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Abstract: Astragalus polysaccharide (APS) derived from A. membranaceus plays a crucial role in
traditional Chinese medicine. These polysaccharides have shown antitumor effects and are considered
safe. Thus, they have become increasingly important in cancer immunotherapy. APS can limit the
spread of cancer by influencing immune cells, promoting cell death, triggering cancer cell autophagy,
and impacting the tumor microenvironment. When used in combination with other therapies,
APS can enhance treatment outcomes and reduce toxicity and side effects. APS combined with
immune checkpoint inhibitors, relay cellular immunotherapy, and cancer vaccines have broadened
the application of cancer immunotherapy and enhanced treatment effectiveness. By summarizing the
research on APS in cancer immunotherapy over the past two decades, this review elaborates on the
anticancer mechanism of APS and its use in cancer immunotherapy and clinical trials. Considering
the multiple roles of APS, this review emphasizes the importance of using APS as an adjunct to cancer
immunotherapy and compares other polysaccharides with APS. This discussion provides insights
into the specific mechanism of action of APS, reveals the molecular targets of APS for developing
effective clinical strategies, and highlights the wide application of APS in clinical cancer therapy in
the future.

Keywords: Astragalus polysaccharides; tumor immunotherapy; cancer; immune checkpoint inhibitors

1. Introduction

Cancer is a significant global health issue owing to its high incidence and mortality
rates, imposing a considerable burden on public health systems. As reported in the 2023
data of the World Health Organization, cancer stands as the primary or secondary contrib-
utor to death in individuals under 70 years of age in 183 countries [1]. Typical methods of
cancer treatment include chemotherapy, radiation therapy, and surgery. Although surgery
and radiation play essential roles in treating early-stage cancers, they often fail to meet
the needs of patients with more advanced cancer stages. The main reasons for this lack of
effectiveness are tumor recurrence and spread. Despite being tailored to a specific type,
stage, and location of cancer, various restrictions exist [2]. Surgical resection combined
with systemic chemotherapy is the cornerstone of localized cancer therapy. The cytotoxic
effects of chemotherapy, the primary component of combination treatment, not only af-
fect cancerous cells but also harm healthy cells, leading to drug resistance and adverse
reactions [3–6]. Extended chemotherapy regimens may result in drug resistance, causing
cancer cells to become tolerant to chemotherapeutic drugs, necessitating higher doses for
therapeutic effectiveness, a situation that may be exacerbated by increased toxicity [6].
Given these complexities, the discovery of complementary therapies that enhance the effi-
cacy of traditional treatment while reducing adverse effects is crucial. Recent studies have
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explored the anticancer and anti-inflammatory qualities of conventional plant extracts [7,8].
These extracts have shown potential to enhance the effectiveness of anticancer vaccines and,
when used in conjunction with standard chemotherapy and radiation therapy, can improve
treatment outcomes and minimize harmful effects through various mechanisms [9–12].

Astragalus membranaceus, commonly known as Huangqi (Chinese name) or Radix
Astragali, is a perennial herb of the legume family that is widely distributed throughout
temperate regions worldwide. The dried root of Radix Astragali has a long history in China
and has been widely used in the treatment of many diseases since the Ming Dynasty [13].
The dried roots of Astragalus membranaceus contain complex bioactive constituents, includ-
ing polysaccharides, flavonoids, Astragalus methyl glycosides, amino acids, trace elements,
and more than 100 compounds [14]. Recent studies revealed the pharmacological functions
of these components, particularly their polysaccharide fractions [15]. Astragalus polysac-
charide (APS) has been identified as one of the main active ingredients. It consists of nine
monosaccharides, including glucose, galactose, arabinose, and rhamnose, and may contain
glucuronic acid and galacturonic acid [16]. Due to its water solubility and low-toxicity
characteristics, APS has demonstrated significant biological activities in immune activation
and antioxidant, antitumor, antidiabetic, anti-inflammatory, and anti-aging properties;
thus, it has great potential for drug discovery in the pharmaceutical and nutraceutical
fields [17–23]. Research indicates that APS is safe and effective for cancer treatment because
it enhances the body’s immune response, mitigates the side effects of chemotherapy, and
activates immune defenses [24,25].

This review focuses on the potential adverse effects of APS in cancer immunotherapy
and its interactions with various immunotherapeutic methods, summarizing the findings of
studies involving different cancer cell lines, animal models, and human trials. We highlight
the ability of APS to promote the growth and activation of immune cells, as well as its
role in inducing apoptosis in cancer cells. Additionally, we examine the supportive role
of APS in immunotherapy and its synergistic outcomes when combined with immune
checkpoint inhibitors (ICIs), overdose immunotherapy, and cancer vaccines to suggest
novel approaches and directions for future cancer treatment strategies.

2. Anticancer Mechanism of Astragalus Polysaccharide

APS has recently attracted considerable attention in cancer therapy, showing great po-
tential for fighting cancer through its unique immune-activating and immune-modulating
functions. APS functions through several mechanisms, including the stimulation of im-
mune cells, cell cycle disruption, the inhibition of signal transduction, the activation of
cellular autophagy, the inhibition of lipid metabolism, and improvements in the ability of
immune cells to adapt to the tumor microenvironment (TME). Together, these mechanisms
make APS a promising adjuvant for cancer immunotherapy.

2.1. Activation and Regulation of Immune Cells

The influence of APS on immune cell activity in the TME is summarized in Figure 1
and Table 1.

Table 1. Effects of APS on immune cells (DC, B, T, macrophage, NK).

Model Source Dosage Effect of APS on Immune Cells Reference

C57BL/6 mice 200 µg/mL, 24 h
bone marrow-derived dendritic cells(BMDCs) ↑
Splenic DCs in mice 6 h ↑18 h ↓
Human peripheral blood DCs (PBDCs) 6 h ↑

[26]

C57BL/6J mice 45 µg/mL, 24 h BMDC ↑ [27]

BALB/c mice 200 µg/mL, 24 h
CD8+ T ↑
CD4+ T ↑
pDC ↑

[28]
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Table 1. Cont.

Model Source Dosage Effect of APS on Immune Cells Reference

BALB/c mice 50 µg/mL, 24 h
BMDC ↑
(CD4+ T/Treg cell)/(CD8+ T/Treg cell) ↑
CD4+ T ↑

[29]

C57BL/6 mice 16 mg/mL, 48 h
M1/M2 ↑
CD11c(high) CD45RB(low) DCs ↑
Th1/Th2 ↑

[30]

C57BL/6 mice 50 mg/kg, 18 h
CD11c+ DC ↑
CD3-NK1.1+ ↑
CD8+ T ↑

[31]

Kunming mice
C57 mice 100 mL/kg, 3 days CD4+ T/CD8+ T ↑ [32]

C57BL/6J mice 0.2 mg/mL

Treg ↓
BMDC ↑
CD3+CD8+ T ↑
MHC-I+CD11c+ cells ↑

[33]

Swiss-Hauschka (ICR)
mice 5 mg/mL, 14 days Th1/Th2 ↑

CD4+ T/CD8+ T ↑ [34]

Spleen lymphocyte 0.156 mg/mL Th1/Th2 ↑
CD4+ T/CD8+ T ↑ [35]

BALB/c mice 300 µg/mL Macrophage (M2 → M1) ↑ [36]

Mouse peritoneal
macrophages 100 ng/mL, 24 h Raw 264.7 ↑ [37]

Murine macrophage
RAW 264.7 cells 2000 µg/mL, 24 h Raw 264.7 ↑ (IL-1α, IL-1β, IL-6 ↑, NO ↓) [38]

The fresh lung tissues of
adult pigs 500 µg/mL or 1000 µg/mL, 24 h Raw 264.7 ↑ (TNF-α, NO ↑) [39]

BALB/c mice or
C3H/HeJ mice 100 µg/mL, 6 h Raw 264.7 ↑, B ↑ (IL-1β, TNF-α ↑) [40]

ICR mice 10 g/kg

CD8+ T ↑
CD4+ T ↑
NK ↑
CTL ↑

[41]

BALB/c mice 100, 200, 300 mg/kg, 30 days

Raw 264.7 ↑
NK ↑
B ↑
T ↑

[42]

BALB/c mice 100 mg/kg NK ↑ [43]

Arrows in down and up directions means more or less related factors: ↑ increased, ↑ decreased.

