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Abstract: A significant growth in PV (photovoltaic) system installations have been observed during
the last decade. The PV array has a nonlinear output characteristic because of weather intermittency.
Partial shading is an environmental phenomenon that causes multiple peaks in the power curve and
has a negative effect on the efficiency of the conventional maximum power point tracking (MPPT)
methods. This tends to have a substantial effect on the overall performance of the PV system. Therefore,
to enhance the performance of the PV system under shading conditions, the global MPPT technique is
mandatory to force the PV system to operate close to the global maximum. In this paper, for the first
time, a stochastic fractal search (SFS) optimization algorithm is applied to solve the dilemma of tracking
the global power of PV system based triple-junction solar cells under shading conditions. SFS has
been nominated because it can converge to the best solution at a fast rate. Moreover, balance between
exploration and exploitation phases is one of its main advantages. Therefore, the SFS algorithm has been
selected to extract the global maximum power point (MPP) under partial shading conditions. To prove
the superiority of the proposed global MPPT–SFS based tracker, several shading scenarios have been
considered. The idea of changing the shading scenario is to change the position of the global MPP.
The obtained results are compared with common optimizers: Antlion Optimizer (ALO), Cuckoo Search
(CS), Flower Pollination Algorithm (FPA), Firefly-Algorithm (FA), Invasive-Weed-Optimization (IWO),
JAYA and Gravitational Search Algorithm (GSA). The results of comparison confirmed the effectiveness
and robustness of the proposed global MPPT–SFS based tracker over ALO, CS, FPA, FA, IWO, JAYA,
and GSA.

Keywords: optimization; modelling; renewable energy; triple junction solar cell; shading condition;
energy efficiency

1. Introduction

Due to the environmental impact of fossil fuels that currently act as our main energy source [1],
there is a rapid growth in the usage of renewable energy as an alternative energy source [2–4]. Thanks to
the reduction in the cost of renewable energies such as biomass [5–7], solar thermal [8], and solar PV
(photovoltaic) energies [9], wind energy [10], their application is becoming more widespread. Among
different renewable energies, the PV system is a promising energy source for sustainable progress [11].
Photovoltaic solar panels are considered the most widely used source of renewable energy around
the world. Their produced energy is clean, pollution-free, and eco-friendly [12]. They have spread
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worldwide in the past few years due to their price reduction, their relatively long lifespan, and their low
maintenance requirements. Unfortunately, conventional photovoltaic panels suffer a major drawback,
which is efficiency. In fact, a solar panel converts between 12 and 18 percent of the solar energy
depending on the type of solar panel, into electric energy, the remaining 82 to 88 percent of the solar
energy is converted into heat which increases the temperature of the surface of the solar panel.

The improvement of PV efficiency is a great challenge to most researchers especially in case of
operating under partial shadow conditions. Moreover, most of them recommend new materials with
high efficiency of conversion to enhance the PV performance. Many technologies have been employed
in manufacturing the PV cell like mono-crystalline, poly-crystalline, multi-crystalline, and ribbon
multi-crystalline [13]. Additionally, there are thin-film technologies like amorphous silicon, cadmium
telluride (CdTe), and copper-indium-gallium-diselenide (CIGS) are manufactured.

Recently, a great interest was devoted to multi-junction solar cells (MJSC) [14,15], which comprises
different PV junctions stacked over one another via homojunctions, intrinsic materials or
tunnel junctions.

Each solar cell has a different bandgap energy, MJSC is characterized by its efficiency in capturing
and converting a large amount of photon wavelengths to electrical power. Motivated by efficient
performance, MJSCs have received much attention especially for concentrating PV systems (CPVSs).
MJSCs have high conversion efficiencies with a value more than 40% [16]. CPVSs are considered as
one of the most promising research avenues that help in decreasing the cost of solar energy, especially
in large scale applications. Today, the concentrated PV panels are mostly based on MJSCs made up
of several p-n junctions interconnected in series, typically a GaInP/GaInAs/Ge topology [17]. MJSCs
used in concentrated PV systems are different from silicon type cells, they are capable of capturing and
converting large amounts of sunlight into electrical energy with high efficiency [13]. Or and Appelbaum
studied the effect of temperature and concentration on the InGaP/GaAs/Ge MJSC parameters. Based on
the calculated parameters, the performance of InGaP/GaAs/Ge MJSC and concentrated PV array
under different operating conditions may be identified [18]. Two concentrator modules have been
investigated by Fernández et al. [17] under controlled conditions with the aid of a CPV solar simulator
under light insanity in the range of 700–1000 W/m2. The authors concluded that, the photo-generated
current is dependent on the irradiance, while the ideality factor and saturation current are stable under
variable irradiances. Moreover, the parasitic resistances (series and parallel) are decreased when the
intensity is increased. Segev et al. [19] presented different models of triple-junction solar cells (TJSCs)
compared with experimental data under variable flux concentration and temperature. Single and two
diode-based models presented root mean square error (RMS) errors of less than 2.5%.

To enhance the PV system efficiency, the maximum power point tracking (MPPT) approach must
be considered. The PV system has a nonlinear output characteristic owing to weather intermittency.
Therefore, an efficient MPPT which is not only high in efficiency but also enhances the PV output
power, is expected to be designed [13,20]. Under uniform solar irradiance, the voltage versus power
curve contains a unique maximum power point (MPP). This point can be easily extracted using
different conventional tracking methods like perturb and observe (P&O), hill-climbing, and incremental
conductance (INC). However, the situation is completely different under shading conditions when the
solar panel receives non-uniform irradiance. The partial shading generates multiple peaks in the curve
of output power and has negative effects on the conventional MPPT methods’ efficiency [21].

