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Abstract: Climate change has significantly affected agricultural production. As one of China’s most
important agricultural production regions, the North China Plain (NCP) is subject to climate change.
This paper examines the influence of climate change on the wheat and maize yields at household and
village levels, using the multilevel model based on a large panel survey dataset in the NCP. The results
show that: (i) Extreme weather events (drought and flood) would significantly reduce the wheat and
maize yields. So, the governments should establish and improve the emergency service system of
disaster warning and encourage farmers to mitigate the adverse effects of disasters. (ii) Over the past
three decades, the NCP has experienced climate change that affects its grain production. Therefore,
it is imperative to build the farmers’ adaptive capacity to climate change. (iii) Spatial variations
in crop yield are significantly influenced by the household characteristics and the heterogeneity
of village economic conditions. Therefore, in addition to promoting household production, it is
necessary to strengthen and promote China’s development of the rural collective economy, especially
the construction of rural irrigation and drainage infrastructures.

Keywords: climate change; extreme weather event; multi-level model; grain crop yield; village
collective economy

1. Introduction

Climatic conditions have always been an important factor shaping agricultural pro-
duction. Climate change, especially in terms of extreme weather events, has exacerbated
the fluctuations in food production and threatened world food security. In most part of
China, increase in temperature is the main climate change issue reducing the major crop
(wheat, rice, and maize) yields [1–4]. Increased extreme weather events associated with
climate warms have exacerbated the decrease in food production in China. Since the 21st
century (2000–2019), the average annual crop area affected by drought and flood were
17,966.6 and 10,011.1 thousand hectares, accounting for 11.3% and 5.3% of the total area,
respectively. Crop yield loss due to drought has reached 26.39 million tons, and the crop
loss rate has reached 4.7% [5,6]. As one of the most important agricultural production
regions in China, the North China Plain (NCP) is subject to climate change and is often hit
by extreme weather events, particularly drought [7].

Researchers have used econometric approaches to analyze the impact of climate
change on grain production. Mendelsohn et al. [8] first proposed the Ricardian approach
to analyze the climate change effect on farmland value (profit or net productivity of land).
Liu et al. [9], Wang et al. [10], and Chen et al. [11] also employed the Ricardian approach
to study the impact of climate change on China’s grain profit. However, the empirical
results may be biased due to a few limitations, including the omission of irrigation variables
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in the model [10,12,13], the assumption of the unchanged price of grain and production
inputs [14–16], and cost-free adaptation and adjustment implied in the models [17].

To address the limitations of the Ricardian approach, the production function approach
was used to reveal an empirical relationship between climate factors and grain output in
agricultural production, particularly in China [1–3,18–22]. However, most of the existing
literature only focuses on long-term climate change such as changes in temperature and
precipitation, while the studies on the impact of extreme weather events are scarce [23,24].
Furthermore, most previous literature uses macro data at the provincial or county level,
which cannot effectively reflect the farmer’s behavioral selection characteristics or the
village socio-economic characteristics, and their impact on crop yield. A village composed
of farm households is the smallest administrative unit in rural China. The development of
village collective economy plays a key role in ensuring food security, and it is an important
guarantee for accelerating the building of a moderately prosperous society in all respects
in rural areas [25,26]. Therefore, it is essential to capture the impact of climate change on
grain yield at both the household and village levels [19,27].

To achieve the above goal, it is necessary to use a multilevel model to analyze large-
scale survey data of farm households which typically adopt stratified multistage clustered
sampling designs (with household level and village level). The multilevel analysis can
model the clusters occurring at different levels of the sampling with nested random ef-
fects [28]. This study has shown that there were large spatial and temporal variations
in climatic change factors in different growth stages of wheat and maize, and climatic
factors in different growth stages have different effects on wheat and maize yield [3,29].
Meanwhile, this paper has also found that village heterogeneity plays a significant role
in variation of gain yield, which likely indicates that developing rural village collective
economy can reduce the negative effect of climate change on grain crop production in
the NCP.

The rest of this paper is organized as follows: Section 2 briefly introduces the theoretical
framework of multilevel model. Section 3 describes the sampling procedure and variables.
The estimation results are presented in Section 4, and the final section concludes with some
policy suggestions.

2. Theoretical Framework of Multilevel Model

The stratified sampling data with clustered characteristics show significant differences
between different levels of data and high similarity among data at the same level. In
this case, a regular ordinary least squares (OLS) model may result in misspecification by
ignoring the average variation between groups. Therefore, a multi-level model (MLM)
should be developed to deal with the heteroscedasticity caused by inter-dependent error
terms and to estimate group-level averages by both fixed and random effects [30]. MLM
decomposes the variance in the outcome into two components, one is attributed to the
differences between individuals located in different groups and the other is related to the
variation between individuals within the same group. This decomposition of variance
into “between groups” and “within groups” corrects parameter estimation errors due to
within-level sample similarity. Thus, this study uses the MLM to estimate the influencing
factors of wheat and maize yields in the NCP at both household and village levels. The
two types of MLM are introduced as follows.

