a role in the regulation of various signaling pathways, thereby influencing the prognosis of
KIRC. Moreover, our results underscore PSMB10 as a viable target for therapeutic intervention in
KIRC, opening up novel pathways for the development of targeted treatment strategies. Conclusion:
This study underscores the regulatory function and potential mechanism of neddylation modification
on the phenotype of KIRC, identifying PSMB10 as a key regulatory target with a significant role in
influencing the prognosis of KIRC.

Keywords: kidney renal clear cell carcinoma; neddylation; GSVA; RNA sequencing; MLN4924; PSMB10

1. Introduction

Neddylation, a reversible post-translational modification, involves the covalent at-
tachment of NEDD8 (neuronal precursor cell-expressed developmentally down-regulated
protein 8), a ubiquitin-like protein, to its substrate proteins [1,2]. Being highly conserved
across eukaryotes, NEDD8 is prominently expressed within the nucleus, contrasted by its
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weaker expression in the cytoplasm [3]. Initially, the NEDD8 gene was cloned from a mouse
in 1992 [4], and it demonstrated a 59% similarity to ubiquitin and assumed integral roles in
eukaryotic cell metabolism [5]. The initial non-cullin substrate of neddylation identified
was breast cancer-associated protein 3 (BCA3), which was isolated from yeast [6]. The
cullin-RING ligases (CRLs) have since become the most extensively studied substrates of
neddylation [5]. The deregulation of CRLs is implicated in various diseases, including but
not limited to cancer, neurodegenerative disorders, and viral infections [7–9]. CRLs belong
to a diverse family of ubiquitin ligases tasked with the degradation and modification of
a plethora of proteins via ubiquitination [7,10]. Given that over 600 human genes have
been identified as encoding CRL subunits, this ubiquitin ligase family holds a significant
degree of control over the cellular proteome, regulating tens of thousands of proteins
via the ubiquitin-proteasome system for degradation or modification [11,12]. The Cullin
subunit, an essential component of CRLs, has its activity modulated by neddylation modi-
fication [13]. A study conducted in 1998 elucidated that cullin protein and NEDD8 were
overexpressed in colon cancer cells and leukemia cells [14,15], reinforcing the correlation
between neddylation and cancer progression.

The neddylation process, bearing a resemblance to ubiquitination, encompasses five
consecutive enzymatic cascade reactions, detailed as follows (Figure 1):

1. Maturation: The maturation of NEDD8, a crucial process in cellular regulation, begins
with the decarboxylation and removal of the C-terminal precursor sequence from
NEDD8 precursors. This step is mediated by two key enzymes, NEDD8-specific
protease 1 (NEDP1) and ubiquitin C-terminal hydrolase L3 (UCHL3) [2]. NEDP1
plays a specific role in cleaving the C-terminal sequence of NEDD8 precursors, thereby
producing active NEDD8 [16]. Concurrently, UCHL3 assists in the elimination of the
C-terminal precursor sequence and also contributes to the decarboxylation process
during maturation [17]. The activities of these enzymes are vital, as they ensure the
proper maturation of NEDD8.

2. Activation: The activation of NEDD8 is carried out by the NEDD8 activating en-
zyme (NAE), which is composed of two subunits: NAE1 and ubiquitin-like modifier-
activating enzyme 3 (UBA3) [18]. In this step, the mature NEDD8 forms a high-energy
thioester bond with a cysteine residue within NAE’s active site [19]. This activation
of NEDD8 is a critical juncture, as the now active NEDD8 can bind to neddylation
substrates [20]. This binding plays a pivotal role in the recognition of CRLs and the
ubiquitination of tumor-related proteins [20]. In recent years, MLN4924 has become
well-known as a small molecule inhibitor specifically targeting the neddylation path-
way [21]. It inhibits the NAE, which is essential for the neddylation process [21]. By
inhibiting NAE, MLN4924 effectively blocks the neddylation of cullin proteins, lead-
ing to the inactivation of CRLs [22]. This approach highlights the potential of targeting
post-translational modification systems in the development of new cancer treatments.

3. Conjugation: Once NEDD8 is activated, it is loaded onto the NAE, setting the stage
for its transfer to the neddylation E2-conjugating enzymes, specifically ubiquitin-
conjugating enzyme E2 M (UBE2M) and UBE2F [23]. This transfer is facilitated by
a trans-thiolation reaction, a critical biochemical mechanism that effectively moves
NEDD8 from NAE to the E2 enzyme [24,25]. This step ensures the proper positioning
and readiness of NEDD8 for subsequent steps in the protein modification process.

4. Ligation: In the substrate neddylation phase, the final step involves a substrate-
specific E3 ligase (either RING-box protein 1/2 (RBX1/2) or DCN1), which plays a
crucial role in transferring NEDD8 from the E2 enzyme to the substrate protein [5,26].
This intricate process leads to the formation of a covalent bond between NEDD8
and a lysine residue on the target protein, effectively completing the neddylation
process [26]. This step is essential for the regulation of protein function and stability
within the cell.
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5. Deneddylation: Deneddylation entails the removal of NEDD8 from its substrates [27].
This process is primarily mediated by two key components: the eight-subunit COP9
signalosome (CSN) and NEDD8-specific protease 1 (NEDP1) [28–30].
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Figure 1. The mechanism diagram illustrates neddylation modification and the targets of MLN4924.
NEDD8, neural precursor cell-expressed developmentally down-regulated protein 8; UCH-L3, ubiq-
uitin C-terminal hydrolase-L3; NEDP1, NEDD8 protease 1; NAE1, NEDD8-activating enzyme 1;
UBA3, ubiquitin-like modifier-activating enzyme 3; UBE2M/F, ubiquitin-conjugating enzyme E2
M/F; CSN, COP9 signalosome; NEDP1, NEDD8-specific protease 1.

The NEDD8 modification and the subsequent neddylation cascade represent essential
intracellular regulatory pathways, which serve crucial roles in a myriad of biological pro-
cesses within cells, including but not limited to DNA repair, transcriptional regulation, and
cell cycle progression [5]. Neddylation, in these contexts, modulates the function of several
cellular mechanisms via substrate-specific modification, encompassing cellular prolifera-
tion, apoptosis, and signal transduction [5]. Studies have pointed towards a heightened
expression of enzymes linked with the neddylation cascade and NEDD8 modification in
human cancers [31–35]. Such upregulation is intimately associated with cancer progression
and correlated with decreased patient survival rates [31–34]. Consequently, these enzymes
have emerged as significant targets in cancer therapeutics [13]. MLN4924 targets the neddy-
lation process by inhibiting NAE and emerges as a promising contender for cancer therapy,
attributed to its extensive anticancer activity and capability to augment the effectiveness of
current treatments [36]. Current clinical trials are investigating the efficacy and safety of
MLN4924, underlining its therapeutic potential in possibly surmounting drug resistance
and selectively targeting cancer cells [37–39].

Renal cell carcinoma (RCC) is a malignancy originating in the cells lining the kidney’s
tubules. Over the years, both its incidence and mortality rate have been on an uptrend,
often associated with significant morbidity and mortality [40,41]. RCC is a heterogeneous
disease comprising various subtypes, including KIRC, papillary RCC, and chromophobe
RCC [42,43]. The most prevalent subtype is KIRC, which accounts for 70–80% of all RCC
cases [44,45]. Symptoms of the disease remain largely unnoticeable during the initial stages,
but as the condition deteriorates, patients may experience symptoms of varying degrees,
such as abdominal pain, hematuria, back pain, and weight loss [46]. The prognosis of KIRC
is generally poor, primarily due to its high invasiveness and metastatic capacity [47,48].
Finding new therapeutic targets is the key to current research.

Our study presents an analysis of 17 neddylation-related genes, embodying a wide
spectrum of biological functions, notably in protein degradation and ubiquitination ex-
emplified by PSMB8, PSMB9, PSMB10, F-box protein 41 (FBXO41), FBXO17, F-box and
leucine-rich repeat protein 16 (FBXL16), FBXL8 [49–55], cell cycle regulation and apoptosis
including baculoviral IAP repeat containing 5 (BIRC5), denticleless E3 ubiquitin protein
ligase homolog (DTL) [56,57], immune response and inflammation mediated by PSMB8,
PSMB9, PSMB10, and ubiquitin D (UBD) [58–61], as well as DNA repair and genomic
stability with a pivotal contribution from DNA damage-binding protein 2 (DDB2) [62].
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Additionally, they are instrumental in signal transduction processes, particularly involving
WD repeat and SOCS box containing 1 (WSB1) and the ankyrin repeat and SOCS box
protein (ASB) protein family [63,64]. The dysregulation of these critical cellular pathways
precipitates a series of events that catalyze tumor initiation and progression in KIRC. This
cascade includes uncontrolled cellular proliferation, evasion of programmed cell death,
alterations in the tumor microenvironment, and circumvention of immune surveillance. We
will conduct bioinformatics analysis and cell experiments on these genes to understand the
clinical significance of neddylation-related genes for KIRC and screen out specific genes to
provide directions for targeted therapy. A flowchart has been developed to better illustrate
our experimental approach (Figure 2).
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Figure 2. Flowchart of the entire article.