Dendritic cells (DCs) present antigens, trigger immune responses and modulate immu-
nity [44]. These cells transition from an immature state with low major histocompatibility
class (MHC) II expression to maturity as they process antigens and move to lymphoid
tissues, thereby elevating MHC II levels. Mature DCs display processed antigens in the
lymph nodes, present endogenous antigens via MHC I molecules, and process antigens
through various pathways, leading to T-cell activation [45,46]. Studies indicate that APS
injections induce a significant elevation of MHC-I and MHC-II co-stimulatory molecules
in splenic DC subgroups in C57BL/6 mice [26]. APS enhanced DC maturation by stimu-
lating the secretion of interleukin-12 (IL-12) [27] and amplifying the surface expression of
CD40, CD80, and HLA-DR in these cells [47]. APS intensified the immune response by



Pharmaceuticals 2024, 17, 636 4 of 32

enhancing the pDC pathway [28]. APS-loaded nanoparticles have shown the potential for
radiotherapy to activate antigen presenting cells (APCs) and reverse TME [29].
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Figure 1. The impact of APS on immune cell activity in the tumor microenvironment. APS promotes
the expression of CD40, CD80, and HLA-DR on dendritic cells, facilitating their maturation process.
These mature dendritic cells subsequently stimulate the production of IL-12, direct antigens towards
lymphocytes, shift Th2 cell populations towards Th1, and reinforce the immune response of T cells
and NK cells. This leads to an increase in IL-2, TNF-α, IFN-γ, and IL-17A by T cells, accompanied by
a reduction in IL-10. NK cells exhibit elevated levels of IFN-γ, granzyme B, and perforin; APS also
enhances the proportion of M1/M2 macrophages and promotes the secretion of NO, CXCL10, IL-6,
and TNF-α, thereby enhancing the humoral immunity of B cells. The solid line is the effect that one
cell can have on another cell, and the dashed line is the effect that the cell has on immunity. Down
and up directions means more or less related factors.

When APCs take up and process tumor-specific antigens before migrating to lym-
phoid organs, they collectively produce both activating and inhibitory signals that trigger
the activation of T cells, resulting in the formation of effector T cells targeting tumor-
specific antigens. This is a defense mechanism against cancer cell evasion of the immune
system [48,49]. APS facilitates T-cell activation [50,51]. In a study by Bamodu et al., APS
was shown to boost the transformation of splenic DCs into CD11c (high) and CD45RB (low)
DCs, facilitate the shift from a Th2 to Th1 response, and augment the Th1/Th2 ratio, thereby
enhancing the immune function of T lymphocytes [30]. Another study by Hwang et al.
illustrated that the intranasal administration of APS can activate DCs and further stimulate
natural killer (NK) cells and T cells within the lymph nodes [31]. In vivo experiments have
shown that APS can enhance immunity in cyclophosphamide-induced immunosuppressed
mice by promoting the proliferation of T lymphocytes and B lymphocytes and inducing the
production of immunoglobulins (IgA, IgG, and IgM) and a variety of cytokines, including
IL-6, IL-2, interferon-gamma (IFN-γ), complement 3, complement 4, and tumor necrosis
factor-alpha (TNF-α) [52].

Helper T cells (Th cells) play a crucial role as mediators of the immune response, and
are predominantly categorized into Th1 and Th2 cells, which connect and activate other
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immune cells within the peripheral effector memory T (TEM) cell compartment [53]. The
combination of APS and polysaccharide peptides led to expansion of the Th cell subset,
a reduction in the proportion of suppressor T cells/cytotoxic T cells, and an increase in
the CD4+/CD8+ ratio. Through the regulation of immune responses and reinforcement of
antitumor effects, these interventions influence the levels of Th1, Th17, and Th2 cytokines,
augmenting IL-2, tumor TNF-α, IFN-γ, and IL-17A, while diminishing IL-10 levels [32].

Studies have been carried out using nanoparticles as carriers to improve immunother-
apy through APS activation of T cells. These specialized nanoparticles target lymph nodes,
assist in escaping lysosomes, activate distant DCs, and control T-cell differentiation through
cross-presentation [33]. They also trigger specific IgG expression, eliciting a Th1-polarized
immune response [34] that effectively combats cancer cell growth, spread, and infiltra-
tion [35], ultimately disrupting the immunosuppressive microenvironment and establishing
an enduring and strong tumor antigen-specific immunity.

Macrophages possess anti-infective, antitumor, and immunomodulatory properties [54].
Acting as a potent regulator, APS primarily operates through the NOTCH signaling path-
way and is closely linked to factors such as IL-6, TNF-α, inducible nitric oxide synthase, and
CXCL10 [36]. APS enhanced mucosal bacterial defense in vivo and in vitro by activating
Toll-like receptor 4 (TLR-4) and nuclear factor κB (NF-κB)/Rel complexes, strengthening
innate immunity during infections. This activation led to macrophage activation and
the release of nitric oxide (NO) and TNF-α, which aid in inhibiting cancer cell prolifera-
tion [37]. An aqueous extract from Astragalus demonstrated protection against methotrexate-
induced inhibition of RAW264.7 macrophage proliferation and induced the expression
of pro-inflammatory factors associated with RAW264.7 cells [38]. APS shifted the pro-
inflammatory and anti-inflammatory signaling balance in favor of an anticancer phenotype
by proportionally increasing the M1/M2 macrophage ratio [30]. Evaluation of the anti-
cancer effects of APS in a tissue-engineered tumor model showed that APS-stimulated
RAW246.7 macrophages and their supernatants prompted apoptosis and reduced carcinoid
tumor size [39].

APS activates macrophages to stimulate B cells, thereby enhancing humoral immune
responses [40]. In a study on C4H/HeJ mouse splenocytes, APS effectively induced B-cell
proliferation through a pathway that was not TLR3-dependent. This stimulatory effect was
primarily mediated by immunoglobulins on the cell surface, offering new insights into the
specific mechanisms by which APS regulates B cells within the immune system [18].

As the first line of antitumor immunity, NK cells are vital to the innate immune
system. APS regulates the activation and quantity of NK cells, boosting the growth-
inhibitory activity of ICIs and immune cell cytotoxicity against tumors. This effect was
demonstrated in a mouse model of melanoma. The APS-treated group showed a significant
increase in the number of CD3-NK1.1+ NK cells within the mesenteric lymph nodes.
Additionally, there was a rise in the expression of activation markers by NK cells, such as
IFN-γ, granzyme B, and perforin [31,55]. Moreover, APS synergized with tanshinone to
enhance the effectiveness of the chemotherapeutic agent carboplatin in inhibiting melanoma
cell proliferation. This was accomplished by enhancing the body’s immune response,
increasing the proportion of CD4+ and CD8+ cells in the spleen, and boosting the activity
of NK cells and cytotoxic T cells [41].

In the H22 mouse hepatocellular carcinoma (HCC) model, the effect of APS was sig-
nificant. It triggered apoptosis and reduced further damage to tumor cells while enhancing
the levels of cytokines like TNF-α, IL-2, and immune cells, including macrophages, lym-
phocytes, and NK cells [42]. MHC I chain-associated molecule A (MICA) and B (MICB)
are the primary ligands for the activation receptor NKG2D on NK cells. The binding of
MICA/B and NKG2D led to NK cell activation by increasing the levels of phosphorylated
extracellular signal-regulated kinases. APS also upregulated the expression of MICA and
MICB on the surface of H22 tumor cells, stimulating NK cell activation with the release of
IFN-γ, granzyme-b, and perforin to promote cancer cell clearance [43].
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Traditional cancer treatment methods, such as specific chemotherapy medications, can
induce a stress response in malignant cells. The combination of therapeutic approaches,
including APS, enhances the expression of NK cell-stimulating proteins in tumor cells,
thereby increasing their susceptibility to NK cell-triggered breakdown.

2.2. Anti-Proliferative and Apoptosis-Inducing Effects on Cancer Cells

The anti-proliferation and apoptosis-inducing effects of APS on cancer cells are sum-
marized in Figure 2 and Table 2.
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Figure 2. Diagram of the mechanism by which APS induces apoptosis in cancer cells by interfering
with the cell cycle, inhibiting signal transduction pathways, and inducing apoptosis. This involves
the induction of S, G2/M, and G0/G1 cell cycle arrest via the Wnt-β-catenin pathway. It is involved
in the inhibition of PI3K/Akt, ERK/MAPK, and NF-κB pathways in tumor therapy and induces
apoptosis in cancer cells by inhibiting the expression of Bcl-2 proteins and miRNAs and upregulating
the expression of p53 proteins. Yellow represents the factor on the receptor, which is also the initiating
factor of the pathway; Green represents factors on the conventional signaling pathway; Orange
represents factors involved in both apoptosis and autophagy; Pink like Bax represents both apoptosis
and cell cycle involvement; Earthy yellow represents cell cycle related factors; Blue represents
cytokines involved in apoptosis alone. The red up arrow indicates that Astragalus polysaccharide leads
to the increase of related factors, and the blue down arrow indicates that Astragalus polysaccharide
leads to the decrease of related factors.
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Table 2. Effect of APS on cell cycle, signal transduction pathways, and apoptosis.