2.1. Unconditional Means Model

The unconditional means model is an “empty model” that does not include any inde-
pendent variables. It is reasonable to adopt MLM if individual respondents are clustered
within groups and the variance of outcome in two levels are significantly different in a data
structure. Assuming that Yij is grain yield measured for the ith farm plot of household in
the jth village, the equations are as follows:

Yij = β0j + εij (1)
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β0j = γ00 + µ0j (2)

where β0j represents the intercept term (the mean value of Yij) for village j, and εij is
the residual for farm household in village j (an individual-level random component) in
Equation (1). Equation (2) can be obtained by decomposing β0j into a fixed (γ00) and a
village-level random component (µ0j). Then, substituting (2) into (1) obtains Equation (3):

Yij = γ00 + µ0j + εij (3)

where γ00 is the overall intercept or grand mean, µ0j is a village-level random residual
component indicating the average deviation from the grand mean for those farm house-
holds located in village j, and εij remains the farm household-level residual. The usual
assumption is that µ0j ∼ N

(
0,σµ2), εij ∼ N

(
0,σε2) and the µ0j are independent from

the εij. Thus, σµ2 and σε2 represent the between-group variance and the within-group

variance, respectively. The intra-class correlation coefficient, ρ = σµ
2

σε2+σµ2 , is an indicator of
the relative importance of village attributes, with larger values indicating a greater impact
of village level on grain yield [31].

2.2. Random Intercept Model

The characteristics of farm households and villages that affect the grain yield remain
unmeasured in Equation (3). Therefore, the variables of such characteristics are introduced
to determine whether the between and within components of variation can be explained at
the household and village levels. The random intercept model can be expressed as:

Yij = (γ00 + ∑q
1 β0qjV0qj + ∑p

1 βpijXpij) + (µ0j + εij) (4)

where, Xpij represents the independent variable of the farm household level, V0qj repre-
sents the independent variable of the village level. Equation (4) consists of two parts:
γ00 + ∑

q
1 β0qjV0qj + ∑

p
1 βpijXpij as the fixed effects and µ0j + εij as the random effects, and it

can be expressed as:
Y = Xβ+ ZU + e (5)

Equation (5) is the general model of Equation (4). Where, Y is the observation variable;
X is the design matrix of constant parameter β; Z is the design matrix of random effect
U; and e is the random error. cov(Y) = V(θ). The logarithmic likelihood function of
Equation (5) is given as:

lnL(β, θ|Y ) = − ln|V(θ)| − (Y− Xβ)′V−1(θ)(Y− Xβ) (6)

Maximum likelihood estimation of parameters can be obtained by maximizing

Equation (6). That is, β̂(θ) =
(

X′V−1(θ)X
)−1

X′V−1(θ)Y by fixing parameter θ. Then,

plugging β̂(θ) into L(β, θ|Y ) can obtain the maximum likelihood estimation of θ.

3. Data Source and Empirical Model
3.1. Data Source

The NCP is one of China’s major grain production areas, accounting for approximately
75% and 35% of China’s wheat and maize outputs, respectively [6]. This region only grows
winter wheat and summer maize. In recent years, this region has experienced evident
climate change such as rising temperature and decreasing precipitation. The frequency
of extreme weather events increases as the seasonal variation of precipitation becomes
apparent. Specifically, flood often occurs in summer that receives 60% of the annual
precipitation. Drought is often a serious threat in spring, autumn, and winter, especially
in the areas without irrigation facilities [29,32]. The data used in this study are from a
large-scale field survey of five provinces (Henan, Hebei, Shandong, Anhui, and Jiangsu) in
the NCP.
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To collect the data, stratified multi-stage cluster sampling was implemented. First,
three counties were randomly chosen in each province using the following criterion. (i) The
counties had experienced at least one episode of either severe drought or flood between
2010 and 2012. China’s national standard for natural disasters [33] categorizes the severity
of droughts or floods into four levels: most severe, severe, moderate, and mild. A disaster
year is when the government declares a warning of the most severe or severe flood or
drought. (ii) The counties experienced at least one normal year in the past three years
(2010, 2011 or 2012). Grain production usually experiences various weather shocks during
any growing season; the term ‘normal year’ does not refer to a year without any weather
shocks, but rather a year with no more than moderate weather shocks. Second, from
each of the chosen counties, three townships were randomly selected to represent ‘good’,
‘medium’, and ‘poor’ local irrigation and drainage infrastructure conditions, respectively.
Third, three villages were randomly selected from each township, and 10 households
were randomly selected from each village for face-to-face interviews. Finally, from each
household, two plots with grain production were randomly selected. Meteorological data
were provided by National Meteorological Information Center (NMIC) (Data source: The
China Meteorological Data Service Center (http://cdc.cma.gov.cn accessed on 15 May 2021),
including the daily maximum temperature, minimum temperature, average temperature,
and 24 h average precipitation recorded by the meteorological observatory in sample or
adjacent counties.

As a result, the samples of winter wheat included 2261 plots of 1216 households,
which were distributed in 123 villages (or 41 townships, 14 counties) of five provinces
(Table 1). The samples of summer maize covered 1769 plots of 1028 households, distributed
in 117 villages (or 40 townships, 14 counties) in five provinces (Table 2). Among the 14 case
study counties, 10 suffered from drought disaster, and 4 suffered from flood disaster. The
regional (provincial and county) distribution of all samples is shown in Figure 1.

Table 1. The sample distribution of winter wheat for the NCP.