2. Results
2.1. Prevalent Mutations in Neddylation-Related Genes

Our analysis indicated that the majority of cancer types present with CNV and SNV
in genes implicated in the neddylation pathway. Interestingly, acute myeloid leukemia
(LAML) and thyroid carcinoma (THCA) deviate from other cancer types, displaying min-
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imal CNV in neddylation pathway-related genes. The genes DTL and ASB4 are consis-
tently high in CNV across various cancer types. In contrast, we identified that genes
splA/Ryanodine receptor domain and SOCS box containing 1 (SPSB1) and proteasome
20S subunit alpha 8 (PSMA8) are frequently subjected to low CNV in numerous cancer
types (Figure 3A). Among the different cancer types, uterine corpus endometrial carcinoma
(UCEC) exhibits a heightened frequency of SNVs, whereas lower frequencies are noted in
brain lower-grade glioma (LGG), pheochromocytoma and paraganglioma (PCPG), THCA,
and sarcoma (SARC) groups (Figure 3B). Our study found that the expression level of
neddylation genes in KIRC is higher than that of other cancers (Figure S1A). In addition,
our study reveals that neddylation-related genes have a correlation with apoptosis, cell
cycle, epithelial-mesenchymal transition (EMT), and hormone ER. These findings are of
great significance for the direction of subsequent research (Figure S1B).
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Figure 3. Widespread genetic mutations in neddylation-related genes. (A) Solid spheres denote CNV
alterations across various cancer types, with the size of the spheres corresponding to the degree of
correlation; larger spheres signify higher statistical significance. (B) Adjacent color blocks representing
SNV within these genes use red to denote high frequency and blue to indicate low frequency.
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2.2. Neddylation-Related Genes: The Association and Clinical Significance between Methylation
and KIRC

Our primary focus revolved around the methylation profile of neddylation-related
genes and their association with 14 diverse types of cancer (Figure 4A). Our findings illus-
trate that neddylation-related genes undergo extensive DNA methylation modifications in
KIRC. Further, our correlation analysis between methylation of neddylation-related genes
and mRNA expression across various cancers unveiled a potent inverse correlation. Pre-
dominantly, augmented methylation of neddylation-related genes corresponds to reduced
mRNA expression (Figure 4B). However, UBD methylation seems to exhibit a positive
influence on mRNA expression. Lastly, we examined the correlation between neddylation-
related gene methylation and survival rates across multiple cancer types (Figure 4C). We
discovered that methylation of SPSB1, PSMB10, BIRC5, and WSB1 might exert potential
protective effects in KIRC. These revelations contribute novel insights towards targeted
therapy, and subsequent investigations will aim to ascertain the specificity of these targets.
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Figure 4. Neddylation-related gene methylation plays a pivotal role in cancer development and pro-
gression. In statistical analysis, the correlation between variables measures their mutual relationship.
The size of each solid sphere represents the correlation degree between studied variables (A larger
sphere signifies a stronger correlation, whereas a smaller sphere indicates a weaker one). (A) The
figure shows the methylation status of neddylation-related genes across 14 different types of cancers.
Higher −log10 (FDR) values indicate greater statistical significance. (B) The diagram illustrates the
correlation between neddylation-related gene methylation and mRNA expression across 33 types
of cancers. The color coding (red for positive correlation and blue for negative) indicates the direc-
tion of the correlation. (C) This panel displays the association between the methylation status of
neddylation-related genes and survival risk across 23 different types of cancers. The survival risk
level is represented by a spherical shape, where red indicates a higher risk of mortality, and blue
signifies a lower risk.
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2.3. Impact of Neddylation Pathway Scores on Prognosis in KIRC

To explore the role of neddylation in KIRC, we analyzed the gene expression profiles of
neddylation-related genes in KIRC tissues compared to normal kidney tissues. Comparative
analysis of gene transcription levels between cancerous and normal tissues demonstrated
upregulation of these genes in KIRC tissues, underscoring transcriptional disparities, as
depicted in the heatmap (Figure 5A). We classified neddylation-related genes into three
distinct clusters (C1, C2, and C3) based on the transcriptional differences. Each cluster
is defined by unique neddylation pathway scores. The scores aggregate the expression
levels of multiple neddylation-related genes within each cluster (Figure S2A). Enrichment
analysis further elucidated the distinctions among these clusters, revealing a hierarchy in
enrichment scores: C2 > C1 > C3, as shown in the violin plot (Figure S2B).
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and KIRC tissues. Upregulation of gene expression is represented by a red color, while a blue color
symbolizes down-regulation. “N” and “T” designate normal and tumor samples, respectively. (B) The
survival curve delineates disparities in survival probabilities across the three clusters of patients.
Red, green, and black lines symbolize Cluster 1, Cluster 2, and Cluster 3, respectively. The horizontal
axis signifies years, and the vertical axis stands for survival probability. (C) The heatmap delineates
the correlation between the three clusters and clinical pathological features, inclusive of M, T, stage,
grade, age, Fustat, and futime. Levels of statistical significance are denoted as follows: ** p < 0.01,
and *** p < 0.001.

Survival analysis using Kaplan–Meier curves demonstrated that patients in cluster
C1 exhibit a higher overall survival (OS) rate compared with clusters C2 and C3, with C3
showing the lowest OS (Figure 5B). These findings suggest that an imbalance in neddylation-
related gene expression, particularly with a predominance of genes with low neddylation
scores, is associated with poorer patient prognosis in KIRC. Further analysis revealed a
correlation between expression changes of neddylation-related genes and advanced clinical
parameters in KIRC, such as increased T stage, overall stage classification, and Fustat score
(Figure 5C). This correlation underscores the potential of neddylation pathway scores as
biomarkers for disease progression and prognosis in KIRC patients.

2.4. Relationship between Neddylation Clusters and Drug Sensitivity

To investigate the relationship between the neddylation pathway and drug sensitivity,
we procured data corresponding to 12 drugs from the GDSC database. We introduced a
half-maximal inhibitory concentration value to compare drug sensitivity among the distinct
clusters, with the principle understanding that IC50 is inversely proportional to drug sensi-
tivity. For instance, the effectiveness of Sorafenib was denoted as C3 > C2 > C1, Sunitinib
was denoted as C2 > C1, Nilotinib as C2 > C3 and C1 > C3, Axitinib as C1 > C2 > C3,
Gefitinib as C2 > C1 > C3, Temsirolimus as C2 > C1 and C2 > C3, Metformin as C1 > C3 and
C2 > C3, Bosutinib as C2 > C1 > C3, and Tipifarnib as C2 > C1 > C3 (Figure 6A–L). Through
our analysis, Gefitinib, Temsirolimus, Bosutinib, and Tipifarnib manifested superior efficacy
in patients with high neddylation scores in KIRC. Furthermore, we analyzed the response
data of several classic targeted drugs pertaining to neddylation-related genes. Our findings
reveal that the expression of the majority of neddylation-related genes is influenced by
targeted therapeutics, commonly displaying inhibitory effects. Among these, the gene
FBXO41 displays the most pronounced effect, underscoring its significance in targeted
therapy for KIRC (Figure 6M).

2.5. The Impact of the Neddylation Score on Classical Oncogenes and Immune Infiltration

In our study, we observed that Cluster 3, characterized by the high expression of
several proto-oncogenes including catenin beta 1 (CTNNB1), BRAF, KRAS, and PIK3CA,
appears to be a critical determinant of poor prognosis in patients with KIRC (Figure 7A).
This finding is particularly noteworthy given that VHL is the only tumor suppressor
gene in this context. The prominence of proto-oncogenes in Cluster 3 underscores the
complexity of the regulatory processes governing KIRC prognosis. Our analysis reveals
that multiple genes contribute to the intricate molecular landscape of KIRC, warranting
further in-depth investigation to understand their interplay and impact on patient outcomes.
Similarly, in our study, we have observed that the elevated expression of the proto-oncogene
SIRT1, coupled with the reduced expression of the tumor suppressor gene SIRT3, plays
a significant role in contributing to the adverse prognosis observed in Cluster3 of KIRC
patients (Figure 7B).



Pharmaceuticals 2024, 17, 635 9 of 30Pharmaceuticals 2024, 17, x FOR PEER REVIEW 10 of 30 
 

 

 
Figure 6. Drug sensitivity variations among different neddylation clusters. (A–L) These box plots 
depict the estimated IC50 values of 12 specific drugs for Cluster 1 (represented in yellow), Cluster 2 
(denoted in blue), and Cluster 3 (indicated in red). The numbers positioned above the plots signify 
statistically significant p-values. The box plots provide a clear visual representation of the disparities 
in drug sensitivities amongst the neddylation clusters. (M) The scatter plot showcases the unique 
influences of GDSC drugs on the mRNA expression of neddylation class genes. The spheres present 
on the plot symbolize statistical significance (p < 0.05), whereas larger spheres demonstrate a more 
potent correlation. A red sphere indicates an increase in mRNA expression, while a blue sphere 
represents a decrease.  