Model Source Dosage Effect of APS Cell Cycle, Signal
Transduction Pathways, and Apoptosis Reference

Kunming mice 150, 300 mg/kg, 15 days G1 phase retention ↓
S phase retention ↑ [56]

MGC-803 cell 200, 400, 800 µg/mL, 24 h
G0/G1 phase retention ↓
S phase retention ↑
G2/M phase retention ↓

[57]

HepG2 cell 200, 400, 800 µg/mL, 72 h S phase retention ↑ [58]

4T1 cell 50, 100, 200, 500, 1000 µg/mL, 72 h G2/M phase retention ↑ [59]

4T1 cell 50 µg/mL, 24 h G1 phase retention ↓
G2/M phase retention ↑ [60]

MCF-7 cell 500, 1000 µg/mL, 24 h G1 phase retention ↑ [61]

SCG-1 cells 25, 50, 100 mg/L, 12 h G0 phase retention ↑ [62]

CNE-1 cell 200 µg/mL, 24 h G0/G1 phase retention ↑
S phase retention ↑ [63]

AGS cell 200 µg/mL, 24 h PI3K/Akt pathway ↓ [64]

B16F10 cell 1–5 mg/mL, 24 h PI3K/Akt pathway ↓ [65]

C57BL/6 mice 200 mg/kg, 24 h PI3K/Akt pathway ↓ [66]

RAW264.7 cell 0–100 µg/mL, 24 h
NF-κB/MAPK pathway ↑
P65 protein ↑
G2/M phase retention ↑

[67]

GC-SGC-7901 cell
GCSGC-7901/ADR cell

GES-1 cell
100–400 µg/mL, 24 h p-AMPK level ↑ [68]

A549 cell
NCI-H358 cell 20, 40 mg/mL NF-κB pathway ↓ [69]

PANC-1 cell 0, 1, 5, 10, 15, 20 mg/mL NF-κB P65 ↓
TLR4/NF-κB pathway ↓ [70]

A549 cell
BMSC cell 50 µg/mL RAS, ERK, NF-κB p65 protein ↓

TP53, caspase-3 protein ↑ [71]

HepG2 cell
Diethylnitrosamine-
induced HCC in rats

60, 120, 240 mg/kg (rats)
20, 40, 80 µg/mL (HepG2 cell)

TGF-β/MAPK/Smad pathway ↑
miR-145 ↑, miR-21 ↓
pSmad3L→pSmad3C ↑

[72]

HepG2 cell 40 mg/mL TGF-β/Smad pathway ↑
pSmad3L→pSmad3C ↑ [73]

H22 cell
Kunming mice 100, 200 mg/kg, 16 days Bax ↑

Bcl-2 ↓ [74]

MDA-MB-231 cell
BALB/C mice 200, 400 mg/kg, 21 days Bax, Caspase7, Caspase9 ↑

Bcl-2 ↓ [75]

HepG2 cell 100, 200 mg/L, 48 h
Bcl-2 ↓
Caspase3 ↑
β-catenin, c-myc, Cyclin D1 mRNA ↓

[76]

SKOV3 cell 800 µg/mL, 24 h Bcl-2 ↓
Bax, Caspase3 ↑ [77]

BALB/C mice
CNE-1 cell
CNE-2 cell

SUNE-1 cell

40 µg/mL, 48 h Bcl-2 ↓
Bax, Caspase3, Caspase9 ↑ [78]

OV-90 cell
SKOV-3 cell 1 mg/mL, 24 h miR-27a ↑

Caspase3 ↑ [79]



Pharmaceuticals 2024, 17, 636 8 of 32

Table 2. Cont.

Model Source Dosage Effect of APS Cell Cycle, Signal
Transduction Pathways, and Apoptosis Reference

OS MG63 cell 10 mg/mL, 24 h

miR-133a ↑
S phase retention ↑
CyclinD1 ↓ p21 ↑
Bcl-2 ↓
Bax, Caspase3, Caspase9 ↑

[80]

A549 cell
NCIH1299 cell 0, 5, 10, 20 µg/mL, miR-195-5p ↑ [81]

H460 cell 0–30 mg/mL, 24/48 h

P53, P21, P16 ↑
Notch1,Notch3 ↑
Bcl-2 ↓
Bax, Caspase8 ↑

[82]

CD133+/CD44+ cell 0, 12.5, 25, 50 mg/mL, 48 h

Fas
Caspase 3, Caspase 9, Fas, Bax ↑
Class III PI3K, Beclin 1 ↑
Bcl-2, XIAP ↓
LC3-I ↓LC3-II ↑

[83]

Hep3B cell
BALB/c mice 10 mg/L

CHOP ↑
Bcl-2 ↓
Bax, Bim, Caspase3 ↑
OGT ↓OGA ↑
O-GlcNAc ↓

[84]

Arrows in down and up directions means more or less related factors: ↑ increased, ↑ decreased.

2.2.1. APS Interferes with the Cell Cycle

APS can effectively inhibit cancer cell proliferation by blocking the S, G2/M, and
G0/G1 phases of the cell cycle.

APS effectively hindered the growth of cancer cells by blocking their progression through
the S phase of the cell cycle. A novel variant of APS, APS4, induced apoptosis in poorly
differentiated sarcoma S180 cells and human gastric cancer MGC-803 cells by inhibiting
the S phase, and its efficacy increased in a dose-dependent manner [56,57]. Furthermore,
nanoparticles carrying APS (APS-SeNPs) significantly increased the number of HepG2 cells
arrested in the S phase, resulting in apoptosis via the disruption of mitochondrial function [58].

Apoptosis is triggered through three main pathways: the intrinsic mitochondrial,
intrinsic endoplasmic reticulum, and extrinsic death receptor pathways [57]. APS affected
the cell cycle and induced apoptosis in cancer cells via the mitochondrial apoptotic path-
way [85,86]. Despite exhibiting minimal cytotoxic effects in breast cancer 4T1 cells, APS
effectively stimulated macrophage activation [59,61]. Activated macrophages enhanced
mitochondrial membrane permeability, increased the Bax/Bcl-2 ratio, and facilitated the
release of cytochrome C, thereby amplifying the activities of caspases 3 and 9, which initiate
apoptosis. This process also arrested the cell cycle in the G2 phase, effectively inhibiting 4T1
cell growth [59]. Additionally, APS inhibited the proliferation of SW620 colon cancer cells
by dominating G2/M phase arrest. APS also protected RAW 264.7 cells from the damaging
effects of paclitaxel by altering the drug’s blockage effect in the G2/M phase and impacting
the rate of apoptosis [60].

In studies of the G0/G1 phase, APS induced SCG-1 cells to arrest in the G0 phase and
MCF-7 cells to arrest in the G1 phase, thus inhibiting the proliferation of cancer cells [61,62].
A study on APS combined with chemotherapeutic anticancer drugs found that the combi-
nation of APS and cisplatin intensified the inhibition of the G0/G1- and S-phase cell cycle
of the pharyngeal carcinoma cells CNE-1. This combination also increased the expression
of p53 [63]. The p53 protein, which is essential for cell cycle checkpoints, especially DNA
repair and replication, plays a significant role in various malignant tumors [87].
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2.2.2. APS Inhibits Signal Transduction Pathways

APS affects various signaling pathways such as PI3K/Akt, ERK/MAPK, and NF-
κB [64,88].

Abnormal activation of the PI3K/Akt pathway in cancer cells enhanced cell survival
by phosphorylating downstream target proteins and inhibiting apoptosis [89,90]. When
combined with apatinib, APS significantly decreased phosphorylated Akt and MMP-9 ex-
pression in AGS human gastric cancer cells, strengthening the antitumor effects of apatinib
by inducing autophagy and apoptosis [64]. When paired with Palmarosa sempervirens
or radix trichosanthis, APS induces apoptosis in cancer cells, such as B16F10 and A375
melanoma cells, by suppressing PI3K, Akt, and Bcl-2 mRNA expression levels [65,66].

Improper activation of the ERK/MAPK pathway in various cancers is correlated with
cell proliferation owing to ERK overphosphorylation [91]. APS enhanced the anticancer
properties of apatinib by inhibiting the phosphorylation of RAS, a critical effector of the
ERK/MAPK pathway [92]. APS activated the MAPK pathway in mouse macrophages,
involving ERK, p38, and JNK, and regulated cell functions such as growth, differentiation,
and cell death [67]. In addition, APS enhanced the pro-apoptotic effects of adriamycin in
gastric cancer cells by increasing the expression of cysteinyl asparaginase-3, activating the
MAPK signaling pathway, inducing DNA fragmentation, and increasing the expression of
tumor suppressor genes (SEMA21F, P21WAF1/CIP1, and FBXW7). These findings laid the
foundation for further research and development of APS as a chemotherapeutic sensitizer
against anticancer drugs [68].

Additionally, APS opposed the activation of NF-κB and decreased the expression of
anti-apoptotic genes such as Bcl-2, Bcl-xL, and IAP family members, enhancing cancer
cell sensitivity to chemotherapy [69,70]. It effectively reduced mRNA and protein levels
of p65 and p50, suppressed the NF-κB pathway’s transcriptional activity, decreased Bcl-
xL protein abundance, and altered Cyclin D1 expression in non-small-cell lung cancer
(NSCLC) cells. These actions inhibited A549 and NCI-H358 cell proliferation in laboratory
experiments and slowed A549 xenograft growth in animal models [69]. In Fang et al.’s
research, APS was found to regulate the TLR4/NF-κB pathway by activating the TLR4-
TIRAP/Mal-MyD88 pathway and suppressing NF-κB p65 activity by lowering TLR-4,
Myd88, Cyclin D, and Bcl-2 protein levels and preventing p65 nuclear translocation in
PANC-1 cells. This led to apoptosis induction in PANC-1 cells and inhibited pancreatic
cancer progression [70]. Moreover, APS reversed MAPK/NF-κB pathway phosphorylation
in bone marrow mesenchymal stromal cells (BMSCs) co-cultured with lung cancer A549
cells, attenuated A549-induced tumorigenesis, and reduced RAS/ERK signaling in the
BMSCs by decreasing RAS and ERK protein levels, thereby restraining BMSC proliferation
and abnormal morphological changes [71].