Province County No. of Households No. of Plots Disaster Type Disaster/Normal
Year

Henan Yuanyang 90 167 D 2011/2012
Huanxian 90 160 D 2011/2012
Yongcheng 90 176 D 2011/2012

Hebei Weixian 90 164 D 2011/2012
Yixian 56 93 F 2012/2011

Shandong Lingxian 90 167 F 2012/2011
Yuncheng 90 174 D 2011/2012
Huishan 90 159 D 2011/2012

Jiangsu Xinghua 89 160 F 2011/2012
Xiangshui 90 171 F 2012/2011

Peixian 81 146 D 2011/2012
Anhui Yongqiao 90 175 D 2011/2012

Suixi 90 172 D 2011/2012
Lixin 90 177 D 2011/2012

Total 14 1216 2261 - -

Notes: D and F stand for drought and flood, respectively.

http://cdc.cma.gov.cn
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Table 2. The sample distribution of summer maize for the NCP.

Province County No. of Households No. of Plots Disaster Type Disaster/Normal
Year

Henan Yuanyang 72 128 D 2011/2012
Huanxian 90 159 D 2011/2012
Yongcheng 62 113 D 2011/2012

Hebei Weixian 90 164 D 2011/2012
Yixian 90 162 F 2012/2011

Shandong Lingxian 90 167 F 2012/2011
Yuncheng 90 172 D 2011/2012
Huishan 90 159 D 2011/2012

Jiangsu Xinghua 11 12 F 2011/2012
Xiangshui 82 89 F 2012/2011

Peixian 63 93 D 2011/2012
Anhui Yongqiao 67 119 D 2011/2012

Suixi 62 106 D 2011/2012
Lixin 69 126 D 2011/2012

Total 14 1028 1769 - -

Notes: D and F stand for drought and flood, respectively.
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Figure 1. Location of five provinces in the NCP (left) and 14 sample counties (right).

The 12 main growth stages of winter wheat are seedling emergence, three-leaf, tillering,
overwintering, reviving, jointing, booting, heading, anthesis, grain-filling, wax ripeness
and mature. This study separated the overwintering stage from the vegetative stage (Firstly,
this stage is a special stage of winter wheat to stop growing, which is quite important
to store energy; secondly, China boasts the distinctive differences in regions and climate,
especially the winter temperature change is more remarkable [18]); it also divided the
whole growth period of winter wheat into three major growth stages: the overwintering
stage from seedling emergence to reviving (generally from mid-October to mid-February
in the following year), the vegetative stage from reviving to heading (generally from
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the mid-February to mid-April), and the reproductive stage from anthesis to maturity
(generally from mid-April to early June). Similarly, the 12 main growth stages of summer
maize include the stages of seedling, three-leaf, jointing, flare opening, tasseling, flowering,
silking, filling, milk ripening, wax ripening, and full ripening. They were divided into three
major growth stages: the vegetative stage from sowing to jointing (generally from mid-June
to mid-July, about 20–30 days), the concurrent stage from jointing to silking (generally from
mid-July to mid-August, about 27–30 days), and the reproductive stage from silking to full
ripening (generally from mid-August to late September, about 40–60 days) [34].

Table 3 shows the climatic trend of various growth stages of winter wheat and summer
maize in the NCP. In general, the overall climate change in the sample area was increasing
temperature and precipitation from 1981 to 2010. The rangeability was inconsistent with
temperature and precipitation over different grain growth stages. The warming trend
during the winter was the most prominent, which further proves that the warming trend is
most significant in the winter among the four seasons [35]. Precipitation increased the most
during the whole growth period of summer maize, indicating that precipitation increase
was most significant in the summer among the four seasons.

Table 3. Climatic trend rate of major crop growth stages in the NCP (1981–2010).

Crop Growth Stages Daily Average Temperature
(◦C/10a)

Average Precipitation
(cm/10a)

Winter wheat:
Overwintering stage 0.519 0.115

Vegetative stage 0.675 0.66
Reproductive stage 0.305 1.137

Summer maize:
Vegetative stage 0.319 1.601
Concurrent stage 0.153 2.25

Reproductive stage 0.229 1.229
The sample data comes from meteorological observation stations in 14 wheat and maize producing counties.
Regressed the meteorological variables and time variables of each sample county linearly, and weighted average
of all regression coefficients to obtain the annual change rate, which multiply by 10 to obtain climatic trend rate.

3.2. Empirical Model and Variables

Production inputs and economic and social institutional factors should be incorporated
into the model; meanwhile, the factors of long-term climate change and extreme weather
events should be included in the production function model. The C-D-C production
function equation, which is the extension of Equation (4), is specified as:

ln(Yij) = β0 + β1Cij + β2Dij + β3DLij + β4 ln(Iij) + β5Lij
+β6Hij + β7Vij + β8VijDij + β8VijDLij + T + µ0j + εij

(7)

This study independently investigated the effects of climate change and the household
and village attributes on the yields of winter wheat and summer maize by Equation (6),
respectively. The dependent variable Yij refers to crop yield, which is measured as the
wheat or maize output per hectare. As shown in Table 4, the average yields of wheat and
maize in the farm plots were 6400 kg and 6615.1 kg per hectare, respectively.