In our study focusing on KIRC, a comprehensive analysis of DNA methyltransferase 
1 (DNMT1) and HDACs was conducted. We discovered that elevated expression levels of 
the proto-oncogenes DNMT1, HDAC1, and HDAC2 are strongly associated with poor 
prognostic outcomes. This finding highlights the critical roles these genes play in KIRC 
pathogenesis, suggesting their potential as key factors in the disease’s progression and as 
targets for therapeutic intervention (Figure 7C). 

A correlation analysis between the neddylation score and infiltration of various im-
mune cells was performed. According to the results, Tfh type, T cell co-stimulation, in-
flammation promotion, and CD8 T cell infiltration show a positive correlation, while type 

Figure 6. Drug sensitivity variations among different neddylation clusters. (A–L) These box plots
depict the estimated IC50 values of 12 specific drugs for Cluster 1 (represented in yellow), Cluster 2
(denoted in blue), and Cluster 3 (indicated in red). The numbers positioned above the plots signify
statistically significant p-values. The box plots provide a clear visual representation of the disparities
in drug sensitivities amongst the neddylation clusters. (M) The scatter plot showcases the unique
influences of GDSC drugs on the mRNA expression of neddylation class genes. The spheres present
on the plot symbolize statistical significance (p < 0.05), whereas larger spheres demonstrate a more
potent correlation. A red sphere indicates an increase in mRNA expression, while a blue sphere
represents a decrease.
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(A–C) The association between the neddylation score and classical cancer-associated genes, sirtuin
family genes, and HDAC family genes was evaluated, with significance levels represented by
* p < 0.05, ** p < 0.01, *** p < 0.005, and **** p < 0.001. (D) The study examined the correlation between
the neddylation score and immune cell infiltration. In this figure, the sphere’s area represents the
magnitude of abs (correlation), and the color indicates the corresponding p-value.

In our study focusing on KIRC, a comprehensive analysis of DNA methyltransferase
1 (DNMT1) and HDACs was conducted. We discovered that elevated expression levels
of the proto-oncogenes DNMT1, HDAC1, and HDAC2 are strongly associated with poor
prognostic outcomes. This finding highlights the critical roles these genes play in KIRC
pathogenesis, suggesting their potential as key factors in the disease’s progression and as
targets for therapeutic intervention (Figure 7C).

A correlation analysis between the neddylation score and infiltration of various im-
mune cells was performed. According to the results, Tfh type, T cell co-stimulation,
inflammation promotion, and CD8 T cell infiltration show a positive correlation, while
type II interferon (IFN)-reactive cell infiltration demonstrates a negative correlation with
mast cell infiltration (Figure 7D). Moreover, a scatter plot was devised to illustrate the
potent positive correlation between the neddylation score and Tfh, T cell co-stimulation,
inflammation-promoting, and CD8 T cells (Figure S3A–D). The results signify a robust
positive correlation between the two, which aligns with the findings presented in Figure 7D
of the study. These findings suggest that both the tumor microenvironment and immune
cell infiltration play pivotal roles in KIRC tumor progression, and the neddylation pathway
may potentially regulate the immune response.

2.6. Screening for Neddylation-Related Genes with Specific Effects on KIRC

A pan-cancer analysis revealed that PSMB10 is significantly overexpressed in various
tumor types compared to normal tissues, with notably high expression levels in KIRC
(Figure 8A). Similarly, we analyzed the gene expression levels in our samples and identified
an optimal cutoff value, enabling the stratification of the samples into two distinct groups:
high-expression and low-expression. To elucidate the effect of these gene expression varia-
tions on patient survival, we constructed a Kaplan–Meier survival curve. Research findings
demonstrated that various neddylation-related genes could either improve or deteriorate
the prognosis of patients with KIRC (Figure S4A). It was revealed that elevated expression
levels of ASB2, WSB1, BIRC5, ASB4, FBXO41, PSMB10, FBXL8, and SPSB1 are strongly
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correlated with poor patient outcomes, underscoring their potential as prognostic mark-
ers for cancer. Conversely, heightened expression levels of FBXO17, leucine-rich repeat
containing 41 (LRRC41), FBXL16, UBD, and DDB2 are identified as positive prognostic
indicators. Furthermore, we analyzed the hazard ratios of 16 neddylation-related genes
to elucidate the relationship between their expression and the prognosis of KIRC patients.
The analysis revealed that FBXL16 exhibits a protective effect, whereas BIRC5, WSB1,
PSMB9, PSMB10, DTL, and SPSB1 are associated with adverse outcomes. These findings,
all statistically significant (p < 0.05), are shown in the forest plot (Figure 8B). Leverag-
ing the UALCAN website, we selected several representative neddylation-related genes
(PSMB10, PSMB9, PSMB8, FBXO17, FBXL8, DDB2, BIRC5) and compared their protein
expression discrepancies between KIRC tissues and normal tissues. The findings indicate
that the neddylation-related genes protein in KIRC tissues is higher than in normal tissues
(Figure S4B).
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Figure 8. Multi-level screening of neddylation-related genes that have specific effects on the prognosis
of KIRC. (A) The pan-cancer expression profile of PSMB10, with significance levels represented by
* p < 0.05, ** p < 0.01, and *** p < 0.005. (B) Hazard ratio analysis, encompassing 95% confidence inter-
vals and corresponding p-values. (C–F) The panel displays the immunohistochemical observations
obtained from the HPA database, showcasing the protein expression of BIRC5 and PSMB10 in both
KIRC tissues (T) and normal tissues (N). (G) The diagram depicts the immunofluorescence of PSMB10
and BIRC5 in A431 and U2-OS cell lines. In this illustration, the green fluorescence signifies the
localization of PSMB10 and BIRC5 proteins, whereas the blue fluorescence represents the cell nuclei.

We carried out an in-depth analysis of PSMB10, utilizing the resources available
through the HPA database. To start, we contrasted the immunohistochemical staining of
BIRC5 (classical oncogene) and PSMB10 in primary tumor tissues and normal tissues in
cases of KIRC. The outcomes illustrated a substantial enhancement in the expression of
PSMB10 proteins in KIRC tissues relative to normal tissues (Figure 8C–F). Furthermore, we
scrutinized the immunofluorescence of PSMB10 in A431 and U2-OS cell lines (Figure 8G).
This examination substantiated that PSMB10 is expressed predominantly in the cytoplasm.
These results validate the specificity of PSMB10 expression in KIRC. We investigated the
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co-expression relationships of PSMB10 with various genes. Our analysis revealed that
PSMB8, PSMB9, ASB2, UBD, PSMA8, BIRC5, DTL, LRRC41, WSB1, and ASB4 show a
positive correlation with PSMB10 expression. In contrast, FBXL16 and SPSB1 are found to
be negatively correlated with PSMB10 expression (Figure S4C). In summary, our findings
highlight that PSMB10 protein displays augmented expression levels in tumor tissues
compared with normal tissues and is associated with unfavorable prognostic outcomes in
patients. Consequently, we plan to conduct further analysis on this gene.

2.7. In Vitro Dosing Experiments Elucidate the Pivotal Role of Neddylation Modification in
Determining the Phenotype of KIRC

To assess the impact of neddylation modification inhibition on the proliferation of
renal cancer cells, we administered serial dilutions of the neddylation-specific inhibitor
MLN4924 (0, 0.5, 1, 1.5, 2, 2.5 µM) to ACHN and 786-O cell lines. This treatment was
aimed at evaluating its capacity to decrease cell viability in vitro over a 48 h period. We
observed that MLN4924 treatment for 48 h led to a significant and dose-dependent re-
duction in the viability of both ACHN and 786-O cell lines, with the inhibitory effect at
2 µM closely approximating the half-maximal inhibitory concentration (Figure 9A). Conse-
quently, we selected a concentration of 2 µM for a 48 h treatment for subsequent analysis
of immunofluorescence protein expression. The results demonstrated that the expression
levels of NEDD8 and PSMB10 proteins are significantly diminished following MLN4924
treatment (Figure S5A–E). As mentioned previously, NEDD8 serves as a crucial marker of
neddylation, and its reduced expression indicates that MLN4924 effectively inhibits neddy-
lation modification in renal cell carcinoma. Concomitantly, the down-regulation of PSMB10
suggests its potential role as a target in the modulation of neddylation modification.
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Figure 9. Comprehensive investigation into the effects of MLN4924-induced inhibition of neddylation
modification on the KIRC phenotype. (A) Dose-response evaluation of MLN4924: investigation of cell
proliferation in ACHN and 786-O cell lines following treatment with serial dilutions of MLN4924 (0,
0.5, 1, 1.5, 2, 2.5 µM), utilizing a CCK-8 assay to assess proliferation rates. (B) Colony formation assay
following MLN4924 treatment: comparison of colony formation capabilities in ACHN and 786-O
cell lines treated with MLN4924 (0.2 µM; 10 days) against control groups, indicating a reduction
in colony-forming ability post-treatment. (C) Quantitative colony formation analysis: consolidated
results from three independent colony formation assays highlight a significant decrease in the colony-
forming capacity of ACHN and 786-O cells treated with MLN4924 (0.2 µM; 10 d) compared with
controls. Statistical significance is denoted by * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.