The interaction of APS and Salvia extract influenced the TGF-β/MAPK/Smad path-
way by modulating microRNA levels, predominantly through the upregulation of miR-
145 and the downregulation of miR-21. This process consequently impacted the TGF-
β/MAPK/Smad pathway, converting pSmad3L to pSmad3C and increasing pSmad3C
protein expression, thereby demonstrating anti-HCC properties [72]. In addition to the
classical TGF-β-Smad pathway, TGF-β can also regulate Smad signaling via non-Smad path-
ways [93]. ERK, JNK, and p38-MAPK can phosphorylate R-Smad (including Smad1/2/3/5/8)
and Co-Smad-Smad4 mainly by targeting their linker regions [94]. APS can inhibit hepato-
carcinogenesis by modulating TGF-β/Smad signaling through Smad3 phosphorylation
mechanisms [73].

2.2.3. APS Induces Apoptosis in Cancer Cells

APS can effectively induce apoptosis in cancer cells by regulating Bcl-2 protein, mi-
croRNA, p53 protein, and the Fas receptor [95].

Two typical proteins of the Bcl-2 family, Bcl-2 and Bax, play key roles in cysteine-
dependent apoptosis. Bcl-2 is an anti-apoptotic protein located in the nucleus and mito-
chondrial membrane, and Bax is a pro-apoptotic protein located in the cytoplasm. Bcl-2
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inhibits Bax-induced apoptosis, so the decrease in the level of Bcl-2/Bax is considered a
pro-apoptotic manifestation [96]. APS induced apoptosis in H22 HCC cells and MDA-MB-
231 breast cancer cells by upregulating Bax and downregulating Bcl-2 [74,75]. Similarly,
APS can accelerate apoptosis in HepG2 HCC cells by decreasing Bcl-2, β-catenin, c-Myc,
and Cyclin D1, which may be related to the Wnt/β-catenin signaling pathway [76]. In both
nasopharyngeal and ovarian cancer models, APS was combined with cisplatin to reduce the
levels of Bcl-2 and elevate Bax, caspase-3, and caspase-9 levels. APS significantly reduced
the Bcl-2/Bax ratio due to the activation of chemotherapeutic agent chemosensitivity in
combination compared to treatment with cisplatin alone [77,78].

During tumor development, the expression of various miRNAs changes, leading to
corresponding changes in the expression of downstream target genes. miRNAs regulate
tumor proliferation, autonomous growth signaling, apoptosis, and other processes that
affect tumor progression [97]. MiR-27a is a well-known oncogene in a variety of tumor
types [98–100]. APS reduced the expression of miR-27a, leading to upregulation of the
tumor suppressor gene FBXW7, which ultimately inhibited proliferation and induced
apoptosis in OV-90 and SKOV-3 cells [79]. MiR-133a is an oncogene in various cancer
types [101–103]. APS reduced the expression of MiR-237a by upregulating miR-133a,
inactivating the JNK pathway, and exerting anticancer effects in human osteosarcoma
MG63 cells [80]. Bioassay analysis showed that the upregulation of miR-195-5p was
positively correlated with the survival rate of patients with lung cancer and that APS could
inhibit the proliferation and migration of NSCLC cells by increasing the expression level of
miR-195-5p [81].

As an important oncogene, the normal function of the p53 protein is an effective barrier
to cancer [104]. One of the biological functions of p53 is its ability to induce apoptotic
cell suicide, which is central to its role as a tumor suppressor [105]. APS significantly
upregulated p53, p21, and p16 in the large-cell lung cancer cell line H460, inhibited the
expression of Notch1 and Notch3, and ultimately inhibited proliferation and promoted
apoptosis [82].

Fas is a transmembrane receptor that induces apoptosis by crosslinking with agonistic
antibodies or Fas ligands (FasL). In addition to its pro-apoptotic function, Fas can also
activate many non-apoptotic signaling pathways, and activation of these pathways can lead
to increased tumorigenicity and metastasis. Thus, the Fas/FasL system plays an important
role in tumor development [106]. APS induced apoptosis in CD133+/CD44+ co-positive
colon cancer stem cells in a concentration-dependent manner via the Fas death receptor
pathway [83].

Furthermore, APS can trigger ER stress in tumor cells by decreasing the expression
of O-GlcNAc transferase (OGT) and increasing the expression of O-GlcNAcase (OGA).
Through this mechanism, the APS-upregulated CHOP pathway led to doxorubicin-induced
apoptosis in cancer cells [84].

2.3. Other Antitumor Effects of APS
2.3.1. APS Activates Cellular Autophagy

Although various tumor types display diverse genetic and phenotypic characteristics,
they often exhibit shared metabolic changes, including alterations in autophagy [107,108]. The
suppression of autophagy leads to a significant decrease in tumor cell viability. Combining
autophagy inhibitors with anticancer medications can diminish chemotherapy resistance
in cancer cells and effectively suppress cancer progression [109,110].

APS can regulate autophagic activity in cancer cells. APS influenced proteins such as
beclin-1 and LC3 by activating the PI3K/Akt/mTOR pathway, promoting the formation
and maturation of autophagosomes, and accelerating the removal of damaged compo-
nents from cancer cells. APS also affected the intracellular energy balance and protein
synthesis, enhancing the role of autophagy in inhibiting cancer cell growth and induc-
ing apoptosis [64,111,112]. Cellular autophagy can be induced by apatinib or APS alone.
However, the combination of the two significantly enhanced the antitumor effect in gastric
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cancer AGS cells by suppressing the PI3K/Akt/mTOR pathway. Additionally, the combi-
nation of apatinib, APS, and the autophagy inhibitor 3-methyladenine effectively inhibited
cell growth and increased the rate of apoptosis [64]. At the cellular autophagy level, APS
increased autophagic activity in cervical cancer HeLa cells and improved chemosensitivity
to cisplatin by upregulating beclin-1, promoting the conversion of LC3I to LC3II, and
downregulating p62 [113]. APS reduced xanthine oxidase-induced autophagy in small-cell
lung cancer A549 cells by downregulating LC3B and beclin-1 and increasing mTOR expres-
sion [111]. APS nanoparticles exhibited cytotoxicity against breast cancer MCF-7 cells by
inhibiting autophagy, inducing oxidative stress, generating excess reactive oxygen species,
causing mitochondrial damage, and activating apoptotic pathways [112].

2.3.2. APS Inhibits Lipid Metabolism

Lipid metabolism plays an important role in tumorigenesis, invasion, and metasta-
sis [114,115]. Sterol regulatory element binding proteins (SREBPs) are key transcription
factors that regulate the expression of lipid synthesis, uptake genes, and play a central role
in lipid metabolism under both physiological and pathological conditions; high upregula-
tion of SREBPs in various cancers promotes tumor growth [116].

Abnormal lipid metabolism is accompanied by overexpression of related enzymes,
aberrant transcription of non-coding RNAs, and activation of oncogenic signaling path-
ways [117–119]. It has been shown that overexpression of silent information regulator-1
(SIRT-1) inhibited SREBP-1 expression and nuclear translocation by suppressing lipid
metabolism through activation of AMPK phosphorylation [120]. APS significantly reduces
triglyceride and cholesterol levels in prostate cancer cells. By promoting miR-138-5p target-
ing to its 3’UTR region, APS inhibited the expression of SIRT-1 and SREBP-1, promoted
signaling in the miR-138-5p/ SIRT-1/SREBP-1 pathway in PCa and DU145 cells, and
suppressed tumorigenesis and lipid metabolism [121].

2.3.3. APS Affects the Tumour Microenvironment and Regulates Cytokine and
Hormone Levels

The TME is crucial for tumor progression, invasion, and dissemination because of its
intricate composition [122,123]. Recent studies have emphasized the significant impact
of APS on modifying the TME and influencing tumor cell proliferation, apoptosis, and
motility [16,24,56,61,122,124–129].

APS interacts with the TME through multiple pathways, including the modulation of
immune cell functions. For example, when combined with 5-fluorouracil (5-FU) for colon
cancer treatment, APS decreased tumor size by reducing indoleamine-2,3-dioxygenase
(IDO1) expression in the TME and enhancing CD8+ T-lymphocyte infiltration [124]. In the
S180 mouse model, APS altered anaerobic metabolism within the TME by affecting CD3+,
CD4+, CD8+ T cells, and CD19+ B cells, leading to tumor cell death [56]. Furthermore, APS
co-cultured with HeLa cervical cancer cells boosted peripheral blood mononuclear cell
proliferation and adjusted the immune response by reducing suppressive cytokine levels
like IL-10 and TGF-β, thereby enhancing antitumor efficacy [125]. In a mouse model of lung
cancer, polysaccharides isolated by Li et al. demonstrated antitumor effects in mice with
4-methyl-4-nitro-8-nitrosoguanidine-induced gastric cancer by promoting the proliferation
of splenic lymphocytes, enhancing the activity of NK cells, and increasing the levels of IgA,
IgG, and IgM, as well as the expression of CD1+ and CD2+/CD1+ in the blood [130].