It is known that, the current flow through series connected cells is constant, therefore, the shaded
cells try to operate with reverse bias voltage to give the same current of the illumined ones. However,
power consumption is placed due to the reverse power polarity, this causes weaking in the maximum
generated power. Moreover, hotspots are generated due to excessive reverse bias voltage. This can
be solved via connecting bypass diode to certain cells [21]. The PV array characteristics with bypass
diodes are different than those of a conventional array without these diodes. Since the bypass diodes
generate a path of alternate current, cells of a module do not have the same current, in case of operation
under partial shadow. Therefore, the power–voltage (P–V) curve has multiple maxima as shown in
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Figure 1. This figure confirms the difference between the characteristics of PV array with and without
bypass diodes. Most conventional MPPT algorithms failed in distinguishing between the local and
global maximum power in the P–V curve of the partially shaded PV array.
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Figure 1. PV (photovoltaic) array power–voltage (P–V) characteristic under partial shading condition.

A new MATLAB/Simulink model of TJSCs has been suggested by Rezk and Hasaneen [16].
The proposed model has been integrated with MPPT based on artificial neural networks (ANN).
The proposed MPPT technique increased energy by 11.28%. The drawback of this work is that it cannot
handle the shading condition. A hybrid MPPT method for partially shaded PV arrays is suggested
by El-Helw et al. [22]. The presented hybrid technique integrated an artificial neural network and a
conventional P&O method. This method can be considered costly since the control system needs four
sensors: temperature, irradiance, voltage, and current. Moreover, there is an additional drawback
of the dependency of the characteristics of the PV module. An attempt to reduce the number of
sensors of the MPPT controller has been done by Rezk [23]. The proposed strategy is based on only
a single current sensor. Several shading scenarios were considered to prove the reliability of the
presented global MPPT. The essential limitation of this method its validity only for battery charger
applications. Engel et al. [24] suggested a global MPPT based on an antlion optimizer (ALO). The size
of the population considered in that work is selected to be 40, which is considered extremely high and
time-consuming. Moreover, only one shading scenario is considered and compared with conventional
P&O. In the same direction, Sahu and Shaw [25] used the same optimizer to track the global MPP.
They did not use ALO to track the global MPP directly, but it has been employed to determine the
optimal parameters of the PID (proportional–integral–derivative) controller. Additionally, only one
shading scenario is considered and compared with conventional P&O. A drawback of such a method,
is the requirement of an additional voltage sensor (load voltage). These issues have been solved by
Kumar et al. [25]. Five different shading scenarios are considered. Subha and Himavathi [26] proposed
a flower pollination algorithm (FPA) to solve the problem of shading conditions. Ten different shading
scenarios are used to investigate the performance of FPA. The obtained results are compared with
particle swarm optimization (PSO). Approximately two seconds are required to extract the global MPP.
A summary of some selected previous MPPT methods is presented in Table 1.

In this research, a novel algorithm called Stochastic Fractal Search (SFS) is proposed to extract
the global power of a partially shaded PV system employing a triple-junction solar cell. To prove
the superiority of the proposed global MPPT–SFS based tracker, several shading scenarios have
been considered. The idea of changing the shading scenario is to change the position of the
global MPP. The obtained results are compared with common optimizers including: the Antlion
Optimizer (ALO), Cuckoo Search (CS), Flower Pollination Algorithm (FPA), Firefly-Algorithm (FA),
Invasive-Weed-Optimization (IWO), JAYA and Gravitational Search Algorithm (GSA). The obtained
results confirmed the competence and robustness of the proposed SFS–MPPT in extracting the global
maximum power from the TJS based system. The rest of this paper is summarized as follows: the next
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section describes the modeling of a multi-junction solar cell-based PV module. Section 3 presents a
brief description of stochastic fractal search optimization algorithms. The results and discussions with
the performance of proposed SFS are shown in Section 4. Finally, the last section provides conclusions.

Table 1. Summary of some selected previous maximum power point tracking (MPPT) methods.

Author Type Of PV
Cell

MPPT
Method

PV Array
Dependency

Required
Sensors

Control
Parameter Implementation

Handling
Partial

Shading

Das et al. [27] Triple-junction
InGaP/GaAs/Ge

Perturb and
observe (P&O) NO Current and

voltage Duty cycle Matlab
software NO

Rezk and Hasaneen [16]
InGaP/InGaAs/Ge
triple-junction

solar

Artificial
neural

network
(ANN)

YES
Temperature,

radiation,
and voltage

PV voltage Matlab
software NO

El-Helw et al. [22] Not mentioned Hybrid ANN
and P&O YES

Temperature,
radiation,

voltage and
current

PV voltage Matlab
software YES

Engel et al. [24] Not mentioned
Ant Lion

Optimization
(ALO)

NO Voltage and
current Duty cycle Matlab

software YES

Sahu and Shaw [25] Not mentioned ALO NO

Two voltage
sensors and
one current

sensor

- Matlab
software YES

Kumar et al. [25] Solar PV
simulator ALO NO

Voltage and
current
sensor

Duty experimental YES

Subha, and Himavathi [26] Not mentioned

Flower
Pollination
Algorithm

(FPA)

NO Voltage and
current PV voltage Matlab

software YES

Diab and Rezk [15] Multi-crystalline
silicon cell FPA NO Voltage and

current Duty cycle Matlab
software YES

Ram and Rajasekar [28] Polycrystalline
solar cell FPA NO Voltage and

current Duty cycle
Experimental
and Matlab

software
YES

Ajiatmo and Robandi [29] Not mentioned FPA NO Voltage and
current Duty cycle

Co-simulation
PSIM and

Matlab
YES

Rezk [23] Not mentioned

Particle
Swarm

Optimization
(PSO)

NO
Only single

current
sensor

Duty cycle Matlab
simulation YES

Eltamaly [30] Not mentioned Improved PSO NO

Voltage,
current, and
number of
radiation
sensors

Duty cycle Matlab
simulation YES

Omar et al. [31] Monocrystalline
Silicon

Incremental
conductance
(INC) tuned
by Invasive

Weed
Optimization

(IWO)

NO Voltage and
current Duty cycle Matlab

simulation NO

Li et al. [31] Not mentioned

Gravitational
Search

Algorithm
(GSA)

YES

Three
temperature
sensors and

three
irradiance

sensors

PV voltage Matlab
simulation YES
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Table 1. Cont.