The variable of long-term climate change Cij examined in this paper includes average
daily temperature and precipitation over the past three decades (1981–2010). For winter
wheat, the daily average temperature was only 5.2 ◦C in the over-wintering stage, and it
was 20.4 ◦C in the reproductive stage. For summer maize, the daily average temperature
could be above 20 ◦C, and the precipitation was more than 100 mm at different growth
stages (Table 4).
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Table 4. Summary statistics of variables used.

Variables Definition
Winter Wheat Summer Maize

Mean S.D. Mean S.D.

Explained variables:
Grain yield (Y) Kg/ha 6400 1176 6615 1535
Explanatory variables:
The variables of long-run climate change (wheat):
Daily avg temperature in overwintering stage (Twheat1) ◦C 5.22 1.19 - -
Total avg precipitation in overwintering stage (Pwheat1) cm 8.40 2.89 - -
Daily avg temperature in vegetative stage (Twheat2) ◦C 9.67 1.47 - -
Total avg precipitation in vegetative stage (Pwheat2) cm 7.64 4.05 - -
Daily avg temperature in reproductive stage (Twheat3) ◦C 20.38 0.81 - -
Total avg precipitation in reproductive stage (Pwheat3) cm 8.53 2.46 - -
The variables of long-run climate change (maize):
Daily avg temperature in vegetative stage (Tmaize1) ◦C - - 26.13 0.49
Total avg precipitation in vegetative stage (Pmaize1) cm - - 10.73 3.56
Daily avg temperature in concurrent stage (Tmaize2) ◦C - - 27.12 0.41
Total avg precipitation in concurrent stage (Pmaize2) cm - - 16.95 2.74
Daily avg temperature in reproductive stage (Tmaize3) ◦C - - 23.33 1.20
Total avg precipitation in reproductive stage (Pmaize3) cm - - 16.93 3.20
Extreme weather events:

If it occurred drought disaster at the county-level (DD) 1 = Yes;
0 otherwise 0.25 0.43 0.25 0.43

If it occurred flood disaster at the county-level (DF) 1 = Yes;
0 otherwise - - 0.08 0.27

If it occurred drought disaster on farm plot (DLD) 1 = Yes;
0 otherwise 0.41 0.49 0.36 0.48

If it occurred flood disaster on the farm plot (DLF) 1 = Yes;
0 otherwise 0.03 0.16 0.16 0.36

If it occurred continuous rain disaster on farm plot (DLR) 1 = Yes;
0 otherwise 0.08 0.26 0.04 0.19

If it occurred strong wind disaster on farm plot (DLw) 1 = Yes;
0 otherwise 0.08 0.27 0.16 0.37

Farmland plot characteristics:
Farmland area (L1) Hectare 0.21 0.18 0.19 0.13

Farmland topography (L2) 1 = flat land;
0 = otherwise 0.98 0.14 0.06 0.24

Low quality of farmland (L31) 1 = Yes;
0 otherwise 0.11 0.31 0.12 0.33

Medium quality of farmland (L32) 1 = Yes;
0 otherwise 0.70 0.46 0.67 0.47

High quality of farmland (L33) 1 = Yes;
0 otherwise 0.19 0.39 0.21 0.41

Production inputs:
Fertilizer cost (I1) Yuan/ha 2863.29 1246.98 2442.79 1063.44
Pesticide cost (I2) Yuan/ha 331.24 263.68 472.71 321.17
Machinery cost (I3) Yuan/ha 1678.38 577.16 1248.26 800.56
Labor input (I4) Adult days/ha 36.26 34.52 60.90 63.69
Irrigation water (I5) m3/ha 1760.88 1753.53 1730.09 2279.84
Household’s characteristics:

Asset of household (H1) Durable goods
(103 yuan) 9.67 19.24 9.86 19.48

Education of household head (H2) Attending year 6.91 3.19 6.93 3.11

Producing/technical training (H3)
If attending

(1 = Yes;
0 otherwise)

0.27 0.45 0.24 0.42

Village’s characteristics

Collective enterprise (V1)
Number of
collective

enterprises
0.08 0.55 0.13 0.768
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Table 4. Cont.

Variables Definition
Winter Wheat Summer Maize

Mean S.D. Mean S.D.

Ratio of irrigation area to total cultivated area (V2) % 83.85 23.71 83.17 27.88
Distance between the village committee and the nearest road
above the township level (V3) Km 1.36 1.55 1.38 1.58

Year dummy variables:

2011 (T2011) 1 = Yes;
0 otherwise 0.33 0.47 0.33 0.47

2012 (T2012) 1 = Yes;
0 otherwise 0.33 0.47 0.33 0.47

Observations - 6749 5212

The second climate indicator is extreme weather event, including the variables of
county-level disaster Dij and farm plot disaster DLij. There are two county-level disasters,
which are DD for the severe drought year and DF for the severe flood year. In the past three
years (2010–2012), 24.7% of counties that grew wheat suffered from drought, and 25.1% and
only 8.2% of counties that grew maize suffered from drought and flood, respectively. There
are four types of farm plot disasters, which are DLD for farm plots suffering from drought,
DLF for farm plots suffering from flood, DLR for farm plots suffering from continuous
rain, and DLw for farm plots suffering from strong wind. In the past three years, 40.5% of
farm plots growing wheat suffered from drought, 7–8% suffered from continuous rain or
strong wind, while 2.7% suffered from flood, indicating that drought was the most frequent
disaster during wheat planting. During the same period, 36% of farm plots that grew maize
suffered from drought, 16% suffered from strong wind, and 15.5% suffered from flood. This
shows that drought was the most frequent disaster during maize planting, and the risk of
strong wind and flood should not be underestimated.