Further, colony formation experiments show that the number of colonies in the
MLN4924-treated group is significantly reduced compared with the blank control group
(Figure 9B,C). Additionally, transwell invasion and migration assays indicate that treatment
with 2 µM MLN4924 for 24 h significantly reduced the invasion and migration capabilities
of ACHN and 786-O cell lines compared with the control group (Figure S5F–H). Scratch
assays further corroborated these findings, showing diminished migration at 12 and 24 h
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post-treatment with 2 µM MLN4924 relative to the untreated controls (Figure S5I–K). In
summary, our study confirms that inhibition of neddylation modification in renal cell carci-
noma significantly impedes its proliferation, invasion, and migration. Furthermore, our
data also confirm that PSMB10 may serve as a key regulator in this pathway, corroborating
the insights gained from our preceding bioinformatics study on KIRC.

2.8. Deciphering the Impact and Underlying Mechanisms of MLN4924 Treatment on KIRC Cell
Lines through RNA Sequencing Analysis

To elucidate the mechanism of neddylation in regulating KIRC biological phenotypes,
we used the 786-O cell line as a model system. This line underwent treatment with 2 µM
MLN4924 for 48 h, serving as the experimental group, while a corresponding untreated
set served as the control group. Each condition was replicated three times, resulting in
the samples M4924-1, M4924-2, and M4924-3 (experimental) and NC-1, NC-2, and NC-3
(control), which were then subjected to transcriptomic sequencing by a specialized biotech-
nology firm. Quality assurance steps were meticulously carried out on the sequencing
data, beginning with the assessment of total RNA integrity via agarose gel electrophoresis
(Figure S6A). This was followed by an evaluation of sequencing fidelity, GC content dis-
tribution, and raw data purification, leading to the generation of clean reads for in-depth
analysis. This involves the removal of reads containing sequencing adapters, exclusion of
reads with an N ratio exceeding 10%, and elimination of low-quality reads, where the num-
ber of bases with a quality value (Q) ≤ 20 constitutes more than 50% of the entire read. The
result is a collection of clean reads ready for analysis (Figure S6B). Comparative analysis
of the sequencing outcomes revealed significant gene expression alterations between the
experimental (sh-RECQ1) and negative control (NC) groups. Specifically, there was a reduc-
tion in expression levels of over 1180 genes by more than 50% (log2 ≤ −1) and an increase
in 914 genes with expression levels more than doubled (log2 ≥ 1), as illustrated in the
volcano plot and cluster heat map (Figure S6C,D). To interpret the biological significance of
these expression changes, we conducted a Disease Ontology (DO) analysis, focusing on the
gene function–disease correlation. This analysis pinpointed that the differentially expressed
genes were predominantly associated with various cancer types and inflammatory diseases
(Figure 10A). Furthermore, a Key Pathway Analysis via the Kyoto Encyclopedia of Genes
and Genomes (KEGG) revealed substantial enrichment of these genes in critical signaling
pathways implicated in KIRC malignancy, including the TNF signaling pathway, NF-kappa
B signaling pathway, and the p53 signaling pathway (Figure 10B). These transcriptomic
insights confirm that neddylation’s prognostic influence on KIRC is mediated through a
concerted modulation of multiple signaling pathways, underscoring the complexity of its
regulatory mechanisms. In particular, the observed regulatory effect of neddylation on the
NF-kappa B signaling pathway reflects the feasibility of our previous studies on neddyla-
tion regulating PSMB10 expression. Because the immunoproteasome subunit (PSMB10)
helps fine-tune specific intracellular pathways, including the NF-kB signaling pathway,
it plays a critical role in managing immune responses, oxidative stress, and maintaining
cellular proteostasis [65]. This guides us to conduct further research on the target role
of PSMB10.
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2.9. In Vitro Analysis Reveals the Targeted Therapeutic Potential of PSMB10 in KIRC

To refine the understanding of PSMB10 expression in KIRC, we conducted compar-
ative studies using one normal renal cell line (HK2) and two KIRC cell lines (786-O and
ACHN). The expression of PSMB10 was quantified using reverse transcription-polymerase
chain reaction (RT-PCR). The RT-PCR data demonstrates significantly elevated levels of
PSMB10 in the KIRC cell lines compared with the normal renal cells (Figure S7A). To
further investigate the biological implications of PSMB10 in KIRC, we initiated a targeted
reduction of its expression using small interfering RNA (siRNA) technology. Initial screen-
ing of various siRNAs led to the selection of HOMO-334 and HOMO-908, specifically for
the PSMB10 knockdown in the 786-O cell line. RT-PCR analysis confirmed the superior
knockdown efficiency of HOMO-908, which achieved an approximate 90% reduction in
PSMB10 expression (Figure S7B). The same siRNA, HOMO-908, was then employed in the
ACHN cell line, resulting in a similar decrease in PSMB10 expression (Figure S7C). The
transfection efficiency in both 786-O and ACHN cell lines was validated using a negative
control FAM label, as provided by the reagent supplier. This control corroborated the
success of the transfection process (Figure S7D,E). Beyond transcriptional analysis, we
also assessed PSMB10 protein expression post-siRNA (HOMO-908) knockdown in both
ACHN and 786-O cell lines using immunofluorescence (Figure S7F–I). These investigations
confirmed the reliability of siRNA (HOMO-908) in effectively targeting the PSMB10 gene.
Consequently, HOMO-908 was selected for subsequent knockdown experiments within
this study.

A CCK-8 assay was utilized to evaluate the effect of PSMB10 knockdown on cell
proliferation in 786-O and ACHN cell lines. The assay revealed a significant decrease in
proliferation in these cell lines following PSMB10 knockdown. Notably, in the 786-O knock-
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down group, significant deviations from the control group were observed starting from
24 h, while in the ACHN cells, these differences became apparent after 48 h (Figure 11A,B).
To further elucidate the impact of PSMB10 on the proliferative behavior of KIRC cells,
clonogenic assays were conducted. The results from these assays indicated a pronounced
reduction in both the quantity and size of the colonies formed by the 786-O and ACHN
cells post-PSMB10 gene knockdown (Figure 11C,D). The scratch assay results demonstrated
that the migratory capacity of the 786-O and ACHN cell lines was markedly impaired at
12 and 24 h following PSMB10 knockdown (Figure S7J–L). This observation was further
corroborated by the transwell cell migration assay, which yielded consistent findings. Ad-
ditionally, the results of the transwell cell invasion assay indicated a substantial decrease
in the invasive potential of these cell lines post-PSMB10 knockdown (Figure S7M–O). To-
gether, these experimental outcomes provide robust evidence supporting the pivotal role
of PSMB10 in regulating the migration and invasion characteristics of KIRC cells.

Pharmaceuticals 2024, 17, x FOR PEER REVIEW 16 of 30 
 

 

 
Figure 11. Comprehensive analysis of PSMB10 gene expression and functional impact on KIRC cell 
lines. (A,B) Cell proliferation assessment using CCK-8 assay in ACHN and 786-O cell lines post Si-
PSMB10 and NC (negative control) transfection. (C) Colony formation assay in ACHN and 786-O 
cell lines following transfection with Si-PSMB10 and NC. (D) Quantitative analysis of three inde-
pendent colony formation experiments. Impact of PSMB10 knockdown on cell migration and inva-
sion in ACHN and 786-O cell lines. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. 

3. Discussion 
The advancement of structural and molecular biology research has progressively un-

raveled the potential mechanism underlying the neddylation cascade, along with its piv-
otal role in tumor biology [66–68]. The neddylation pathway exhibits substantial influence 
over the tumor microenvironment (TME) [69]. It is widely acknowledged that the TME, 

Figure 11. Comprehensive analysis of PSMB10 gene expression and functional impact on KIRC
cell lines. (A,B) Cell proliferation assessment using CCK-8 assay in ACHN and 786-O cell lines
post Si-PSMB10 and NC (negative control) transfection. (C) Colony formation assay in ACHN and
786-O cell lines following transfection with Si-PSMB10 and NC. (D) Quantitative analysis of three
independent colony formation experiments. Impact of PSMB10 knockdown on cell migration and
invasion in ACHN and 786-O cell lines. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.
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3. Discussion

The advancement of structural and molecular biology research has progressively un-
raveled the potential mechanism underlying the neddylation cascade, along with its pivotal
role in tumor biology [66–68]. The neddylation pathway exhibits substantial influence
over the tumor microenvironment (TME) [69]. It is widely acknowledged that the TME,
an intricate network comprising both cells and the extracellular matrix, provides an envi-
ronment conducive to tumor cell proliferation [70]. The TME is known to have a decisive
role in the regulation of tumor growth, metastasis, and response to therapy [71]. Tumors
are comprised not only of malignant cells but also a variety of normal cells, such as fibrob-
lasts, endothelial cells, lymphocytes, and macrophages [70,72,73]. The emerging paradigm
suggests that therapeutic targeting of the TME, through modulation of the neddylation
pathway, may represent a novel strategy in cancer treatment [74].