Author Type Of PV
Cell

MPPT
Method

PV Array
Dependency

Required
Sensors

Control
Parameter Implementation

Handling
Partial

Shading

Huang et al. [32] PV simulator JAYA NO Voltage and
current PV voltage Experimental YES

Nguyenet al. [33] Monocrystalline Modified P&O NO Voltage and
current Duty cycle

Matlab
simulation

and
Experimental

No

Xu et al. [34] Polycrystalline Modified INC NO Voltage and
current Duty cycle Simulation NO

Mohamed et al. [35] Monocrystalline Grey Wolf
Optimization NO Voltage and

current Duty cycle Matlab
simulation YES

Omer et al. [36] Monocrystalline Wind driven
optimization NO Voltage and

current Duty cycle Matlab
simulation YES

Li et al. [37] PV simulator Fuzzy-logic NO Voltage and
current Duty cycle

Matlab
simulation

and
Experimental

YES

Pilakkat et al. [38] Polycrystalline Improved
P&O NO Voltage and

current Duty cycle Matlab
simulation YES

Sai et al. [39] Not mentioned Improved
SuDoKu NO Voltage and

current Duty cycle Matlab
simulation YES

2. Multi-Junction Solar Cell-Based PV Module

The TJSC equivalent circuit includes the parameters of each sub-cell. Moreover, the effect of
temperature variations on the gap energy and the reverse saturation currents for each cell are also
included. The single-diode model of the PV cell comprises a light-current with an anti-parallel
diode, one resistor in shunt, and a resistor in series. The single-diode circuitry for a triple-junction
InGaP/InGaAs/Ge solar cell is represented in Figure 2 [21].

The model comprises three sub-cells which are top, medium, and bottom. The energy gaps are
reduced from top to bottom. The current extracted from the TJSC is formulated by the following Equation:

IC = ILi − IDi − Ishi ∀i = [1, 2, 3] (1)

The light generated current can be expressed as follows:

ILi = GKC
[
Isci + a

(
T − TRe f

)]
(2)

where TRef is the reference temperature in ◦C, a is the temperature coefficient of the short circuit current
in A/◦C, KC is the ratio of concentration, and G is the solar radiation in W/m2. The diode current,
voltage drop, and saturation current can be written as follows:

IDi = IOi

[
exp

(
qVDi

AiKBT

)
− 1

]
(3)

VDi = Vi + IC ×RSi (4)

IOi = Ki × T(3+
γi
2 )

[
exp

(
−

Egi

AiKBT

)]
∀i = [1, 2, 3] (5)

The TJSC terminal voltage can be expressed as follows:

VC =
n1KBT

q
ln

[
IL1 − IC

IO1
+ 1

]
+

n2KBT
q

ln
[

IL2 − IC
IO2

+ 1
]
+

n3KBT
q

ln
[

IL3 − IC
IO3

+ 1
]
− IC ×RS (6)

where
RS = RS1 + RS2 + RS3 (7)
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where q is the electron charge, ni is the ideality factor of the diode, KB is the constant of Boltzmann,
Eg is the energy of bandgap, K and γ are constants, T is the absolute temperature, and RS is the series
resistance of the cell. The relationship between the bandgap energy and temperature can be expressed
as [18]:

Eg(T) = Eg(0) +
αT2

T + β
(8)
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3. Stochastic Fractal Search Optimization Algorithm

A stochastic fractional search (SFS) optimizer was presented by Salimi [40] and motivated from the
growth phenomenon. In such approach, the diffusion limited aggregation (DLA) concept is employed
to initiate random fractal growth. Two phases are followed in implementing SFS—the diffusion and
updating processes. In the diffusion process, each particle designated has potential energy, each particle
spreads around its current location to improve the exploitation ability of the approach. This action
distinguishes the approach from the others in avoiding getting stuck in local optima. In this phase,
random new particles are created with the aid of Levy flight and Gaussian walk, a few of them continue
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in generation while the rest are ignored. Moreover, SFS uses some random updates that lead to
exploration properties. Firstly, each particle is located randomly based on the following formula:

Ei =
E
P

(9)

where Ei is the energy of particle Pi, E is the maximum considered potential energy and P is the number
of particles. Levy flight and Gaussian walk are employed in SFS to simulate the generation of new
particles, this can be expressed as follows:

xi
q = xi + αi

q
⊗ Levy(λ) (10)

xi
q = xi + β·Gaussian(Pi, |BP|) − (γ·BP− γ′·Pi) (11)

where α is the factor of distribution scale, β denotes the distribution index in range of [0, 2], q is the
number of generated particles developed from the main particle diffusion, xi is the current position
of ith particle, Gaussian (Pi, |BP|) is the Gaussian distribution with mean of Pi and standard deviation
of BP which denotes the best position, γ and γ′ are random numbers in range [0, 1]. To improve
the convergence rate of the SFS optimizer, two formulas of the parameter α are used, one of them
is employed for searching in a wide space while the other is for evaluating the solution with high
precision. The two formulas of α are as follows:

αi =
log

(
min

(
Ê
))
(Ub − Lb)

g· log(Ei)
(12)

αi =
(Ub − Lb)

(g· log(Ei))
ψ

(13)

where min (Ê) is the minimum energy in the search space, Ub and Lb are the search space upper and
lower bounds, g is the number of iterations, Ei is the energy of Pi particle and ψ is a fixed value of 1.5.
After diffusion process, the energy of the main particle is divided among the new generated particles
according to the following formula:

E j
i =




fi

fi +
q∑

k=1
fk


·Ei (14)

where fi is the value of the main particle fitness. As stated before, not all the particles continue in
generating new ones, few of them are considered and the others are ignored. The remaining particles
energy equation can be written as follows:

Et
new = Et

old +




ft
ξ∑

k=1
fk

·ϕ
·µ (15)

where ϕ is the total energy of the ignored particles and µ is the energy distributing rate between the
considered and generated particles and ξ is the number of particles in the iteration. In SFS, diffusion
limited aggregation (DLA) methodology is responsible for inspiring random growth process, this is
done via random walk only, with the aid of Gaussian distribution as follows:

GW1 = Gaussian(µBP, σ) + (ε·BP− ε′·Pi) (16)
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GW2 = Gaussian(µP, σ) (17)

where ε and ε′ are random numbers in range [0, 1], µBP, µP and σ are the gaussian parameters, µBP is
equal to |BP| while µP is equal to |Pi|. The standard deviation can be calculated as follows:

σ =

∣∣∣∣∣∣ log(g)
g
·(Pi − BP)

∣∣∣∣∣∣ (18)

where the term (log(g)/g) is employed for reducing the Gaussian walks during increasing the generations’
number. The particles are initialized as follows:

P j = Lb + ε·(Ub − Lb) (19)

After that, the fitness function of each particle is evaluated and the best point (BP) is obtained.
All particles move around their current positions to exploit the search space of the problem. Additionally,
two statistical measures are employed to enhance the exploration, the first one is applied on each
individual while the second one is applied on all particles. The first statistical measure is applied by
sorting all points according to their fitness functions and then calculating the probability assigned to
each individual according to the following expression:

Pai =
rank(Pi)

N
(20)

where rank (Pi) is the particle Pi rank in the group and N is the total number of points in the
population. Referring to Equation (20), larger probability will be assigned to the higher ranked
individual. Additionally, it is employed to increase the chance of changing the points that did not get
good solutions. The jth component of individual Pi is updated as follows:

Pi
′( j) = Pr( j) − ε·(Pt( j) − Pi( j)) i f Pai ≺ ε (21)

where Pi
′ is the modified position of Pi, Pr and Pt which are selected randomly in the group.

The changing position of a point with respect to the others is the target of the second statistical change.
This action is done for the purpose of improvement the exploration quality. If Pai <ε, the positions of
Pi
′ is updated according to Equations (22) and (23) otherwise, no amendment will be made.

Pi
′′ = Pi

′
− ε̂·(Pt

′
− BP) |ε′ ≤ 0.5 (22)

Pi
′′ = Pi

′
− ε̂·(Pt

′
− Pr

′) |ε′ � 0.5 (23)

where Pi
′, Pr

′ and Pt
′ are selected randomly based on Equation (21), ε̂ are random numbers generated

via Gaussian distribution. Updating process between Pi
′ and Pi” is performed in case of improving in

fitness function. Figure 3 shows the flow chart of the SFS optimizer.
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4. Results and Discussion

To prove the superiority and reliability of the proposed strategy, an extensive simulation under
different shading scenarios was carried out using Matlab/Simulink. To illustrate the supremacy of the
proposed technique, the obtained results are compared with those obtained via ALO, CS, FPA, FA,
IWO, JAYA and GSA methods. The performance of different MPPT methods is analyzed concerning
the success rate (SR), standard deviation (StD), coefficient of variation, average relative error (RE),
mean absolute error (MAE), root mean square error (RMSE), efficiency, population variance, minimum
value and average value under each shading pattern. Three configurations: two modules in series,
three modules in series and four modules in series are considered. For every configuration, two different
shading scenarios are implemented and investigated. Moreover, six shading patterns, which includes
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different shading effects, were considered in the present work. The shading patterns considered to
have different global MPP positions, such as first, second, and third peaks. Table 2, Figures 4 and 5
illustrate the detailed description of different considered shading scenarios.

Table 2. The detailed description of different considered shading scenarios. MPP: maximum power point.

Scenario
Number

Solar Irradiance
Levels

Distribution on
Modules W/m2

Voltage at
MPP, V

Current at
MPP, A Local and Global MPP, W

Position of
Global

Maximum
Power Point

(GMPP)

1 1,000,700 103.83 9.60 571.30 996.59 Right
2 1,000,300 42.81 13.34 571.30 438.80 left
3 1,000,800,600 163.48 8.27 571.30 1129.00 1351.40 1st right
4 1,000,800,200 102.94 10.97 571.30 1129.40 465.90 center
5 1,000,700,400,200 103.83 9.60 571.30 996.59 907.10 615.10 2nd left
6 1,000,800,600,400 163.48 8.27 571.30 1129.4 1351.40 12,320 2nd rightEnergies 2020, 13, x FOR PEER REVIEW 13 of 28 
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The first shading scenario is applied to the first PV configuration where two series PV modules
are connected in series. The solar irradiance levels distribution on the two PV modules are 1000 W/m2

and 700 W/m2, respectively. Under this condition, there are two peaks. The local and global power
values are 571.3 W and 996.59 W, respectively. The global maximum power is located at the right side
of the power–voltage curve. The corresponding PV voltage and current at global power are 103.83 V
and 9.60 A, respectively.