Three variables represent farmland plot characteristics. (i) The farmland areas L1 were
relatively small, with an average farm area of only 0.21 ha and 0.19 ha for wheat and maize
(Table 4), respectively, which indicates the formation of tiny plots and scattered planting;
(ii) Most of the farmland topography L2 is flat land, and only less than 3% and 5% of
farmers chose to grow wheat and maize in the mountains, respectively; (iii) Compared with
the overall land quality of village, the farmland quality L3 is divided into three categories,
which are low-quality, middle-quality and high-quality land. The majority of plots (68%)
were of medium quality, 10% were of low-quality, and 20% were of high-quality.

Iij is a set of production input variables, covering the fertilizer cost I1, pesticide cost I2,
machinery cost I3, labor input I4, and irrigation water I5 at the plot level. Table 4 shows that
among these costs, the average input costs of fertilizer were the highest with 2863.3 yuan
and 2442.8 yuan per hectare, respectively, for wheat and maize. The cost of machinery was
the second highest with 1678.4 yuan and 1248.3 yuan per hectare for wheat and maize,
respectively, while the labor input costs of wheat and maize were 36.3 and 60.9 adult days
per hectare. Thus, there might be a substitution relationship with machinery and labor.
The irrigation water reached 1760.9 m3 and 1730.1 m3 for wheat and maize, respectively,
indicating that the grain grown in the NCP is mainly irrigated rather than rainfed.

Farm household’s characteristics (Hij) include variables as follows. (i) The assets
possessed by the household (H1), which are measured as the value of the durable goods.
The average value of durable goods of sample households was 9700 yuan; (ii) H2 represents
the education level of the household head, where the average education was 6.9 years.
(iii) H3 represents the production and technical training, and about 25% of household
members received such training.

Three variables were used to measure village characteristics. (i) V1 refers to village
collective enterprise. The average village collective enterprise was only about 0.1, which
means many villages did not have such enterprises. (ii) V2 refers to the ratio of irrigation
area to total cultivated area in the village, which is more than 80%. (iii) V3 is the distance
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between the village committee and the nearest road above the township level with an
average distance of 1.4 km.

In addition, this study used year dummies, T2011 (1 = 2011, otherwise = 0) and T2012
(1 = 2012, otherwise = 0), to control technological advances or other unobservable factors
that change over time.

4. Results and Analyses
4.1. The Unconditional Means Model

Table 5 shows the estimated results of the unconditional means model with maximum
likelihood estimation. The intra-class correlation coefficient ρ is 0.384, indicating 38.4% and
61.6% of the variation in wheat yield were caused by the village attributes and household
attributes, respectively. Similarly, the inter-class correlation coefficient ρ is 0.238, indicating
that 23.8% and 76.2% of the variation in maize yield were caused by the village attributes
and household attributes, respectively. Due to the different samples in wheat and maize,
the variation was different between villages and households. Moreover, a fairly large
part of variation in the wheat and maize yields in the NCP was on the village level.
Therefore, it is helpful to adopt a multilevel model to improve the accuracy of parameter
estimation results.

Table 5. The estimated results of unconditional means model.

Variance Decomposition
Winter Wheat Summer Maize

Coefficient S.D. Coefficient S.D.

Variance of village level
(between-group variance) 0.118 0.008 0.173 0.014

Variance of household level
(within-group variance) 0.189 0.002 0.555 0.005

Intra-class correlation coefficient ρ 0.384 - 0.238 -

4.2. The Random Intercept Model

According to Equation (6), the estimated results of the influence of climate factors
and other factors on wheat and maize yields are shown in Tables 6 and 7. Model I only
included climate change variables and year dummy variables. Then, farmland attributes
and production input variables were incorporated into Model II. Finally, village attributes
were incorporated into Model III.

Table 6. The estimated results of influencing factors of winter wheat yield.

Variables Model I Model II Model III

Twheat1 0.080 ** (0.032) 0.079 ** (0.031) 0.088 *** (0.032)
Pwheat1 −0.087 *** (0.025) −0.088 *** (0.025) −0.097 *** (0.026)
Twheat2 −0.068 * (0.037) −0.062 * (0.036) −0.086 ** (0.038)
Pwheat2 0.054 *** (0.021) 0.052 ** (0.021) 0.065 *** (0.022)
Twheat3 0.041 (0.032) 0.036 (0.032) 0.051 (0.032)
Pwheat3 −0.002 (0.015) 0.005 (0.015) −0.002 (0.015)

DD −0.032 *** (0.011) −0.033 *** (0.011) −0.084 *** (0.022)
DLD −0.096 *** (0.006) −0.094 *** (0.006) −0.197 *** (0.02)
DLF −0.057 *** (0.015) −0.056 *** (0.014) −0.055 *** (0.014)
DLR −0.158 *** (0.01) −0.161 *** (0.009) −0.160 *** (0.009)
DLW −0.088 *** (0.009) −0.084 *** (0.009) −0.086 *** (0.009)
T2011 0.036 *** (0.01) 0.035 *** (0.009) 0.034 *** (0.009)
T2012 −0.033 *** (0.005) −0.033 *** (0.005) −0.033 *** (0.005)

L1 − 0.005 (0.015) 0.003 (0.015)
L2 − −0.009 (0.016) −0.010 (0.016)
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Table 6. Cont.