In addition to immune cells, APS also influences cytokines and chemokines in the
TME. It regulated cytokine expression, including nitric oxide and TNF-α, restraining MCF-7
breast cancer cell proliferation by inducing G1-phase cell cycle arrest and apoptosis [61].
In an H22 liver carcinoma model, APS effectively suppressed tumor growth, improved
overall health in tumor-bearing mice, and enhanced macrophage phagocytosis. These
effects were associated with increased cytokine production and inhibition of IL-10, MDR1
mRNA, and P-glycoprotein by APS [16,24]. In the microenvironment of human HCC, APS
blocked chemokine matrix-derived factor-1 and its receptor by inhibiting the activation of
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the chemokine receptor 4 CXCR4/CXCL12 signaling pathway, restoring cytokine imbal-
ance (elevated IFN-γ expression and reduced IL-4 and IL-10 expression), and inhibiting
the immunosuppressive T lymphocyte CD4+CD25+ Treg cell growth, proliferation, and
migration [131].

The effect of APS on cytokines within the TME influences cancer cell migration and
invasion. In research on lung cancer, APS was found to decrease levels of VEGF and EGFR
while enhancing the activity of immune organs, thus inhibiting the progression and spread
of tumors [52,126,127]. At the same time, APS was shown to decrease levels of macrophage
migration inhibitory factor, reduce the presence of epithelial–mesenchymal transition
markers, and gradually diminish the migratory and invasive capabilities of cancer cells in
a dose-dependent manner [128,129]. In colon and breast cancer microenvironments, APS
inhibited epithelial–mesenchymal transition and metastasis in mice through the WnT5/β-
catenin signaling pathway [132,133], inhibited IDO1 expression, and increased intratumoral
CD8+ T-cell infiltration [124]. APS enhanced the chemosensitivity of HCC cell lines and
inhibited cell migration and invasion in HCC by inhibiting MDR1 and P-glycoprotein efflux
pump functions [134].

The effect of APS on the TME involves various pathways that influence cytokines
and hormones [55]. In addition to altering the function and activity of immune cells, APS
significantly reduces levels of IL-10 and TGF-β while increasing levels of TNF-α, IL-1α, IL-2,
IL-6, and IL-12. This regulation affects growth factors like VEGF and EGFR, rejuvenating
an immune-suppressed TME.

3. APS-Assisted Cancer Immunotherapy

The assisted effects of APS on cancer immunotherapy are summarized in Figure 3.
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DCs improves the effectiveness of adoptive immunotherapy with cytokine-induced killer (CIK)
cells and APS components, particularly abundant in dextran, which act as potent adjuvants for
DC-based cancer immunotherapy vaccines. The blue arrow belongs to the APS-stimulated adoptive
cell immunotherapy arrow, the purple arrow belongs to the APS-stimulated immune checkpoint
inhibitor arrow, and the pink arrow belongs to the APS-stimulated DC cancer vaccine arrow. The
black up arrow indicates an increase in a certain factor during APS stimulation, and the black down
arrow indicates a decrease in a certain factor during APS stimulation.

3.1. APS Boosts the Effectiveness of Immune Checkpoint Inhibitors in Therapy

ICIs and natural polysaccharide-based substances have shown promise for overcom-
ing the immunosuppressive environment of tumors and enhancing the efficacy of cancer
immunotherapy, particularly against solid tumors. APS has demonstrated potential as a
therapeutic agent in cancer treatment by influencing PD-1/PD-L1 signaling and related
pathways [55,66,135–137]. The specific mechanism was demonstrated by the fact that S12,
a single-chain variable fragment isolated from APS, bound well to PD-1 and inhibited
PD-L1-based T-cell depletion [138]. For example, a traditional Chinese medicine blend
known as Bu Zhong Yi Qi Tang (BYD), which contains APS as a key ingredient, effectively
reduced PD-L1 expression in gastric cancer tissues and targeted PD-1 and PD-L1 within
tumors through the PI3K/Akt/mTOR pathway, resulting in significant suppression [136].
In addition, by inhibiting the Akt/mTOR/p70S6K pathway in tumor-bearing mice, APS
downregulated the expression of PD-L1 on the surface of breast cancer 4T1 cells and col-
orectal cancer CT26 cells, and blocked PD-L1-induced T-cell exhaustion [137]. APS can
also decrease PD-L1 expression in cisplatin-resistant melanoma cells, thus increasing their
sensitivity to chemotherapy by acting on the PD-L1/PI3K/Akt pathway [66]. In a small
retrospective study involving patients with lung cancer treated with ICI therapy, the addi-
tion of APS enhanced the antitumor effects of immunotherapy by reducing inflammation,
lowering the prognostic marker NLR, and changing the relative proportion of circulating
lymphocytes [139].

In combination with anticancer drugs, there was no substantial difference between the
effects of ixabepilone and APS on tumor suppression in combination with PD-1 inhibitors,
suggesting that APS prevented tumorigenesis or progression in the presence of increased
T-cell activation, enhancing the synergistic effect with anti-PD-L1 [138].

APS, derived from the traditional Chinese herb Astragalus membranaceus, enhances an-
ticancer immune responses by modulating the PI3K/Akt/mTOR and Akt/mTOR/p70S6K
pathways, which are crucial for cell survival, proliferation, and metabolism. Suppressing
these pathways diminishes cancer cell survival and PD-L1 expression on their surfaces.
ICIs, which block PD-L1, aid the immune system in recognizing and eliminating cancer
cells. Thus, APS not only acts independently but also potentially augments established
cancer treatments by boosting the body’s natural immune response to tumors.

3.2. APS Enhances Relay Cellular Immunotherapy

Cellular immunotherapy, also known as permissive immune cell therapy, is an im-
portant antitumor therapy. This therapy is carried out by isolating autologous tumor-
infiltrating lymphocytes (TILs) or peripheral blood lymphocytes (including lymphokine-
activated killer (LAK) cells, CD3-activated killer (CD3-AK) cells, cytokine-induced killer
(CIK) cells, and DC-CIK cells), which are activated or genetically modified in vitro, to
amplify immune cells with antitumor activity (chimeric antigen receptor T (CAR-T) cells,
T-cell receptor-engineered T (TCR-T) cells, and chimeric antigen receptor natural killer
(CAR-NK) cells), equip them with the capability of tumor antigen-targeting recognition,
and then infuse them back into the tumor patient’s body, thereby amplifying the cellular
immune function in the patient’s body and improving the antitumor effect [140,141].

With regard to the effects on peripheral lymphocytes, when APS was combined with
CIK cells, the antitumor response of DC-CIK cells was stronger than that of normal DC-CIK
cells [142–147]. APS can promote the expression of specific markers on the surface of DC on
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the one hand and significantly enhance the DC-induced T-cell proliferative response; on the
other hand, it can enhance the effect of CIK on CD3+ and CD4+ T lymphocytes and exert an
antitumor effect. For instance, a study conducted by Zhang and Wang demonstrated that
DC-CIK cells induced by APS not only exhibited increased proliferation, but also displayed
enhanced cytotoxicity against A549 lung adenocarcinoma and Eca-109 esophageal cancer
cells [142,143]. Another study by Zhang revealed that APS used in conjunction with
CIK cell therapy effectively controlled tumor growth in the intermediate and advanced
stages of NSCLC. This combination led to a significant increase in CD3+ and CD4+ T
cells in the peripheral blood, improved the overall physical well-being of patients, and
alleviated symptoms associated with qi deficiency syndrome, while maintaining a better
safety profile [144]. In addition, the cytotoxicity of CIK cells combined with APS was higher
than that of CIK cells alone in HeLa and SKOV3 cells. In vivo results showed that CIK
combined with APS significantly inhibited the growth of HeLa-implanted tumors, with an
inhibition rate of 80.6% [148].

Stilbene Silver San Liang San (SLS), a Chinese herbal formula consisting of Astragalus,
honeysuckle, Angelica sinensis, Glycyrrhiza glabra, and centipede, is used as an adjuvant
treatment for B-cell lymphomas with CD19 CAR-T cells. At the cellular level, SLS dose-
dependently promoted the killing effect of unmodified T cells and anti-CD19 CAR-T cells
on Raji cell lines, while at the same time reducing T-cell and CAR-T cell exhaustion to a
certain extent, promoting the proliferation of anti-CD19 CAR-T cells, decreasing the levels
of IL-6, IL-10, and TNF-α, and increasing the levels of granzyme B. SLS in in vivo studies
effectively increased the anti-B-cell lymphoma function of anti-CD19 CART cells, prolonged
the survival of mice, and decreased the levels of IL-6, GM-CSF, and IL-17. The specific
mechanism of action of SLS is mediated by the IL-17 signaling pathway and the CD8+ T-cell
apoptosis pathway, which regulates CAR-T cells [149]. In addition, a project to explore
the role and mechanism of APS in promoting CAR-T cell therapy for HCC based on T-cell
subpopulation differentiation is underway [150].

3.3. Utilizing APS as an Adjunct to Enhance the Effectiveness of Cancer Vaccines in Therapy

Cancer-preventive and therapeutic vaccines are key components of cancer-specific
active immunotherapy. These vaccines stimulate a patient’s immune system against tumor-
specific antigens [151]. However, many vaccines, especially those using peptides and
nucleic acids, have a limited ability to activate the immune system. Therefore, their
combination with potent adjuvants is crucial to achieve the desired therapeutic results.