Throughout the first shading scenario, the best success rate values are archived by SFS and FA
optimizers while the worst rate is assigned to ALO. Out of 50 runs, SFS cannot extract the minimum
benchmark of global power (986 W) three times: run#24, run#41 and run#44. Twenty-one times ALO
did not reach to the global power. A summary of the evaluation of the statistical performance of
different considered global MPPT methods is presented in Table 3. More details about the extracted
power of each optimizer are shown in Table A1. The minimum standard deviation of 4.11 is achieved
by SFS followed by FA whereas the largest value of 135.23 is assigned to CS optimizer. Additionally,
the minimum RMSE of 4.34 is achieved by SFS. In sum, for first shading scenario SFS optimizer
performed the best compared with other methods.

The second shading scenario is also applied to the first PV configuration. The solar irradiance
level applied to the first PV module is kept same as the first scenario where the radiation level subjected
to the second PV module is decreased from 700 W/m2 to 300 W/m2. This leads to transfer of the
position of the global power from the right position to the left. This is very useful to investigate the
reliability of the proposed SFS based tracker. The local and global power values are 438.8 W and
571.3 W, respectively. The corresponding PV voltage and current at global power are 42.81 V and
13.34 A. During the second shading scenario, the best success rate of 100% is achieved by SFS, followed
by the FA optimizer (96%), while the worst rate of 60% is assigned to ALO. Out of 50 runs, ALO
did not extract the global power twenty times, as presented in Table A1. The minimum standard
deviation values are achieved by SFS and JAYA, whereas the largest value of 32.92 is assigned to the
ALO optimizer. The same thing also occurred for the RMSE. This also confirms that the SFS optimizer
performed the best compared with other methods.

The third shading scenario is applied to the second PV configuration where three series PV
modules are connected in series. The solar irradiance levels distribution on the three PV modules are
1000 W/m2, 800 W/m2 and 600 W/m2, respectively. Under this condition, there are three peaks: 571.3 W,
1129 W and 1351.4 W. The global maximum power is located at the right side of the power versus
voltage curve. The corresponding PV voltage and current at global power are 163.48 V and 8.27 A.

The fourth shading scenario is also applied to the second PV configuration. The solar irradiance
levels applied to the first and second PV modules are kept same as third scenario, where the radiation
level subjected to the third PV module is decreased from 600 W/m2 to 200 W/m2. This leads to
transfer of the position of the global power from the right position to the middle. This is also done
to test the reliability of the proposed SFS based tracker when the global power located at the center
of the power–voltage curve. The local power values are 571.3 W and 465.9 W, whereas and global
power value is 1129.4 W. The corresponding PV voltage and current at global power are 102.94 V and
10.97 A. Throughout the fourth shading scenario, the best success rate value of 98% is achieved by
the SFS method followed by the CS optimizer (96%), while the worst rate value of 54% is assigned
to the IWO and FPA optimizers. Out of 50 runs, as presented in Table A2, SFS failed only one time
(run# 20) to reach the global power of 1129.4 W. IWO and FPA did not reach the global power 23 times.
A summary of the evaluation of the statistical performance of different considered global MPPT
methods is presented in Table 3. More details about the extracted power of each optimizer are shown
in Table A2. The minimum standard deviation of 4.99 is achieved by SFS, followed by JAYA, whereas
the largest value of 119.16 is assigned to the IWO optimizer. Correspondingly, the minimum RMSE of
5.16 is achieved by SFS. Overall, for the fourth shading scenario, the SFS optimizer accomplished the
best performance compared with other methods.
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Table 3. Statistical performance of different considered global MPPT methods.

ALO GSA FPA SFS IWO FA CS JAYA ALO GSA FPA SFS IWO FA CS JAYA

1. SR 2. Standard Deviation

1st scenario 58 64 58 94 68 94 88 88 108.45 42.96 67.49 4.11 93.98 10.47 135.23 11.66
2nd scenario 60 90 80 100 80 96 90 100 32.92 25.68 28.56 0.09 24.02 3.93 19.22 0.01
3rd scenario 56 28 40 94 64 96 80 78 120.06 50.58 56.3 5.8 101 32.94 88.8 52.62
4th scenario 60 72 54 98 54 94 96 94 115.3 32.33 39.85 4.99 119.16 58.15 102.6 8.16
5th scenario 50 52 48 100 64 90 74 84 59.11 31.69 18.08 1.34 79.84 26.84 39.25 64.09
6th scenario 48 36 42 96 64 92 86 84 89.91 46.14 51.17 7.43 75.35 48.41 54.23 38.06

Average 55.33 57 53.67 97 65.67 93.67 85.67 88 87.63 38.23 43.58 3.96 82.22 30.12 73.22 29.1

3. Coefficient of Variation 4. Average (RE)

1st scenario 0.117 0.045 0.071 0.004 0.099 0.011 0.144 0.012 6.16 2.48 3.2 0.14 4.12 0.25 5 0.43
2nd scenario 0.06 0.046 0.051 0.000 0.043 0.007 0.034 0.000 3.00 0.98 1.92 0.01 1.71 0.15 0.72 0.00
3rd scenario 0.096 0.039 0.044 0.004 0.079 0.025 0.069 0.04 6.17 3.53 3.28 0.23 4.82 0.46 3.29 1.53
4th scenario 0.109 0.029 0.036 0.004 0.114 0.053 0.093 0.007 5.29 1.66 2.22 0.12 6.55 1.07 1.73 0.18
5th scenario 0.063 0.033 0.019 0.001 0.084 0.027 0.041 0.066 4.79 2.4 1.72 0.05 4.19 0.9 2.33 1.89
6th scenario 0.071 0.036 0.04 0.006 0.059 0.037 0.041 0.029 5.65 3.05 3.3 0.2 3.84 1.03 1.55 0.93