Variables Model I Model II Model III

L32 − 0.06 *** (0.007) 0.06 *** (0.007)
L33 − 0.083 *** (0.009) 0.083 *** (0.009)

ln(I1) − 0.007 (0.005) 0.006 (0.005)
ln(I2) − −0.002 (0.002) −0.002 (0.002)
ln(I3) − −0.003 (0.006) −0.003 (0.006)
ln(I4) − −0.016 *** (0.004) −0.016 *** (0.004)
ln(I5) − 0.004 *** (0.001) 0.004 *** (0.001)

H1 − 0.0001 (0.0001) 0.0001 (0.0001)
H2 − 0.002 ** (0.001) 0.002 ** (0.001)
H3 − 0.012 ** (0.006) 0.012 ** (0.006)
V1 − − 0.011 (0.015)
V2 − − −0.0001 (0.0003)
V3 − − 0.002 (0.007)

V1 × DD − − −0.004 (0.009)
V1 × DLD − − 0.006 (0.009)
V2 × DD − − 0.001 *** (0.0002)

V2 × DLD − − 0.001 *** (0.0002)
V3 × DD − − 0.001 (0.004)

V3 × DLD − − 0.01 *** (0.004)
Cons. 8.542 *** (0.421) 8.501 *** (0.418) 8.447 *** (0.415)

Variance σµ2 0.106 (0.007) 0.105 (0.007) 0.103 (0.007)
Variance σε2 0.179 (0.002) 0.177 (0.002) 0.176 (0.002)

Log likelihood 1836.415 1908.163 1935.25
AIC −3640.829 −3760.326 −3798.5

Notes: *, ** and *** represent significance 10%, 5% and 1% level, respectively.

Table 7. The estimated results of influencing factors of summer maize yield.

Variables Model I Model II Model III

Tmaize1 −0.167 (0.111) −0.158 (0.107) −0.167 (0.104)
Pmaize1 −0.023 ** (0.011) −0.013 (0.01) −0.011 (0.010)
Tmaize2 0.533 *** (0.181) 0.427 *** (0.173) 0.453 *** (0.168)
Pmaize2 −0.016 * (0.009) −0.012 (0.008) −0.013 (0.008)
Tmaize3 −0.083 *** (0.03) −0.047 (0.03) −0.047 (0.029)
Pmaize3 −0.017 (0.012) −0.013 (0.012) −0.012 (0.011)

DD −0.127 *** (0.041) −0.13 *** (0.041) −0.091 (0.080)
DF −0.142 *** (0.043) −0.138 *** (0.043) −0.165 *** (0.043)

DLD −0.136 *** (0.019) −0.141 *** (0.019) −0.489 *** (0.056)
DLF −0.224 *** (0.027) −0.219 *** (0.026) −0.219 *** (0.026)
DLR −0.122 *** (0.042) −0.127 *** (0.042) −0.133 *** (0.041)
DLW −0.098 *** (0.023) −0.101 *** (0.023) −0.107 *** (0.023)
T2011 0.149 *** (0.036) 0.149 *** (0.035) 0.137 *** (0.035)
T2012 0.151 *** (0.021) 0.147 *** (0.021) 0.147 *** (0.021)

L1 − 0.108 (0.069) 0.094 (0.069)
L2 − 0.001 (0.047) −0.009 (0.047)
L32 − 0.114 *** (0.024) 0.106 *** (0.024)
L33 − 0.147 *** (0.028) 0.145 *** (0.028)

ln(I1) − −0.006 (0.01) −0.006 (0.010)
ln(I2) − 0.032 *** (0.008) 0.033 *** (0.008)
ln(I3) − 0.009 (0.007) 0.011 (0.007)
ln(I4) − −0.036 *** (0.013) −0.036 *** (0.013)
ln(I5) − 0.018 *** (0.003) 0.018 *** (0.003)

H1 − 0.0008 * (0.0004) 0.001 * (0.000)
H2 − 0.003 (0.003) 0.003 (0.003)
H3 − 0.033 (0.021) −0.033 (0.020)
V1 − − −0.028 (0.023)
V2 − − −0.001 (0.001)
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Table 7. Cont.

Variables Model I Model II Model III

V3 − − 0.004 (0.011)
V1 × DD − − 0.128 *** (0.022)

V1 × DLD − − −0.11 *** (0.021)
V2 × DD − − −0.001 (0.001)

V2 × DLD − − 0.005 *** (0.001)
V3 × DD − − 0.018 (0.012)

V3 × DLD − − −0.018 (0.012)
Cons. 1.449 (2.052) 2.678 (1.977) 2.269 (1.93)

Variance σµ2 0.152 *** (0.013) 0.141 *** (0.012) 0.133 *** (0.012)
Variance σε2 0.541 *** (0.005) 0.537 *** (0.005) 0.532 *** (0.005)

Log likelihood −4281.319 −4231.07 −4177.54
AIC 8596.638 8520.14 8431.08

Notes: *, ** and *** represent significance 10%, 5% and 1% level, respectively.