Renal cell carcinoma (RCC) is characterized by significant heterogeneity, metastatic
potential, and immune reactivity [75]. Among RCC subtypes, KIRC is the most preva-
lent [76,77]. For early-stage KIRC, treatment options are largely limited to surgical interven-
tions. While these interventions can be effective, postoperative recurrence is observed in
20–40% of patients [78]. Traditional surgical and medical treatments often prove infeasible
for patients with advanced stages of the disease [79]. Nevertheless, this gap is being increas-
ingly addressed by targeted therapies. The efficacy of targeted therapy lies in its ability to
tailor treatment to individual gene mutation sites, a strategy that is now extensively imple-
mented in clinical practice [80]. Despite the escalating incidence of KIRC, the synergistic
effects of combining molecular targeted drugs with immunotherapy can enhance treatment
effectiveness and ameliorate patient prognosis. Additionally, the burgeoning progress in
the field of neddylation-KIRC research has begun to draw significant attention [81].

Our study reveals a substantial presence of CNVs and SNVs in neddylation-related
genes. Notably, these genes exhibit a more pronounced expression in KIRC compared to
other tumor types. At the cellular pathway level, neddylation-related genes demonstrate
a significant regulatory impact on crucial processes such as cell apoptosis and cell cycle
regulation. We get further in-depth investigation to elucidate their role in cancer biology
and their potential as therapeutic targets.

DNA methylation, a critical epigenetic modification crucial for gene regulation in the
mammalian genome, typically involves the addition of a methyl group to the cytosine base
in DNA. This process, extensively documented in the scientific literature [82,83], plays
a pivotal role in either suppressing or promoting gene expression. Gene suppression is
achieved mainly by recruiting regulatory proteins that alter chromatin structure into a
repressive state or by preventing transcription factors from binding to DNA, thus inhibiting
gene transcription [84]. In cancer biology, alterations in DNA methylation patterns, such as
hypermethylation or hypomethylation, lead to dysregulated gene expression, contributing
to tumorigenesis. For instance, hypermethylation in promoter regions of tumor suppressor
genes results in their silencing, while hypomethylation can activate oncogenes. These
epigenetic changes are closely linked to various clinicopathological features in cancers,
affecting tumor progression, metastasis, and patient prognosis, ultimately impacting sur-
vival [85]. Our research reveals that neddylation-related gene DNA methylation alterations
are widespread in cancerous tissues. These prevalent modifications affect the pathophysiol-
ogy of KIRC, suggesting that targeting neddylation-related methylation patterns could offer
novel therapeutic strategies, potentially improving survival outcomes for KIRC patients.

Meanwhile, our heatmap displayed marked disparities in the expression of neddylation-
related genes between tumor and healthy tissues. This observation led us to stratify
KIRC samples into three clusters—low, normal, and high—based on the neddylation score
for subsequent cluster analysis. Our study’s analysis of the survival curves suggests an
imbalance characterized by either excessively high or low expression levels of neddylation-
related genes appears detrimental to patient prognosis. Furthermore, we have identified
that the prognostic influence exerted by these genes may be mediated through various
clinical parameters, including tumor grade (T), cancer stage, and patient status (Fustat).
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This intricate interplay underscores the nuanced role of neddylation-related genes in the
pathophysiology of the disease and highlights their potential as biomarkers or therapeutic
targets in the management of cancer patients.

In regards to targeted therapy it has emerged as a transformative modality to enhance
the prognosis of advanced KIRC patients and ameliorate the adverse effects triggered by
other treatment modalities [86,87]. The quest for the most suitable targeted therapeutic drug
to address the heterogeneity inherent in KIRC has been a focal point of our research. We
probed the variance in sensitivity to frequently utilized targeted drugs for KIRC treatment
across the three neddylation-related gene clusters. The insights gathered underscore the
potential for tailoring treatment plans based on individual neddylation score profiles. This
classification based on neddylation clusters and drug sensitivity is not just a theoretical
construct; it has direct, actionable implications for the treatment of KIRC. By understanding
the differential responses of neddylation-related genes to various drugs, we can guide more
personalized and effective treatment strategies for KIRC patients. For instance, patients
with high neddylation scores might benefit more from Gefitinib, Temsirolimus, Bosutinib,
and Tipifarnib. Similarly, targeting FBXO41 could be a promising therapeutic strategy. Our
findings thus pave the way for more tailored and potentially more effective treatments for
KIRC, moving us closer to personalized medicine in oncology.

We also studied the protein translation modification of neddylation-related genes.
The protein translation modification refers to the changes in the amino acid side chains of
certain proteins after biosynthesis. These modifications carried out through the functional
groups’ covalent addition can influence proteolysis cleavage of the subunit or degradation
of the entire protein, significantly impacting standard cellular biology and disease mech-
anisms [88]. Acetylation and deacetylation of histones, as primary protein translational
modifications, are crucial processes in chromatin modification and are considered pivotal
determinants for the alternation between chromatin’s open and closed states [89]. Further-
more, protein acetylation modification can modulate its activity, localization, specificity,
and interaction modality, thereby influencing the protein’s function and signal transduction
pathways [90,91]. The exploration of these modifications bears considerable biological
and clinical relevance in domains such as cancer and neurodegenerative diseases. Our
research denotes a correlation between most classical oncogenes, SIRTs and HDACs, with
the neddylation pathway.

We identified that CTNNB1, BRAF, KRAS, and PIK3CA are proto-oncogenes exhibit-
ing high expression in Cluster 3 of KIRC patients. CTNNB1, a crucial component of the
Wnt signaling pathway, is implicated in driving cell proliferation and inhibiting apoptosis
upon overexpression [92,93]. BRAF, integral to the MAPK/ERK signaling pathway, plays a
significant role in cancer progression [94], and its mutations are associated with enhanced
cell growth and survival [95]. KRAS, a well-recognized oncogene across various cancers,
activates key pathways such as MAPK and PI3K, leading to increased cell proliferation, sur-
vival, and migration [96,97]. PIK3CA, functioning within the PI3K/AKT/mTOR pathway,
is known to contribute to tumorigenesis and resistance to apoptosis when overexpressed,
underlining its crucial role in cell growth and survival [98]. Our findings suggest that the
high expression of these proto-oncogenes in Cluster 3 may be a primary contributor to the
poor prognosis observed in patients with clear cell renal cell carcinoma, indicating their
potential as targets for therapeutic intervention and prognostic markers in this disease.

SIRTs assume significant roles in fundamental physiological procedures such as cel-
lular metabolism, stress response, and circadian clock regulation. By extracting acetyl
groups from a range of proteins, sirtuins can influence various cellular processes, including
apoptosis, metabolism, development, and aging [99]. SIRT1, commonly recognized as a
proto-oncogene in various cancers, is known for its involvement in promoting cell survival
and proliferation [100]. Its overexpression has been consistently linked to tumorigenesis
across several cancer types [101]. On the other hand, SIRT3 generally functions as a tumor
suppressor, primarily by regulating mitochondrial function and oxidative stress [102]. In
the context of KIRC, SIRT3 appears to maintain this role, though the specific effects are
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likely influenced by the cancer’s unique genetic and epigenetic makeup. These findings
highlight the crucial roles of SIRT1 and SIRT3 in the pathophysiology of KIRC, underscor-
ing their potential as biomarkers for prognosis and as targets for therapeutic intervention.
In this study, we have meticulously analyzed the expression patterns of key genes in KIRC,
particularly focusing on Cluster3 patients. Our findings indicate that an upregulated ex-
pression of the proto-oncogene SIRT1, in conjunction with a down-regulated expression of
the tumor suppressor gene SIRT3, substantially contributes to the unfavorable prognosis
observed in this patient cohort. The interplay between SIRT1 and SIRT3 appears to be a
critical factor in the disease progression of KIRC, suggesting that these genes may serve as
potential biomarkers for prognosis or as targets for therapeutic intervention in this subset
of patients.

Results from studies targeting HDAC showed a correlation between increased expres-
sion of proto-oncogenes DNMT1, HDAC1, and HDAC2 and poor prognostic outcomes in
KIRC patients. Specifically, DNMT1, typically regarded as a proto-oncogene in various can-
cers, including KIRC, plays a critical role in DNA methylation [103]. This process is key to
the silencing of tumor suppressor genes and the activation of oncogenic pathways. HDAC1,
often functioning as a proto-oncogene, is implicated in chromatin remodeling [104,105].
This activity is associated with the down-regulation of tumor suppressor genes and has
been linked to the pathogenesis of various cancers, including potentially KIRC. Similarly,
HDAC2 is generally categorized as a proto-oncogene due to its involvement in epige-
netic modulation, contributing to oncogenesis through the repression of tumor suppressor
genes [106]. These insights into the roles of DNMT1, HDAC1, and HDAC2 not only en-
hance our understanding of KIRC pathophysiology but also open up potential avenues for
targeted therapeutic strategies.