Average 0.086 0.038 0.043 0.003 0.08 0.026 0.07 0.026 5.18 2.35 2.61 0.12 4.2 0.64 2.44 0.82

5. MAE 6. RMSE

1st scenario 61.41 24.74 31.91 1.39 41.04 2.46 49.86 4.24 124.63 49.58 74.66 4.34 102.55 10.75 144.13 12.41
2nd scenario 29.87 9.79 19.14 0.05 17.06 1.5 7.18 0.01 37.1 26.28 30.6 0.09 25.93 4.02 19.65 0.01
3rd scenario 61.51 35.19 32.65 2.26 48.02 4.54 32.75 15.22 146.19 69.54 71.62 6.56 120.17 33.5 99.28 56.52
4th scenario 52.69 16.51 22.08 1.17 65.24 10.61 17.27 1.81 129.84 37.36 47.05 5.16 140.23 59.38 104.45 8.41
5th scenario 47.7 23.9 17.13 0.51 41.75 8.98 23.27 18.81 75.96 39.7 24.91 1.43 90.09 28.31 45.63 66.79
6th scenario 56.33 30.36 32.93 1.96 38.3 10.24 15.47 9.23 117.97 61.83 67.91 7.89 91.51 50.35 58.14 40.06

Average 51.59 23.42 25.97 1.22 41.9 6.39 24.3 8.22 105.28 47.38 52.79 4.24 95.08 31.05 78.55 30.7

7. Efficiency 8. Population Variance

1st scenario 93.84 97.52 96.8 99.86 95.88 99.75 95 99.57 11,761.03 1845.6 4554.92 16.91 8831.84 109.63 18,288.5 135.96
2nd scenario 97 99.02 98.08 100 98.29 99.85 99.28 100 1083.58 659.32 815.9 0.01 576.73 15.45 369.42 0.000
3rd scenario 93.83 96.47 96.72 99.77 95.18 99.55 96.72 98.47 14,414.99 2557.98 3169.99 33.61 10,201.81 1084.86 7885.36 2768.9
4th scenario 94.71 98.34 97.78 99.88 93.45 98.94 98.27 99.82 13,293.3 1045.47 1587.75 24.89 14,199.52 3381.89 10,527.1 66.57
5th scenario 95.21 97.6 98.28 99.95 95.81 99.1 97.67 98.11 3494.47 1004.54 327.05 1.78 6374.1 720.63 1540.75 4107.84
6th scenario 94.35 96.95 96.7 99.8 96.16 98.97 98.45 99.07 8084.37 2128.54 2618.88 55.23 5677.65 2343.24 2941.08 1448.38

Average 94.82 97.65 97.39 99.88 95.8 99.36 97.56 99.18 8688.62 1540.24 2179.08 22.07 7643.61 1275.95 6925.37 1421.28
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Table 3. Cont.

ALO GSA FPA SFS IWO FA CS JAYA ALO GSA FPA SFS IWO FA CS JAYA

9. Minimum value 10. Average value

1st scenario 571.26 808.09 571.26 974.35 571.26 932.38 571.26 932.52 935.18 971.85 964.68 995.2 955.55 994.13 946.73 992.35
2nd scenario 407.84 387.22 438.11 570.78 450.69 545.01 438.81 571.22 554.14 565.65 560.29 571.23 561.49 570.41 567.15 571.26
3rd scenario 812.59 1145.18 1126.53 1324.41 987.56 1129.41 1129.41 1129.4 1268 1303.68 1307.13 1348.33 1286.3 1345.26 1307.01 1330.76
4th scenario 571.26 998.68 886.01 1095 571.26 755.25 456.99 1076.61 1069.7 1110.69 1104.38 1128.08 1055.48 1117.39 1109.85 1127.35
5th scenario 766.35 858.85 906.94 988.93 615.1 906.98 907.06 571.26 948.89 972.69 979.46 996.08 954.84 987.61 973.32 977.78
6th scenario 1024.74 1171.01 1199.44 1301.42 1129.41 1129.41 1129.41 1129.38 1275.03 1310.23 1306.75 1348.75 1299.48 1337.54 1330.44 1338.88

Average 692.34 894.84 854.72 1042.48 720.88 899.74 772.16 901.73 1008.49 1039.13 1037.11 1064.61 1018.86 1058.72 1039.08 1056.4
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The fifth shading scenario is applied to the third PV configuration, where four series PV modules
are connected in series. The solar irradiance levels distribution on the four PV modules are 1000 W/m2,
700 W/m2, 400 W/m2 and 200 W/m2, respectively. Under this condition, there are four peaks: 571.3 W,
996.59 W, 907.1 W and 615.1 W. The global maximum power is located at the second left side of the
power–voltage curve. The corresponding PV voltage and current at global power are 103.83 V and
9.60 A. The sixth shading scenario is also applied to the third PV configuration with varying the solar
irradiance levels: 1000 W/m2, 800 W/m2, 600 W/m2 and 400 W/m2, respectively. This variation leads to
the transfer of the global power from the second left, to the second right side of the power–voltage
curve. The peak power values of are 571.3 W, 1129.4 W, 1351.4 W and 1232 W. The global maximum
power is located at the second left. The corresponding PV voltage and current at global power are
163.48 V and 8.27 A. More details about the performance of each optimizer under different shading
scenarios can be found in Tables A1–A3.