4.2.1. The Determinants of Winter Wheat Yield

Table 6 displays the results of the three model for winter wheat yield. The likelihood
function ratio, LR = 2[Ln(LR2) − Ln(LR1)] = 143.5, is greater than critical χ2

0.01(12) = 26.22,
meaning that farmland attributes and production input variables had significant impact on
the variation in winter wheat yield. Furthermore, the AIC value is −3760.326 in Model II,
which is less than AIC of −3640.829 in Model I, meaning that the better the overall fitting
of Model II according to the information criteria, the smaller the AIC value, and the better
the overall fitting of the model.

Similarly, Model III shows a better overall fitting than Model II. The likelihood function
ratio LR = 2[Ln(LR3) − Ln(LR2)] = 54.17 is greater than critical χ2

0.01(9) = 21.67, suggesting
that village attributes had significant impact on the variation in winter wheat yield. Mean-
while, AIC of −3798.5 in Model III is smaller than AIC of −3760.326 in Model II. According
to Table 6, the following conclusions can be drawn:

Firstly, the heterogeneity of wheat yield was not only caused by household charac-
teristics, but also determined by differences in village economies, except for farmland
characteristics and production input factors. For example, the variance of village level is
σµ

2 = 0.103 (Table 6, row 36) with introducing explanatory variables (Model III), which
is less than the variance of σµ2 = 0.118 (Table 5, row 1) in the unconditional means
model without the introduction of explanatory variables. It indicates that social and
economic factors at the village level, such as collective economy (number of collective
enterprises), irrigation condition (ratio of irrigation area), and traffic condition (distance
between the village committee and the nearest road above the township level), could ex-

plain 12.7% (σµ
2(unconditional means model)−σµ2(random intercept model)

σµ2(unconditional means model) = 0.118−0.103
0.118 = 0.127) of

the variation in wheat yield at the village level. Household attributes could explain 6.9%

(σε
2(unconditional means model)−σε2(random intercept model)

σε2(unconditional means model) = 0.189−0.176
0.189 = 0.069) of variation in

wheat yield, which was apparently and substantially smaller than village attributes.
Secondly, the effect of long-term climate change on wheat yield varied across different

wheat growth stages. The increase of average temperature significantly promoted wheat
production during the overwintering stage. For example, wheat yield would significantly
increase by about 8% if temperature increased by 1 ◦C (row 1, Table 6). However, the
increase of average temperature resulted in an obvious decrease in wheat yield during
the vegetative stage. Specifically, wheat yield would significantly decline by 6.2–8.6%
if average temperature improved by 1 ◦C (row 3, Table 6). These results indicate that
the proper increase in winter temperature has a positive effect on winter wheat yield,
while the increase in spring temperature can lead to a decrease of winter wheat yield,
which is consistent with some previous studies [36]. This is probably because that the
shortened growth period and warming temperature contribute to the increase of productive
tiller [37,38].
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Thirdly, the occurrence of extreme weather events had significantly negative impact on
wheat yield. County-level drought significantly reduced wheat yield. Farm-level disasters
also had led to obvious reduction in wheat yield. In particular, drought, flood, continuous
rain, and strong wind at the farm level would reduce wheat yield by about 10%, 6%, 16%,
and 9%, respectively, holding constant of other variables (rows 8–11, Table 6). Farm-level
disasters showed a greater negative impact on wheat yield than county-level disasters.

Fourthly, production input significantly affected the wheat yield. The elasticity of labor
is −0.016 with other input factors unchanged (row 21, Table 6). The sign of labor elasticity
is negative, which is consistent with previous empirical studies [39]. The possible reasons
are two-fold: on the one hand, there is a significant substitution relationship between
labor input and machinery input, which leads to multiple collinearities contributing to
the unreasonable estimated economic value of labor output elasticity; on the other hand,
there is too much surplus labor force in agricultural production in China. The scattered and
limited arable farmland will further increase surplus rural labor force, while labor has not
fully flowed in the market. Therefore, it is more valuable of focusing on the quality of labor
than the quantity of labor to improve grain yield and farmers’ income. Moreover, irrigation
water could significantly and slightly promote wheat yield (0.004, row 22, Table 6), showing
that wheat yield only increased by 0.004% with increasing irrigation water by 1%. The
result means that the input of irrigation water is lack of elasticity.

Fifthly, the social and economic characteristics of households had a significant impact
on wheat yield. As expected, education and participation in production and technology
training programs played an important role in promoting wheat yield. In particular, the
wheat yield would significantly increase by 0.2% if the schooling year of the household
head increased by one (row 24, Table 6). Similarly, the wheat yield would significantly
increase by 1.2% if farmers had previously undertaken a production and technique training
(row 25, Table 6).

Finally, the social and economic characteristics of village could mitigate the loss of
wheat yield under extreme weather events, especially drought disaster. For example, the
wheat yield decreased by 19.7% if farm plot occurred drought disaster, but it only decreased
by 1% if the distance shortened by 1 km between the village committee and the nearest
township-level road. Moreover, the wheat yield decreased by 8.4% and 19.7%, respectively,
when county-level drought and farm plot drought occurred simultaneously. However,
in the case of drought, the wheat yield could significantly improve by 0.1% if irrigation
proportion rise by 1%.