Tumor-associated inflammation has been implicated as a predictor of adverse progno-
sis and an instigator of diverse oncogenic phenotypes [107,108]. Our research probed into
the interaction between immune cells and neddylation-related genes. We uncovered a posi-
tive correlation with the infiltration of T follicular helper (Tfh) cells, T cell co-stimulation,
inflammation promotion, and CD8 T cell infiltration. Conversely, a negative correlation
was observed with the infiltration of mast cells and type II IFN response cells, insinuating
certain constraints of the neddylation pathway in modulating the immune activity of these
cells. These novel insights pave the way for new therapeutic targets and strategies in the
realm of KIRC immunotherapy.

After understanding the characteristics of the role of neddylation-related genes in
KIRC, we began to comprehensively search for specific neddylation-related genes that may
significantly affect the treatment of KIRC, for which we conducted extensive data analysis.
Our findings reveal that PSMB10 is not only overexpressed in KIRC tumor tissues but also
has a profound negative impact on patient prognosis. This overexpression of PSMB10 in the
tumor milieu might be contributing to the altered cellular processes in KIRC, suggesting its
potential as a therapeutic target. The role of PSMB10 in the neddylation pathway, which is
crucial for protein homeostasis and cell cycle regulation, further underscores its significance
in KIRC pathogenesis and as a promising avenue for targeted therapy.

To enhance the understanding of neddylation modification’s impact on KIRC and
to elucidate the role of PSMB10 within this context, comprehensive in vitro experimental
analyses were conducted. In our study, we specifically targeted the inhibition of ned-
dylation modification in KIRC cells using the small molecule inhibitor MLN4924. The
subsequent observations revealed a notable attenuation in the proliferation, migration,
and invasion capabilities of KIRC cell lines, enhancing our understanding of neddylation
modification’s contribution to KIRC’s adverse prognosis. Concurrently, a correlation was
observed between the PSMB10 expression and neddylation modification levels. Integrating
these observations with RNA sequencing data revealed that genes affected by diminished
neddylation modification are predominantly involved in critical signaling pathways related
to KIRC pathogenesis, including the TNF, NF-kappa B, and p53 signaling pathways. This
provides partial clarification of the mechanisms through which neddylation modification in-
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fluences KIRC phenotypes. Importantly, the interaction between neddylation modification
and the NF-kappa B signaling pathway corroborates our prior research on its regulatory
effect on PSMB10 expression. Considering the regulation of immunoproteasome is key
to adjusting specific intracellular pathways, including the NF-kB signaling pathway, thus
revealing a potential mechanism through which neddylation modulates KIRC malignancy
and prognosis [65]. Meanwhile, our research has elucidated that PSMB10, a gene funda-
mentally involved in the ubiquitin-proteasome system, is markedly overexpressed in KIRC
tumor tissues. This overexpression correlates with a notably detrimental effect on patient
prognosis. The heightened presence of PSMB10 within the tumor environment appears
to be a significant factor in modifying cellular processes associated with KIRC, thereby
highlighting its potential as a strategic target in treatment modalities. To substantiate our
findings, we executed a series of cell-based assays focusing on PSMB10. These experi-
ments revealed that PSMB10 notably enhances the proliferation, migration, and invasion
of KIRC cells. This evidence firmly establishes the substantial therapeutic implications
of targeting PSMB10, reinforcing its critical role as a potential intervention point in KIRC
treatment strategies.

4. Materials and Methods
4.1. Date Extraction Processing

Leveraging the resources of the GSEA website (http://www.gsea-msigdb.org/gsea/
index.jsp, accessed on 1 December 2022), we selected a set of 17 genes critically associ-
ated with neddylation-related pathways for subsequent analysis. TCGA database, a rich
repository of genetic and clinical cancer-related data (https://tcga-data.nci.nih.gov/tcga/,
accessed on 1 December 2022) [109], served as our foundational database. We exploited
data from the TCGA database to conduct an extensive analysis of CNVs, SNVs, and gene
expression levels across 33 diverse cancer types, deploying Perl and RStudio as our compu-
tational tools. The resultant data were visualized employing the Toolbox for Biologists. For
an in-depth analysis, we amalgamated these data with clinical pathological data sourced
from the TCGA database, resulting in hierarchical clustering performed using the GSCALite
website. The threshold for statistical significance was established at a p-value less than 0.05.

4.2. Methylation

We utilized the GSCALite website (https://guolab.wchscu.cn/GSCA/#/, accessed on
1 December 2022) to probe the association between the methylation status of neddylation-
related genes and a spectrum of 14 distinct cancer types. Moreover, we scrutinized the
interrelationships between methylation of neddylation-related genes, mRNA expression
levels across various cancer types, and corresponding cancer survival rates. The threshold
for determining statistical significance was set at a p-value less than 0.05.

4.3. Cluster Analysis

In our study on differentially expressed genes, we employed the “gplots” package in
RStudio for initial data visualization, followed by in-depth cluster analysis using heatmaps
generated via the “pheatmap” package. Specifically, we configured the parameters to
properly align tumor and normal sample data, facilitating direct comparisons. We estab-
lished a gene expression threshold to categorize the genes according to their expression
levels and predefined the number of sample clusters as three. Use the neddylation score
calculated by GSVA to verify the difference. GSVA, a non-parametric and unsupervised
approach, is widely adopted in bioinformatics for its efficacy in assessing pathway activity
changes across sample populations within gene expression datasets [110]. This method
transforms gene expression matrices from individual samples into gene set expression ma-
trices, thus simplifying the comparison of metabolic pathway enrichments across different
samples [110]. We constructed an expression matrix for neddylation-related genes, identi-
fying those with significant differential expression. We calculated the standard deviation
for each gene, selecting those that exhibited substantial differences between tumor and
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normal samples, and categorized them as either overexpressed or underexpressed relative
to normal samples. The derived state matrix was then hierarchically clustered using the
ward.D method.

Following the GSVA, we assigned scores to neddylation-related genes and stratified
the samples into three distinct clusters: Cluster 1 with a medium score, Cluster 2 with a
high score, and Cluster 3 with a low score. To confirm the validity of these clusters, we
employed the “ggpubr” package in RStudio to generate violin plots, which detailed the
kernel density distributions among the clusters, offering a visual contrast of their gene
expression profiles. Moreover, we conducted a survival analysis to assess the patient’s
prognosis, presenting the results through Kaplan–Meier curves. The integrity of our cluster
analysis was further reinforced by creating heatmaps with the “pheatmap” function to
display the levels of gene expression alongside associated clinicopathological features. We
conducted all statistical analyses with a stringent significance threshold, setting the p-value
at less than 0.05 to ensure a robust evaluation of our findings.

4.4. Drug Sensitivity

The genomics of drug sensitivity in cancer (GDSC) database (https://www.cancerrxgene.
org/, accessed on 1 December 2022) is an open-source and freely accessible repository that
houses a vast spectrum of information pertinent to cancer research [111]. Following the
computation of half-maximal inhibitory concentration (IC50) values for samples in the three
clusters, we employed the pRRophetic algorithm incorporated within the “pRRophetic”
package. Box plots were generated utilizing the “ggplot2” and “cowplot” packages. Ad-
ditionally, we selected ten genes related to neddylation and scrutinized their correlation
with drug sensitivity data retrieved from the GDSC database. A threshold for statistical
significance was set at a p-value less than 0.05.

4.5. Classic Cancer-Related Genes and Histone Modifications

To elucidate the roles of classical oncogenes, sirtuins (SIRTs), and histone deacetylases
(HDACs), we employed packages such as “string”, “gplots”, “grid”, and “pheatmap” to
generate a heatmap. This permitted us to visually represent diverse expression patterns
of canonical oncogenes across the three distinct clusters. Our findings were deemed
statistically significant at a p-value threshold of less than 0.05.

4.6. Immune Cell Infiltration

Immune cell infiltration serves as a pivotal biological process within the tumor mi-
croenvironment. In our study, we leveraged GSVA in conjunction with gene expression
data extracted from the TCGA database. Our methodology facilitated the generation of a
heatmap that depicted the correlations among various immune cell types. These results
offer significant references and guidance for comprehending the patterns and mechanisms
of immune cell infiltration within the tumor microenvironment. Furthermore, these find-
ings provide a theoretical foundation for the development of novel immunotherapeutic
strategies. We graphically represented the correlation between 29 immune cells, regulatory
factors, and neddylation-related gene classes using a histogram, with an emphasis on the
four most strongly correlated immune cell types. For data manipulation, analysis, and
visualization in the forms of heatmaps and scatter plots, we utilized various R packages,
including “data.table”, “dplyr”, “tidyverse”, “ggplot2”, and “ggstatsplot”.