As an example, the PV power variations throughout the optimization procedure using the
SFS based tracker under the fourth and fifth shading scenarios, are presented in Figures 6 and A1,
respectively. Considering Figure 6, it is confirmed that during the fifth shading scenario, out of 50 runs,
the SFS based tracker failed to reach the target maximum power only one time. At run#20, the extracted
maximum power is 1095 W. This means the efficiency under this situation is 96.86%. The decision
variable (duty cycle) variations during the optimization process of the SFS based tracker (a) forth
shading scenario (b) fifth shading scenario, are illustrated in Figure 7. It can be noted that all particles
converge to the optimal solution.
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Table 4 and Figure 8 present a comprehensive performance comparison among different, considered
global, MPPT methods. They summarize the average values for different evaluation metrics during six
shading scenarios. It can be concluded that the best optimizer is SFS. It achieved the best values for
different performance evaluation metrics. For the success rate, the optimizers are ranked as follows:
SFS, FA, JAYA, CS, IWO, GSA, ALO and FPA. The tracking efficiency for all optimizers is greater than
94%. The maximum value of 99.88% is achieved by SFS, followed by FPA and JAYA, whereas the
minimum value of 94.8% is assigned to ALO. The average minimum RSME is 7.89 that is achieved by
SFS. The worst RMSE of 117.97 is assigned to ALO. Ranking of the considered global MPPT methods is
illustrated in Table 5 and its radar plot is presented in Figure 9. It can be finally concluded that SFS
has superior performance compared with other methods, followed by FA, JAYA, GSA, CS, FPA, IWO
and ALO.

Table 4. A comparison among considered algorithms.

Optimizer ALO GSA FPA SFS IWO FA CS JAYA

SR 55.33 57.00 53.67 97.00 65.67 93.67 85.67 88.00
StD 87.63 38.23 43.58 3.96 82.22 30.12 73.22 29.10

Coefficient of
Variation

0.09 @ 0.04 0.04 0.003 0.08 0.03 0.07 0.03

Average (RE) 5.18 2.35 2.61 0.12 4.20 0.64.00 2.44 0.82
MAE 51.59 23.42 25.97 1.22 41.90 6.39 24.30 8.22
RMSE 117.97 61.83 67.91 7.89 91.51 50.35 58.14 40.06

Efficiency 94.82 97.65 97.39 99.88 95.80 99.36 97.56 99.18
Variance 8688.62 1540.24 2179.08 22.07 7643.61 1275.95 6925.37 1421.28

Minim value 692.34 894.84 854.72 1042.48 720.88 899.74 772.16 901.73
Average value 1008.49 1039.13 1037.11 1064.61 1018.86 1058.72 1039.08 1056.4
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Table 5. Ranking of considered global MPPT methods.

Optimizer ALO GSA FPA SFS IWO FA CS JAYA

SR 7 6 8 1 5 2 4 3
StD 8 4 5 1 7 3 6 2

Coefficient of
Variation 8 6 7 1 3 4 2 4

Average (RE) 8 4 6 1 7 2 5 3
MAE 8 4 6 1 7 2 5 3
RMSE 8 5 6 1 7 3 4 2

Efficiency 8 4 6 1 7 2 5 3
Variance 8 4 5 1 7 2 6 3

Minim value 8 4 5 1 7 3 6 2
Average value 8 4 6 1 7 2 5 3
Overall Rank 8 4 6 1 7 2 5 3
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5. Conclusions

In this paper, for the first time, a stochastic fractal search (SFS) optimization algorithm is used to
extract the global power of the PV system employing triple-junction solar cells under shading conditions.
To prove and test the reliability of SFS optimizer, different evaluation metrics are considered: success rate
(SR), standard deviation (StD), coefficient of variation, average relative error (RE), mean absolute error
(MAE), root mean square error (RMSE), efficiency, population variance, minima value, and average
value. Three PV configurations: two modules in series, three modules in series, and four models in series
are used in the evaluation process. For every configuration, two different shading scenarios are used.
The idea of changing the shading scenario is to change the position of the global MPP. The obtained
results are compared with common optimizers: the Antlion Optimizer (ALO), Cuckoo Search (CS),
Flower Pollination Algorithm (FPA), Firefly-Algorithm (FA), Invasive-Weed-Optimization (IWO), JAYA
and Gravitational Search Algorithm (GSA). SFS achieved the best values for different performance
evaluation metrics. For the success rate, the optimizers are ranked as follows: SFS, FA, JAYA, CS, IWO,
GSA, ALO and FPA. The tracking efficiency for all optimizer is greater than 94%. The maximum value
of 99.88% is achieved by SFS, followed by FPA and JAYA, whereas the minimum value of 94.8% is
assigned to ALO. The average minimum RSME is 7.89 that achieved by SFS. The worst RMSE of 117.97
is assigned to ALO. In sum, it can be concluded that SFS has superior performance compared with the
other methods, followed by FA, JAYA, GSA, CS, FPA, IWO and ALO.
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Abbreviations and Acronyms

MPPT maximum power point tracking
SFS stochastic fractal search
PV photovoltaic
ALO Antlion Optimizer
CS Cuckoo Search
FPA Flower Pollination Algorithm
FA firefly-algorithm
IWO invasive-weed-optimization
GSA Gravitational Search Algorithm
CPVS Concentrating PV System
P&O perturb and observe
INC incremental conductance
SR success rate
StD standard deviation
RE average relative error
MAE mean absolute error
RMSE root mean square error

Symbols

TRef reference temperature in ◦C

a
short circuit current temperature coefficient
in A/◦C

KC
concentration ratio, and G is the solar
radiation in W/m2

q electron charge
ni diode ideality factor
KB Boltzmann’s constant
Eg bandgap energy
K constant
γ constant
T absolute temperature,
RS cell series resistance
Ei energy of particle
E the maximum considered potential energy
P number of particles
Ub the search space upper bound
Lb the search space lower bound
g the number of iterations
ψ fixed value of 1.5.
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Appendix A

Table A1. The detailed performance of each optimizer for the 1st and 2nd shading scenarios.