Studies have shown that APS can be used as an enhancer of DC-based cancer im-
munotherapy vaccination [55]. In an animal model of breast cancer, researchers evaluated
the adjuvant effects of two polysaccharides extracted from the roots of Astragalus and
Radix et Rhizoma Ginseng on DC cancer vaccine-treated mouse 4T1 cells and found that
dextran extracted from APS could be an effective alternative to bacterial lipopolysaccharide
(LPS) as an adjuvant for the formulation of DC-based cancer immunotherapy vaccines.
This combination not only significantly increased the number of CD40, CD80, and CD86
markers in DCs, but also upregulated the secretion of IL-6, TNF-α, and IL-1β. In an animal
model of anal sarcoma, the researchers used APS instead of TNF-α to induce maturation
of bone marrow-derived DCs, which were then sensitized with the S180 tumor antigen,
thereby obtaining a DC tumor vaccine. After immunotherapy in mice, antitumor cytokines
such as TNF-α and IL-12 were produced to achieve anticancer effects [152]. It is also
possible that the mechanism of this anticancer effect is related to the increase in thymic and
splenic indices in mice, which promotes the transfer of the Th1/Th2 imbalance to cellular
immunity, in which Th1 cells predominate [153]. In addition, a complex of Astragalus with
an aluminum hydroxide adjuvant may enhance anti-breast-cancer activity by inducing
an immune response to the basic fibroblast growth factor (bFGF) tumor vaccine in the
TME, causing it to produce potent bFGF-specific cytotoxic T-lymphocyte activity [154]. In
contrast to typical vaccine adjuvants, APS does not lead to a “cytokine storm” caused by
the overexpression of vaccine adjuvants [28].
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Although APS and similar herbal therapies have demonstrated encouraging outcomes
in both preclinical and clinical trials, achieving complete cancer remission without side
effects remains a significant challenge. Ongoing research into APS and other traditional
herbal medicines is a vital path in devising more holistic and less detrimental cancer
treatment methods. By blending traditional medicine with contemporary medical practices,
we can offer a more thorough and patient-centered approach to cancer care.

4. Clinical Trials on the Antitumor Effects of APS

Although no antineoplastic drugs have been able to achieve complete remission of
cancer without adverse effects, traditional Chinese herbs have been used for thousands
of years in cancer treatment in China, Japan, and other East Asian countries, alleviating
the symptoms in patients with cancer, and also mitigating the adverse effects and compli-
cations caused by chemotherapy and radiotherapy. These findings further strengthen the
complementary role of herbs in modern cancer treatment and provide more options and
possibilities for comprehensive treatment [155].

Among these herbs, Astragalus has attracted attention for its potential efficacy in cancer
treatment. Several randomized clinical trials have demonstrated that Astragalus-based in-
terventions can reduce cancer symptoms, improve the quality of life and immune function,
increase plasma nerve growth factor levels, and slow the progression of chemotherapy-
induced peripheral neuropathy [78,156]. Currently, Astragalus extracts or preparations [157]
have been used in clinical trials for their antitumor effects on digestive, respiratory, epithe-
lial tissue, and hematological malignancies (Table 3) [158–160].

Table 3. Clinical investigations of APS in cancer.

Number Pharmaceutical Ingredient Disease Status Phase

NCT01802021 [161] Astragalus-based Formula Non-small-cell
lung cancer Recruiting II/III

ChiCTR2300068199 [162] Astragalus polysaccharides, Paclitaxel;
Carboplatin

Non-small-cell
lung cancer Not Recruiting −

[163] Astragalus polysaccharides, Iodide 125 Lung cancer Not Recruiting II/III

[25] Astragalus polysaccharides,
Vinorelbine; Cisplatin

Non-small-cell
lung cancer Not Recruiting II/III

[164] Astragalus polysaccharides,
Gemcitabine; Cisplatin

Non-small-cell
lung cancer Not Recruiting II/III

ITMCTR2100004716 [165] Astragalus polysaccharides, Apatinib Extensive-stage small-cell
lung cancer Not Recruiting −

ChiCTR2000040911 [166] Astragalus polysaccharides,
Carrelizumab; Apatinib Lung cancer Recruiting −

ITMCTR2000003215 [167] Astragalus polysaccharides, Tansychia Hepatocellular carcinoma;
Lung cancer Recruiting −

NCT03314805 [168] Astragalus polysaccharides Breast cancer Not recruiting II

ChiCTR2300076131 [169] Chinese herbal decoction (contains
Astragalus polysaccharides)

Low-grade gastric
intraepithelial neoplasia Recruiting −

[170] Astragalus polysaccharides, FOLFOX Gastric cancer Not recruiting −
ChiCTR2300068896 [171] Astragalus polysaccharides Gastric cancer Not recruiting IV

NCT06234072 [172] Astragalus polysaccharides,
Gemcitabine Pancreatic cancer Not recruiting II

[173] Traditional Korean Medicine (contains
Astragalus polysaccharides), CTX

Metastatic
pancreatic cancer Not recruiting −
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Table 3. Cont.

Number Pharmaceutical Ingredient Disease Status Phase

ChiCTR2000037982 [174] Astragalus,
Panax-notoginseng, Oncolytic vaccine Colorectal cancer Recruiting −

[175,176] Astragalus polysaccharides Colorectal cancer Not recruiting −

[177]

FOLFOX 4, Ginseng,
Astragalus polysaccharides,
Atractylodes rhizome,
Poria cocos, Coix seed,
Sophora flavescens

Advanced
colorectal cancer Not recruiting −

[178]

Astragalus polysaccharides,
Oxaliplatin, Poria cocos,
Atractylodes macrocephala Koidz,
Pilosula

Colorectal cancer Not recruiting −

NCT01720563 [179] APS, Cisplatin, Leucovorin,
Tegafur plus uracil

Advanced
pharyngeal/laryngeal
squamous
cell carcinoma

Not recruiting II

NCT03611712 [180] Astragalus polysaccharides Locally advanced
esophageal cancer Not recruiting II

NCT01720550 [181] Astragalus polysaccharides Advanced cancer Not recruiting IV

4.1. Malignant Tumors of the Digestive System

According to the fifth edition of the Classification of Tumors of the Digestive System
published by the World Health Organization (WHO) in 2019, malignant tumors of the
digestive system include esophageal cancer, gastric cancer, cancer of ampullar carcinoma,
gobelet cell adenocarcinoma, colorectal cancer, HCC, and pancreatic cancer [182]. APS has
been used in clinical antitumor trials for gastric, colorectal, liver, and pancreatic cancers.

Gastric cancer (GC) is the fourth most prevalent cancer globally [183]. Phytochemicals
protect against GC through various mechanisms, including the inhibition of cell growth, the
induction of cell death and autophagy, the prevention of cell invasion and migration, hinder-
ing angiogenesis, combating Helicobacter pylori infection, and impacting the TME [92,184].
Polysaccharides, especially those derived from fungi, algae, tea, APS, Dendrobium, and
other edible plants and herbs, are recognized for their anticancer properties against GC [62].
The anti-GC effects of APS are manifested not only in the enhancement of immune activity
and the direct inhibition of tumor cell proliferation but also in the alleviation of adverse
reactions to anticancer drugs [57,68,170,185–189].

FOLFOX is a globally recognized first-line chemotherapeutic regimen for GC. How-
ever, 5-FU and oxaliplatin (L-OHP) may cause adverse reactions such as peripheral neu-
rotoxicity, total hematopenia, and severe gastrointestinal responses [188,189]. Clinical
trials have demonstrated that APS injections, when combined with FOLFOX, can reduce
gastrointestinal reactions and leukopenia, offering new possibilities for patients with GC to
enhance clinical outcomes and physical well-being while mitigating adverse effects [170].
Additionally, clinical studies have investigated the enhancement of advanced GC sensi-
tivity to ICIs by modulating intestinal flora and exploring the metabolomics-based effects
of Aiqi Shi Cao Tang (APS) in modulating the gastric environment for low-grade gastric
intraepithelial neoplasia treatment [169,190].