4.2.2. The Determinants of Summer Maize Yield

Table 7 displays the determinant regression results of summer maize yield using three
models. Similarly, according to the likelihood function ratio LR and information criterion
AIC, Model III is more preferable than other models. The empirical results of Table 7 are
similar to those in Table 6, but there are several differences as follows.

Firstly, the heterogeneity of maize yield was shaped by village attributes. In particular,
the village level variance of σµ2 = 0.133 (row 36, Table 7) with introducing explanatory vari-
ables (Model III) is less than the variance of σµ2 = 0.173 (row 1, Table 5) without introducing
explanatory variables (unconditional means model). This indicates that the social and economic
characteristics of village, such as the village collective enterprise, the proportion of village
irrigation area, and the distance between the village committee and the nearest road above

the township level, could explain 23.1% (σµ
2(unconditional means model)−σµ2(random intercept model)

σµ2(unconditional means model)

= 0.173−0.133
0.173 = 0.231) of the variation in maize yield at the village level. Household attributes

could explain 4.1% (σε
2(unconditional means model)−σε2(random intercept model)

σε2(unconditional means model) = 0.555−0.532
0.555 = 0.041)

of variation in maize yield, which was apparently and considerately smaller than
village attributes.

Secondly, the occurrence of extreme weather events had a significantly negative impact
on maize yield. For example, the maize yield decreased by 12.7% and 14.2% under drought
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and flood disasters at the county level, respectively. The disasters occurring on farmland
plot led to more loss in maize yield than those at the county level. Specifically, drought,
flood, continuous rain, and strong wind reduced maize yield by 13.6%, 22.4%, 12.2%, and
9.8%, respectively.

Thirdly, production input significantly affected the maize yield. The sign of labor
elasticity is negative, and the reasons have been mentioned above. Pesticide and irrigation
water input could significantly promote maize yield. Specifically, the maize yield would
increase by 0.032% and 0.018% for every 1% increase in pesticide input and irrigation water,
respectively (rows 20 and 23, Table 7).

Finally, the social and economic characteristics of village could mitigate the loss of
maize yield under extreme weather events. The coefficients of the cross term between
village collective enterprise and drought disaster reveal that the negative impact of drought
disaster on maize yield would decrease dramatically if the village had more collective
enterprises. For example, the maize yield declined by 48.9% if drought occurred on
the farmland plot, but it only decreased by 11% for one additional collective enterprise.
Furthermore, the maize yield could decrease by 9.1% under county-level drought, but it
could increase by 12.8% for an additional collective enterprise.

5. Conclusions and Discussion

Based on the data of 6749 wheat plots and 5212 maize plots of farm households over
2010–2012, this paper adopted a multilevel model to analyze the impact of long-term climate
change and extreme weather events on the wheat and maize yields in the NCP. It also
considered village social and economic conditions, social and economic characteristics of the
household, production inputs, and farmland plot characteristics as the influencing factors
of wheat and maize yields. The findings of this study suggest the following conclusion
and discussion.

5.1. Conclusions

There are three main findings and conclusions in this study.
Firstly, spatial variations in crop yield are significantly influenced by the heterogeneity

of village economic conditions. The explained variation in crop yield is much higher at the
village level than at the household level. The social and economic characteristics of the
village have a positive effect on crop yield and mitigate the loss of crop yield under extreme
weather events. Therefore, under China’s dual-level management system of integration of
unification and separation in rural area, it is necessary to strengthen household production
behavior and improve village collective economy.

Secondly, the arid and semi-arid region of NCP has been experiencing climate change,
affecting grain production over the past three decades. The effects of long-term climate
variables on winter wheat and summer maize yields vary across the growth stages. There-
fore, it might be time to think of making agricultural production adapt to climate change.
For example, it may need to adjust the planting system, change crop varieties, and build
households’ adaptive capacity to climate change.

Thirdly, extreme weather events are more likely than long-term climate change to
reduce the wheat and maize yields. The negative impact of extreme weather events on
crop yield is more serious and immediate. These findings suggest that the governments
should establish and improve the disaster service and coping system for grass-roots units.
Specifically, it is essential to use modern information technology to improve the monitoring,
forecasting, and warning of agricultural disasters and provide and publicize disaster early
warning and response information timely. At the same time, agricultural technical guidance
and financial support should be provided for disaster prevention and control, enabling
farmers to minimize crop production loss. The households also need to prepare for extreme
weather events.
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5.2. Discussion

In dialogue with the existing literature, we respond to, and confirm, the scholarly
view that the role of the village collective economy plays a key role in ensuring food
security [25,26]. We have shown that the village collective economy can mitigate the loss
of crop yield under extreme weather events. In addition, the impact of extreme weather
events on crop yield should be emphasized when revealing an empirical relationship
between climate factors and grain output in agricultural production [23,24]. Since the
negative impact of extreme weather events on crop yield is more serious and immediate
than long-term climate change.

As usual, this paper still has some limitation. Due to data unavailable, for example,
the impact of the township or even the county economic levels cannot be taken into
consideration; long-term temperature and precipitation at county-level data have to be
used for plot-level modelling. For the future study, it be better incorporating long-term plot-
level temperature and precipitation into plot-level modelling by taking into consideration
of county- and -township-level economic impacts.
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