4.7. Screening Specific Genes

To screen for the specific neddylation-related gene, we capitalized on the UALCAN
database (http://ualcan.path.uab.edu/index.html, accessed on 1 December 2022), compar-
ing protein expression results between primary KIRC tumors and normal tissues. Similarly,
the HPA (https://www.proteinatlas.org, accessed on 1 December 2022), an openly ac-
cessible database, provides data on the expression and localization of human proteins
within tissues and cells under both physiological and pathological conditions. Through
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the application of immunohistochemistry, we were able to illustrate the expression levels
of BRIC5 and PSMB10 within both KIRC tumors and normal tissues. Furthermore, using
immunofluorescence, we ascertained the localization of PSMB10 within A431 and U2-OS
cell lines.

4.8. Cell Culture

The human renal proximal tubule epithelial cell line HK-2, along with the RCC cell
lines 786-O and ACHN, were acquired from the Shanghai Cell Bank of the Chinese Academy
of Sciences in Shanghai, China. The HK-2 cell line was cultured in Dulbecco’s modified
Eagle medium (DMEM) sourced from Gibco, Life Technologies, Grand Island, NY, USA.
The 786-O line was maintained in an RPMI-1640 medium provided by KeyGEN BioTECH,
Nanjing, China, while the ACHN cells were cultured in a minimum essential medium
(MEM) from Biosharp, Hefei, China. Each culture medium was supplemented with 10%
fetal bovine serum (FBS), also obtained from Gibco, Life Technologies, Grand Island, NY,
USA. The compound MLN4924 utilized in the dosing experiments was purchased from
MedChemExpress (Shanghai, China) and was dissolved in dimethyl sulfoxide (DMSO,
Sigma, Darmstadt, Germany) and stored at −20 ◦C. All cell cultures were nurtured in a
controlled environment, characterized by a humidified atmosphere containing 5% CO2 and
a constant temperature of 37 ◦C.

4.9. RNA Sequencing

For our study, we utilized the 786-O renal carcinoma cell line as a model system. Cells
were treated with 2 µM of the neddylation inhibitor MLN4924 for 48 h, which constituted
the experimental group. Correspondingly, cells without treatment were used as the control
group. Both conditions were replicated three times, resulting in six samples labeled as
M4924-1, M4924-2, and M4924-3 (experimental) and NC-1, NC-2, and NC-3 (control).
These samples were then sent for transcriptomic sequencing to APExBIO Technology LLC
(Shanghai, China).

The quality of the sequencing data was rigorously assessed, with results summarized
in Table S1. This table includes the statistical analysis of the percentage of bases with Phred
quality scores above 20 and 30 (Q20, Q30), as well as the GC content of the sequenced
DNA. Alignment to the reference genome was performed using HISAT2, an alignment
tool that utilizes an enhanced version of the Burrows–Wheeler Transform (BWT) algorithm.
The details of this alignment process are provided in Table S2. Subsequent to alignment,
the StringTie tool was employed to quantify gene expression levels by counting the reads
covering each gene from start to end. Each sample’s gene expression was quantified inde-
pendently using StringTie, and the data were then merged to construct an expression matrix
for all samples, detailed in Table S3. For differential expression analysis, we employed
DESeq2 for conditions with replicated samples and EdgeR for conditions without repli-
cation. Input data for these analyses were read count values obtained from the StringTie
quantification process. The DESeq2 analysis involved three major steps: (1) normalization
of raw read counts to correct for variations in sequencing depth; (2) utilization of a statis-
tical model to calculate p-values for hypothesis testing; and (3) adjustment for multiple
hypothesis testing to determine the False Discovery Rate (FDR), with adjusted p-values
(padj) reported. Genes were selected as significantly differentially expressed based on
criteria of a log2 (Fold Change) greater than 1 and an adjusted p-value (padj) less than 0.05,
as detailed in Table S4.

4.10. Cell Transfection (Six-Well Plate as an Example)

Cells were cultured in appropriate growth media (MEM, RPMI-1640, or DMEM)
until they reached 60–80% confluence. This confluence level was carefully monitored to
ensure optimal transfection efficiency. For each transfection, the siRNA-lipid complex
was prepared in a two-step process. Initially, 7.5 µL of siRNA (specific for PSMB10) was
diluted in 200 µL of corresponding serum-free medium. This mixture was incubated at
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room temperature for 15 min to allow siRNA to dissolve adequately. Simultaneously,
5 µL of GP-transfect-mate was diluted in another 200 µL of the same serum-free medium
and incubated for 15 min at room temperature. Following these incubation periods, the
GP-transfect-mate was gently combined with the siRNA solution. This combined mixture
was then incubated for an additional 20 min to allow complex formation.

Prior to transfection, the existing medium was aspirated from the cells, which were
subsequently washed once with phosphate-buffered saline (PBS, Beyotime, Shanghai,
China). Each well was replenished with 1.6 mL of fresh serum-free medium. Then, 400 µL
of the siRNA-lipid complex was added to each well. The plates were gently agitated to
ensure uniform distribution of the transfection mixture. Cells were then incubated at 37 ◦C
in a 5% CO2 atmosphere for 4–6 h to facilitate siRNA uptake. In cases where the transfected
sequence is the negative control FAM (fluorescein amidite) label, the effectiveness of the
transfection can be observed using a fluorescence inverted microscope (Leica, Germany).
The final concentration of siRNA used for each transfection was 75 nM. After the incubation
period, the transfection medium was replaced with 2 mL of complete medium containing
serum. This step was crucial to resume normal cell growth and metabolic activities post-
transfection.

The GP-transfect-mate and siRNA sequences targeting PSMB10 were specifically
designed and synthesized by Shanghai GenePharma. The sequences used included two
interfering sequences (PSMB10-Homo-334 and PSMB10-Homo-908) and one negative
control sequence labeled as negative control FAM, with their detailed sequences provided
in Table 1.

Table 1. Oligonucleotides used in research.

Oligonucleotides Nucleotide Sequence

siRNA

PSMB10-Homo-334
Sense: GCUGCGAGAAGAUCCACUUTT

Antisense: AAGUGGAUCUUCUCGCAGCTT

PSMB10-Homo-908
Sense: GGAGCUAGUGGAGGAAACUTT

Antisense: AGUUUCCUCCACUAGCUCCTT

Negative control FAM Sense: UUCUCCGAACGUGUCACGUTT
Antisense: ACGUGACACGUUCGGAGAATT

Primer
GAPDH

Forward 5′-TGAAGGGTGGAGCCAAAAG-3′

Reverse 5′-AGTCTTCTGGGTGGCAGTGAT-3′

PSMB10
Forward 5′-GGCAATGTGGACGCATGTG-3′

Reverse 5′-CTCCACTAGCTCCAGGGTTAGT-3′

4.11. Quantitative Real-Time PCR

Total RNA was extracted from cell samples using TRIzol reagent (ABclonal, Woburn,
MA, USA), adhering to the manufacturer’s guidelines. The quality and concentration of
the RNA were ascertained using a microplate reader (Hybaid, Franklin, MA, USA). For
reverse transcription, the cDNA synthesis was conducted using the TransScript® All-in-One
First-Strand cDNA Synthesis SuperMix for qPCR Kit (TRAN, Beijing, China), following
the manufacturer’s instructions. The reaction mixture for each sample consisted of 2 µL
of Total RNA/mRNA, 4 µL of 5 × TransScript® All-in-One SuperMix for qPCR, 1 µL of
gDNA Remover, and 13 µL of RNase-free water, culminating in a total volume of 20 µL.
The reaction conditions were set at 25 ◦C for 5 min, 50 ◦C for 30 min, and a final inactivation
step at 85 ◦C for 5 min.

Quantitative real-time PCR (qRT-PCR) was subsequently performed to evaluate gene
expression levels using a PerfectStart® Visual Green qPCR SuperMix Kit (TRAN, Beijing,
China). Each reaction mixture contained 4 µL of cDNA, 0.4 µL each of Forward and Reverse
Primers, 10 µL of 2×PerfectStart® Visual Green qPCR SuperMix, and 5.2 µL of Nuclease-
free water, resulting in a total volume of 20 µL. The thermal cycling conditions included
an initial denaturation at 95 ◦C for 5 min, followed by 40 cycles at 95 ◦C for 10 s, 60 ◦C
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for 30 s, and 72 ◦C for 30 s. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was
employed as an internal control for normalizing gene expression. The primers for the target
gene (PSMB10) and GAPDH were designed and synthesized by Tsingke Biotechnology
Company (Beijing, China), with their detailed sequences provided in Table 1. Data analysis
was performed using the 2−∆∆CT method.

4.12. Immunofluorescence

In the immunofluorescence protocol for 786-O and ACHN cell lines, cells are first fixed
with 4% formaldehyde, followed by permeabilization using 0.5% Triton X-100 for 15 min
and washing with phosphate-buffered saline (PBS). They are then blocked with 1% Bovine
Serum Albumin (BSA) for 30 min at room temperature. Overnight incubation at 4 ◦C in
a humidified chamber is conducted using a diluted PSMB10 primary antibody (Catalog
No: HA500393, HUABIO, Hangzhou, China). The subsequent day involves exposure to a
diluted fluorescently labeled secondary antibody (catalog No: AS073, ABclonal, Woburn,
MA, USA) for one hour in darkness to prevent photobleaching, followed by a 5 min DAPI
stain (catalog No: SI111, SEVENBIO, Shanghai, China) for nuclear visualization. The
procedure is finalized with fluorescence microscopy imaging.