Colorectal cancer (CRC) is the third and second most common cancer among men
and women, respectively. The reasons for the increase in its occurrence are not fully
understood, although genetics, lifestyle, obesity, and environmental factors may play
roles [191]. Various studies have demonstrated that herbal medicines containing Astra-
galus in combination with chemotherapy increased the tumor remission rate, reduced
chemotherapy-related side effects such as neutropenia, anemia, nausea, vomiting, and neu-
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rotoxicity, and enhanced the quality of life of patients with CRC compared to chemotherapy
alone [175,176]. Two additional studies on APS combined with FOLFOX4 demonstrated
similar effectiveness [177,178]. Shenqi Fuzheng Injection is a Chinese herbal formula con-
sisting of Astragalus and Codonopsis. This injection was approved by the Chinese Food
and Drug Administration in the 1990s [192]. Clinical studies have been conducted on the
use of Shenqi Fuzheng Injection in combination with chemotherapy or radiotherapy for
the treatment of lung, breast, and colorectal cancers, and some studies have suggested that
it may play an important role in the treatment of advanced cancers by improving tumor
response and reducing the toxicity of chemotherapy [193–195]. A meta-analysis showed
that Shenqi Fuzheng Injection combined with chemotherapy regimens (FOLFOX regimen,
XELOX regimen) in the treatment of CRC could improve the efficacy of chemotherapy
and the quality of survival, enhance cellular immune function, and reduce adverse events
such as leukopenia, thrombocytopenia, and gastrointestinal toxicity [194]. Another meta-
analysis showed that the efficacy of ginseng Astragalus tonic injection added to conventional
chemotherapy for the treatment of lung cancer, breast cancer, and gastrointestinal tract
tumors was better than that of conventional chemotherapy alone, and the objective tumor
responses were higher than those in the conventional chemotherapy group. Compared with
the conventional chemotherapy group, the combination treatment with Shenqi Fuzheng
Injection increased NK, CD3+, and CD4+ levels and the CD4+/CD8+ ratio [193]. AC591,
a standardized extract of Astragalus and Gui Zhi Wu Tang, is a herbal formulation that
improves numbness and pain in the limbs. AC591 can prevent oxaliplatin-induced neu-
ropathy without reducing its antitumor activity against CRC. It is a promising adjunctive
drug for the clinical relief of sensory symptoms [196]. An open clinical study of Chinese
herbal medicine (Astragalus/tansy) in combination with a novel tumor-lysing vaccine for
the treatment of recurrent or metastatic colorectal cancer is underway [174].

Despite the predominant use of Western medical interventions for HCC, the over-
all outlook for patients is frequently bleak, highlighting the critical need for preventive
strategies against HCC [197]. A comprehensive analysis indicated that administering
APS in conjunction with transcatheter hepatic artery chemoembolization for HCC therapy
surpassed the performance of other Chinese herbal injections, enhancing clinical efficacy
and treatment outcomes [198]. A recent clinical investigation was conducted on the com-
bined use of Astragalus/tansychia and a novel lysosomal virus/fusion cell vaccine to treat
advanced HCC and lung cancer [167].

The pathogenesis of pancreatic cancer remains unclear. The onset is inconspicuous,
with symptoms often evident only in the middle or late stages. Although surgical re-
moval is the ideal approach for patients with intermediate and advanced pancreatic cancer,
chemotherapy in conjunction with traditional Chinese medicine can alleviate clinical symp-
toms, improve the TME, eliminate tumor recurrence factors, and reduce focal metastasis,
thereby enhancing efficiency and minimizing toxicity [199].

During the investigation into APS and Shenqi Fuzheng Injection (composed mainly of
Radix et Rhizome Ginseng and Radix Astragali) for treating gastrointestinal diseases, APS
not only slowed pancreatic tumor growth but also reduced tumor-associated fibroblasts’
ability to secrete βig-H3, thereby promoting the expansion of CD8+ T cells and inhibiting
the transition of macrophages to the M2 type, and consequently enhancing the pancreatic
tumor’s sensitivity to gemcitabine and other therapies. An observational study found
that combining APS with chemotherapy significantly prolonged the survival of patients
with metastatic pancreatic cancer compared with chemotherapy alone [173]. Therefore,
a randomized double-blind trial is planned to compare the efficacy of APS combined
with gemcitabine versus gemcitabine alone as a neoadjuvant treatment for pancreatic
cancer [172].

Esophageal cancer is a common tumor of the digestive tract. Because patients with
esophageal cancer may have obvious cellular immunosuppression after surgery, some
relevant postoperative studies have been conducted. In a postoperative study of 60 patients
with thoracic segment esophageal cancer, postoperative intravenous Shenqi Fuzheng Injec-
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tion significantly improved the cellular immune function after modern two-field resection
compared to the group without immunosupportive therapy [200]. Another study showed
that four weeks of perioperative treatment with Astragalus-enhancing flour in 37 patients
with esophageal cancer resulted in a more pronounced number of mesenchymal mast
cells, focal lymphocyte aggregates, increased mesenchymal microvascular damage, and
improved immune function [201]. A randomized open clinical trial is currently underway
to evaluate APS in conjunction with concurrent chemoradiotherapy for the treatment of
locally advanced esophageal cancer [180].

4.2. Malignant Tumors of the Respiratory System

Malignant tumors of the respiratory system include lung, nasal, and laryngeal cancers.
APS is being used in clinical antitumor trials related to NSCLC and nasopharyngeal cancer.

NSCLC accounts for the majority of lung cancer cases, with a high rate of recurrence
and limited efficacy of current treatments [202]. Astragalus-containing herbs are effective
in preventing radiotherapy pneumonia as an adjunctive therapy during conservative ra-
diotherapy [203]. Zhou et al. observed decreased cell growth and increased apoptosis in
the H460 NSCLC cell line following administration of APS [204]. In addition, Gan et al.
explored the potential of APS for clinical use in lung cancer. Combining platinum-based
chemotherapy with Astragalus-based herbal treatments has shown enhanced efficacy in the
treatment of advanced NSCLC [205]. By injecting APS in combination with the chemothera-
peutic agents vincristine and cisplatin in patients with advanced NSCLC, it was found that
APS significantly improved immune function and reduced the toxicity and side effects of
chemotherapy and radiotherapy, leading to a better quality of life compared to chemother-
apy alone. In light of these benefits, researchers have conducted clinical trials using APS
to alleviate cancer-related fatigue induced by chemotherapy in patients with lung cancer,
as well as for maintenance therapy after initial or subsequent chemotherapy and targeted
therapy [162]. Studies have shown that Shenqi Fuzheng Injection can improve the clinical
efficacy and reduce the radiotoxicity in patients with NSCLC [195]. Ten-perfect tonic soup,
composed of Astragalus, ginseng, angelica, and other herbs, is commonly used for outpatient
chemotherapy in patients with lung cancer. A quality-of-life questionnaire on anticancer
drug therapy and another randomized, double-blind, placebo-controlled trial conducted
on patients with NSCLC showed significant improvements in both physical symptoms and
anorexia after treatment with decapod tonic soup [206,207]. Decapentaplegic tonic soup
may also increase the regulatory activity of T cells by decreasing the Foxp3+ Treg population
in patients with advanced pancreatic cancer, leading to immune enhancement with various
combination therapies [208]. Aidi injection, a commonly used adjuvant chemotherapeutic
agent in China, consists of plant extracts of Astragalus, Echinococcus sp., and ginseng, with
antitumor, immunomodulatory, and attenuating acute or subacute chemotherapy toxicity.
Aidi injection combined with radiotherapy can reduce myelosuppression, radiation pneu-
monitis, and radiation esophagitis after radiotherapy, and significantly improve the clinical
efficacy and quality of life of patients with lung cancer [209,210].

Nasopharyngeal cancer is highly aggressive [211]. Although platinum-based chemother-
apy is an effective treatment, the associated adverse effects limit its use [212]. A case–control
study linked the use of APS to a decreased incidence of nasopharyngeal cancer [213].

4.3. Other Malignant Tumors

Malignancies of epithelial origin include squamous cell carcinoma, adenocarcinoma,
colorectal carcinoma, and breast carcinoma. APS has been tested in clinical antitumor trials
related to malignancies of epithelial tissue origin and hematological malignancies.

Metastasis accounts for 90 percent of breast-cancer-related deaths. Treatment options
for metastatic breast cancer are limited, emphasizing the urgent need for innovative ther-
apeutic strategies to address this critical issue [214]. Investigations have elucidated the
mechanism of action of APS against breast cancer by examining the essential target pro-
teins and mRNA expression. Seventy-three downregulated and seven upregulated genes
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were identified, with EGFR and ANXA1 identified as the pivotal genes associated with
breast cancer progression. Treatment with APS results in a significant decrease in EGFR
levels and a marked increase in ANXA1 levels in breast cancer cells [215]. Furthermore,
Wang et al. successfully developed a novel nanoparticle (quercetin-3’3-dithiobispropionic
acid-Astragaloside-folic acid) that not only hindered drug release into the environment but
also facilitated delivery into cancer cells, effectively inhibiting estrogen receptor α-positive
breast tumors [216]. Studies have shown that APS treatment can reduce chemotherapy-
induced toxicity, leading to research on stage II/III breast cancer patients receiving APS as
adjuvant chemotherapy [168], underscoring the importance of ongoing clinical trials on
APS in breast cancer care.

Concurrent chemoradiotherapy (CCRT) is a crucial treatment for patients with ad-
vanced head and neck squamous cell carcinoma (HNSCC) [217]. A phase II double-blind,
randomized trial compared CCRT with APS injection to CCRT with placebo for advanced
pharynx or larynx squamous cell carcinoma, and found that the CCRT and APS group had
improved safety, enhanced quality of life, and reduced adverse events commonly associated
with intense anticancer therapies in patients with HNSCC undergoing CCRT [218].

The enhanced antitumor effects of Astragalus injection in combination with chemother-
apy may improve the short-term prognosis and clinical regression of acute lymphoblastic
leukemia (ALL) in children [219]. Remission induction chemotherapy can reduce myelo-
suppression induced by chemotherapeutic agents, increase neutrophil counts, and reduce
the incidence and duration of infections in children with ALL [220].

5. Comparison of Anticancer Effects of Astragalus Polysaccharide and Other
Polysaccharides

In recent years, polysaccharides isolated from natural sources such as plants, an-
imals, fungi, and seaweeds have received increasing attention owing to their various
pharmacological activities, including antitumor, immunomodulatory, antioxidant, and
anti-inflammatory activities [221–224]. Pectin polysaccharides from plants, β-glucans from
mushrooms, and sulfated polysaccharides from seaweeds have been shown to possess an-
tioxidant and immunomodulatory activities [225–227]. Astragalus, mushrooms, Ganoderma
lucidum, and fucoidan polysaccharides are used in domestic and international markets.

5.1. Astragalus Polysaccharide and β-Glucan

β-glucan is found in the cell walls of mushrooms, yeast, and grains such as oats and
barley [228]. Both β-glucan and Astragalus polysaccharide are known for their effects
on modulating immune function. However, β-glucan generally activates white blood
cells such as macrophages and neutrophils, whereas Astragalus polysaccharide tends to
enhance the body’s production of various immune cells [229]. In terms of applications,
β-glucans are commonly used in immune-enhancing supplements and food additives,
while Astragalus polysaccharide is often used in herbal formulations to enhance vitality and
treat diseases such as colds or flu [230,231]. Among the β-glucans, shiitake polysaccharide
is a typical T-cell activator that enhances the immune function of immune cells such as T
cells, macrophages, and natural killer cells, and has antitumor effects [232]. Polysaccharide
peptides extracted from medicinal mushrooms induced Molt4 leukemia cells to enter the
S phase, eventually leading to apoptosis [233,234]. Ganoderma lucidum polysaccharides
reduced ERK expression and inhibited the proliferation of MT-1 human breast malignant
carcinoma cells tumor cells through the ERK signaling pathway [235]. Lycium barbarum
polysaccharides (LBPs) enhanced macrophages in a dose-dependent manner [236]. They
exhibited antitumor activity against many types of cancer cells, and inhibited tumor growth
in nude mice by inducing apoptosis and cell cycle blockade [237,238]. Ke et al. reported
that LBP inhibited the growth of the human bladder cancer cell line BIU87 and induced
apoptosis in BIU87 cells [239].
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5.2. Astragalus Polysaccharide and Pectin Polysaccharide

Pectin is a polysaccharide derived from citrus fruits and apples that can form gels
and is more structurally complex with more branching than APS [240,241]. Pectin is
primarily used to improve digestive health and reduce cholesterol [242]. In addition, APS
has antioxidant properties that help neutralize free radicals and protect cells from oxidative
damage [243]. Pectin mainly produces reactive oxygen species to induce apoptosis, which
is the opposite mechanism of action of APS [244]. Pectin is widely used as a gelling
agent in jams and preserves by the food industry, whereas APS is mainly found in dietary
supplements and traditional medicine [23,245].

In addition to their benefits as soluble dietary fibers, modified pectins, particularly
modified citrus pectins, have beneficial effects on the development and spread of malig-
nant tumors, including colon and breast cancer [245]. Pectin-derived chemicals slow cell
development and promote apoptosis [246]. The combination of the multiplant compounds
BreastDefend or ProstaCaid with modified citrus pectin reduced the invasive potential of
highly metastatic human breast cancer MDA-MB-231 cells and may prevent the develop-
ment of breast cancer in mice by reducing angiogenesis [247]. Furthermore, in addition to
activating macrophages, citrus pectin inhibited activator protein 1 and NF-κB signaling
and activated LPS/TLR-4 signaling [248]. Citrus and apple pectin inhibited the growth of
MDA-MB-231, MCF-7, and T47D breast cancer cells by inhibiting the S phase and G1 phase
or G2/M phase of the cell cycle. They stimulated the intrinsic mitochondrial apoptotic
pathway by generating reactive oxygen species and inhibiting matrix metalloproteinases in
breast cancer cells, thereby inducing cell death through DNA damage [249].

5.3. Astragalus Polysaccharide and Xanthanate Gum

Xanthan gum is a naturally occurring polysaccharide obtained from Xanthomonas
campestris with a β-d-glucose linkage in its main chain, similar to cellulose [250]. Unlike
xanthan polysaccharides, which have therapeutic properties, xanthan gum is mainly used
in foods as a thickening and stabilizing agent and has few direct health benefits [251].
However, some studies have confirmed that xanthan gum has antitumor effects, in addition
to acting as an adjuvant to modulate immunity [252]. In vitro cultured macrophages were
induced to produce IL-12 and TNF-α in an MyD88-dependent manner by xanthan gum,
being recognized by TLR4. In in vivo experiments, oral administration of xanthan gum
significantly delayed tumor growth and prolonged survival in mice with melanoma and
enhanced NK cell activity and CD8+ T-cell tumor specificity [253].

5.4. Astragalus Polysaccharide and Marine Complex Polysaccharide Substances

In the search for novel polysaccharides with antitumor properties, marine resources
have attracted considerable attention because of their unique biological activities [254–256].
Fucoidans are biologically active sulfated polysaccharides found in brown algae. They
have great structural diversity and a wide range of bioactivities and have been shown to be
useful in antitumor therapy, cardiovascular disease risk reduction, and the treatment of
gastric ulcers, which differ from the therapeutic effects of APS for a large part of the popula-
tion [257]. Studies have shown that fucoidan exerts anticancer effects by mediating different
signaling pathways to regulate apoptosis, inhibit tumor metastasis, and enhance the toxic
effects of chemical drugs [258–261]. The anticancer properties of fucoidans are believed
to be determined by their chemical structures and are closely related to their molecular
weights; the larger the molecular weight and the higher the water solubility of polysaccha-
rides, the stronger their antitumor activity [260]. As an adjuvant, fucoidan enhances the
efficacy of ICIs in the treatment of melanoma and metastatic lung cancer [260,262,263]. In a
clinical study, the combination of fucoidan and tamoxifen showed favorable efficacy for
the treatment of breast cancer, and no adverse effects were detected [264]. This suggests
that fucoidan could be used as an effective adjuvant in combination with other hormonal
therapeutic agents. In addition, sulfated polysaccharides purified from marine microal-
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gae showed cytotoxicity against the colorectal cancer HTC-116, breast cancer MCF-7, and
human leukemia HL-60 cell lines [265].

5.5. Production of Astragalus Polysaccharide

Although APS has shown promise in laboratory and clinical trials, research on its
specific mechanisms and long-term effects is relatively limited. APS is less well studied
than longer-established and more widely used polysaccharides such as β-glucan and pectin.
In terms of accessibility and assessment of production costs, APS is primarily derived from
Astragalus root, which may limit the global availability and scale of production. Fucoidan
may also be affected by the quality and safety of brown algae due to environmental factors
such as marine pollution. The cost is high compared to that of more readily available
sources, such as citrus fruits and marine complex polysaccharides. While APS is generally
considered safe, there may be safety concerns and side effects when used at high doses or
over long periods of time. For example, when associated with certain drugs for autoimmune
diseases, immune activation may result. APS requires more careful regulation than food-
grade polysaccharides such as gum and xanthan gum. Thus, while APS offers significant
advantages in terms of immune enhancement and anti-inflammatory and antioxidant
properties, it may have disadvantages in terms of the depth of research, cost-effectiveness,
and safety. When selecting a suitable polysaccharide supplement, consumers should
consider these factors and make decisions based on their health status and needs.

6. Conclusions and Outlook

In the current landscape of cancer therapy, APS has been recognized for its im-
munomodulatory potential as a beneficial bioactive substance with various promising
applications. APS is considered a suitable adjuvant drug with no significant safety is-
sues [266]; however, numerous studies have highlighted its role in enhancing patient
quality of life by reducing cancer-related fatigue and symptoms and modulating inflamma-
tory responses [23,52].

This review comprehensively evaluates the anticancer mechanisms of APS, focusing
on its potential use in cancer immunotherapy. The results underscore the ability of APS to
activate and modulate immune cells, disrupt the cell cycle, induce cancer cell apoptosis,
trigger cellular autophagy, and regulate signal transduction pathways, especially showing
potential in enhancing the sensitivity of antitumor therapy, attenuating the treatment-
related side effects, and reversing drug resistance. The advantages and disadvantages of
APS in comparison with other polysaccharides were also considered.

Nonetheless, several key issues must be addressed to realize the widespread clinical
application of APS. First, the bioavailability of APS is low, mainly due to the complex
structure of its macromolecules, making its absorption in the gastrointestinal tract ineffi-
cient [267]. In addition, owing to differences in plant sources and extraction methods, there
may be variability in the APS composition, which affects the consistency and reproducibil-
ity of the clinical results [268]. Therefore, it is crucial to develop standardized extraction
and purification processes to ensure product quality. Second, although APS is generally
considered safe, the issue of dose optimization in terms of potential interaction with other
drugs and side effects in specific populations requires further research [269].

Future studies should focus on gaining a deeper understanding of the specific mecha-
nism of action and pharmacokinetic properties of APS and revealing the molecular targets
of APS through high-throughput screening, genomic studies, and advanced imaging tech-
niques to develop effective clinical strategies. Meanwhile, exploring innovative delivery
methods, such as extended-release gel systems for injection, may provide solutions to
improve its absorption and sustained release in vivo and reduce the need for frequent
dosing in long-term therapy [270]. Through these efforts, APS is expected to play a greater
role in modern healthcare systems, especially in the field of cancer therapy.
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