4.13. CCK-8 Cell Proliferation Assay

The process of cell seeding and transfection was conducted following established
protocols. The transfected renal cancer cells were treated with 0.25% trypsin (sourced from
HyClone, Logan, UT, USA), counted, and then 3000 of these cells were seeded into each well
of a 96-well plate. Each experimental group consisted of three replicate wells. A volume
of 100 µL of complete medium was added to each well, while the surrounding area was
filled with PBS to minimize water evaporation. The plates were incubated at 37 ◦C in a 5%
CO2 environment for 24, 48, and 72 h. At these predetermined time intervals, the existing
medium was discarded, and the wells were refilled with 100 µL of serum-free medium
mixed with 10 µL of CCK-8 solution (procured from MCE, Monmouth Junction, NJ, USA).
It was essential to protect the plates from light exposure to prevent degradation of the
CCK-8 reagent. Afterward, the plates were placed back in the incubator for additional
periods of 0.5, 1, and 2 h. Cell viability was subsequently measured using a microplate
reader (Hybaid Corporation, Franklin, MA, USA) at an absorbance of 450 nm.

4.14. Colony Formation

The cells were distributed into a 6-well plate, with each well containing approximately
800 cells. They were then incubated at 37 ◦C in a 5% CO2 atmosphere for around 10 days to
encourage colony formation. Post-incubation, cell colonies were meticulously inspected
under a light microscope (Leica, Wetzlar, Germany). To remove any non-adherent cells
and debris, the cells were carefully washed twice with phosphate-buffered saline (PBS).
Following this, they were fixed in 4% paraformaldehyde (PFA) for 15 min at room tem-
perature, with the PFA being sourced from Beyotime Company, Shanghai, China. After
fixation, the cells were stained with 0.1% crystal violet (Solarbio, Beijing, China) for 20 min
to facilitate colony observation. The excess stain was then gently washed off with distilled
water. Finally, the plates were air-dried at room temperature, and colonies in each well
were quantified under standard white light.

4.15. Transwell Invasion Experiment

In a biosafety cabinet, a transwell chamber (HTS Transwell-24 units w/0.8 µm pore
polyester membrane and 6.5 mm inserts, Corning, Corning, NY, USA) was prepared by
evenly distributing 30 µL of Matrigel® Growth Factor Reduced (GFR) Basement Membrane
Matrix, LDEV-free (Corning, USA) on the upper chamber’s underside; this setup was then
air-dried for 2 h and incubated overnight at 37 ◦C with 5% CO2. Transfected renal cancer
cells were trypsinized, washed with PBS and serum-free medium, and resuspended in
serum-free medium to a concentration of 2 × 105 cells/mL. To the bottom of a 24-well plate,
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600 µL of medium with 20% serum was added, followed by 200 µL of the cell suspension
to the upper chamber, and the plate was incubated for another 24 h. Post-incubation, the
transwell chambers were carefully removed with tweezers, the upper chamber’s liquid
was aspirated, and the chambers were transferred to wells containing 800 µL of 4% PFA
for a 30 min fixation at room temperature. Following fixation, the chambers were moved
to wells containing 800 µL of crystal violet for 30 min staining at room temperature. After
several gentle PBS washes, the non-invading cells on the upper membrane surface were
wiped off with a wet cotton swab. Using brightfield illumination, count the cells that have
invaded through the membrane in three randomly selected fields under the microscope.

4.16. Cell Migration Experiment

Cell culture, plate inoculation, and transfection were conducted as per established
methods. Transfected renal cancer cells were trypsinized, washed with PBS and serum-
free medium, and resuspended in serum-free medium to a density of 2 × 105 cells/mL.
Subsequently, 600 µL of medium with 20% serum was added to the bottom of a 24-well
plate, with 200 µL of the cell suspension placed in the upper chamber, which was then
incubated for 24 h. Post-incubation, the upper chamber was removed, the liquid aspirated,
and the chamber transferred to a well containing 800 µL of 4% PFA for a 30 min fixation
at room temperature. The fixed chambers were then stained with 800 µL of crystal violet
for 30 min at room temperature. After rinsing with PBS, the non-migration cells on the
upper membrane were wiped off with a wet cotton swab. Count the migrated cells in three
randomly selected microscope fields using brightfield illumination and statistically analyze
the results.

4.17. Wound Healing Assay

Transfected ACHN and 786-O cells were seeded into 6-well plates. A sterile 200 µL
pipette tip was used to create scratches on the cell monolayer. Following this, the cells were
washed three times with PBS to remove any detached cells. The progress of cell migration
into the scratched area was then monitored using a fluorescence-inverted microscope (Leica,
Germany). Observations were made at the initial point (0 h) and subsequently at 12 and
24 h to evaluate the wound healing response.

4.18. Statistical Analysis

Statistical analysis was conducted utilizing GraphPad Prism version 9.5 software.
Data, representing values from at least three independent experiments, are reported as the
mean ± standard deviation. A p-value of less than 0.05 was established as the threshold for
statistical significance.

5. Conclusions

In summary, our study integrates bioinformatics analysis, in vitro experiments, and
RNA sequencing to elucidate the significant role of neddylation modification in influencing
the prognosis of KIRC, with a specific focus on PSMB10 as a regulatory target. These
findings underscore the potential of personalized, targeted therapies that utilize differential
expression of neddylation-related genes, offering a promising strategy to enhance patient
outcomes.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ph17050635/s1, Figures S1–S7 supplement Figures 3, 5 and 7–11
in the article, providing additional insights into the research findings. Figure S1: Widespread genetic
mutations in neddylation-related genes; Figure S2: Comprehensive cluster analysis conducted predi-
cated on neddylation scores; Figure S3: The impact of the neddylation score on immune infiltration;
Figure S4: Multi-level screening of neddylation-related genes that have specific effects on the progno-
sis of KIRC; Figure S5: Comprehensive investigation into the effects of MLN4924-induced inhibition
of neddylation modification on the KIRC phenotype; Figure S6: Comparative RNA sequencing analy-
sis between MLN4924-treated and control groups; Figure S7: Comprehensive analysis of PSMB10
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gene expression and functional impact on KIRC cell lines. Tables S1–S4 complement the RNA-seq
portion of the article, offering detailed supplementary data. Table S1: Summary of sequencing data
quality; Table S2: reference sequence alignment results; Table S3: Quantification of gene expression;
Table S4: Differential analysis.
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Glossary

ASB Ankyrin repeat and SOCS box protein
BCA3 Breast cancer-associated protein 3
BIRC5 Baculoviral IAP repeat containing 5
CCK-8 Cell Counting Kit-8
CNV Copy number variation
CRLs Cullin-RING ligases
CSN COP9 signalosome
CTNNB1 Catenin beta 1
DDB2 DNA damage-binding protein 2
DMEM Dulbecco’s modified Eagle medium
DNMT1 DNA methyltransferase 1
DTL Denticleless E3 ubiquitin protein ligase homolog
EMT Epithelial-mesenchymal transition
FBXL F-box and leucine-rich repeat protein
FBXO F-box protein
FBS Fetal bovine serum
GAPDH Glyceraldehyde-3-phosphate dehydrogenase
GDSC Genomics of drug sensitivity in cancer
GSCALite Gene Set Cancer Analysis Lite
GSVA Gene Set Variation Analysis
HDACs Histone deacetylases
HPA Human protein atlas
IC50 Half-maximal inhibitory concentration
IFN Interferon
KIRC Kidney renal clear cell carcinoma
LAML Acute myeloid leukemia
LGG Brain lower-grade glioma
LRRC41 Leucine-rich repeat containing 41
MEM Minimum essential medium
NAE NEDD8 activating enzyme
NEDD8 Neuronal precursor cell-expressed developmentally down-regulated protein 8



Pharmaceuticals 2024, 17, 635 26 of 30

NEDP1 NEDD8-specific protease 1
PBS Phosphate-buffered saline
PCPG Pheochromocytoma and paraganglioma
PSMA Proteasome 20S subunit alpha
PSMB Proteasome 20S subunit beta
RBX1/2 RING-box protein 1/2
RCC Renal cell carcinoma
SARC Sarcoma
SIRT Sirtuin
SNV Single nucleotide variation
SPSB1 SplA/Ryanodine receptor domain and SOCS box containing 1
TCGA The Cancer Genome Atlas
THCA Thyroid carcinoma
TME Tumor microenvironment
UBA3 Ubiquitin-like modifier-activating enzyme 3
UBD Ubiquitin D
UBE2F/M Ubiquitin-conjugating enzyme E2 F/M
UCHL3 Ubiquitin C-terminal hydrolase L3
WSB1 WD repeat and SOCS box containing 1
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