Run
1st Shading Scenario 2nd Shading Scenario

ALO GSA FPA SFS IWO FA CS JAYA ALO GSA FPA SFS IWO FA CS JAYA

1 996.59 994.3 930.48 996.58 996.59 996.59 571.26 996.59 493.62 570.99 569.82 571.26 571.26 571.26 571.26 571.26
2 996.53 996.35 995.45 996.57 798.98 996.59 996.59 995.04 571.26 571.08 570.37 571.26 571.26 571.26 564.11 571.26
3 764.04 996.56 994.6 996.53 976.03 996.59 996.59 963.42 565.51 555.72 571.06 571.25 571.26 571.26 571.26 571.26
4 934.49 990.61 995.78 991.03 856.53 996.59 996.59 995.79 503.1 569.93 570.22 571.26 565.32 571.26 551.86 571.26
5 995.56 983.05 980.59 996.53 911.69 996.59 996.59 996.57 571.26 566.04 570.97 571.26 571.26 571.26 571.26 571.26
6 953.66 827.47 996.58 996.53 996.59 996.59 996.59 995.8 537.89 571.25 569.66 571.26 571.26 571.26 571.26 571.25
7 996.59 996.37 970.11 996.43 933.22 996.59 996.59 996.51 571.26 570.45 438.8 571.25 571.26 571.26 571.26 571.23
8 843.77 987.34 996.24 996.27 996.59 996.59 996.59 996.59 571.15 568.76 570.68 571.22 543.93 545.01 571.26 571.26
9 571.26 921.56 995.69 996.58 996.59 964.65 996.59 989.35 535.23 566.62 546.47 571.21 568.88 571.26 571.26 571.24
10 828.25 996.14 859.08 996.59 967.18 996.59 996.59 996.56 570.76 570.66 561.72 571.26 571.26 571.26 571.26 571.26
11 750.24 996.52 990.51 996.51 996.59 996.59 571.26 996.46 535.52 571 438.11 571.17 544.54 571.26 571.26 571.26
12 996.59 996.55 982.14 996.54 996.59 996.59 996.59 995.57 521.6 567.86 571.26 571.26 571.26 566.04 571.26 571.26
13 992.21 988.25 990.32 996.58 996.59 996.59 996.59 996.58 567.24 571.25 571.13 571.25 570.87 571.26 571.26 571.26
14 966.79 984.5 963.53 996.57 571.26 996.59 996.59 995.33 565.19 387.22 571.23 571.22 571.26 571.26 571.26 571.26
15 991.91 994.46 957.74 996.07 996.59 996.59 996.59 996.57 555.96 571.15 515.37 571.17 571.26 571.26 571.26 571.26
16 909.73 996.11 891.53 996.51 966.76 996.58 630.22 996.51 554.33 570.64 571.02 571.26 571.26 571.26 535.23 571.26
17 906.55 995.59 995.97 996.48 996.59 996.59 996.59 996.38 570.95 571.16 571.15 571.22 503.07 571.26 571.26 571.25
18 996.44 921.87 995.92 996.58 816.95 996.59 996.59 996.59 571.26 571.15 571.26 571.26 547.4 571.26 571.26 571.26
19 995.4 959.64 989.02 996.34 996.59 996.59 996.59 957.67 571.26 571.26 571.05 571.26 571.26 571.26 571.26 571.26
20 996.59 996.45 996.17 996.04 996.59 996.59 996.59 996.56 571.26 570.36 571.24 571.26 571.26 571.26 571.26 571.26
21 996.56 994.83 934.32 994.23 996.59 996.59 996.59 996.58 570.86 571.26 571.26 570.9 571.26 571.26 571.26 571.24
22 996.59 996.33 993.2 996.57 996.59 996.59 996.59 996.07 407.84 569.72 567.59 571.26 571.26 571.26 571.26 571.26
23 871.27 995.26 996.36 996.59 996.59 996.59 996.59 996.56 571.17 569.04 570.82 571.26 450.69 571.26 571.26 571.26
24 992.79 986.15 995.25 982.72 996.59 996.59 996.59 996.54 555.16 570.03 571.22 571.26 570.44 571.26 571.26 571.22
25 996.24 808.09 988.37 996.49 996.59 996.59 996.59 996.59 528.36 569.83 571.26 571.25 571.26 571.26 571.26 571.26
26 996.59 996.36 995.77 996.52 996.59 996.59 996.59 996.59 551.27 569.14 571.22 571.26 571.26 571.26 571.26 571.26
27 996.59 995.33 995.38 996.59 996.59 996.59 996.58 996.59 571.26 565.57 555.2 571.25 571.26 571.26 571.26 571.26
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Table A1. Cont.

Run
1st Shading Scenario 2nd Shading Scenario

ALO GSA FPA SFS IWO FA CS JAYA ALO GSA FPA SFS IWO FA CS JAYA

28 980.53 987.88 996.56 996.58 995.05 932.38 996.59 996.59 438.81 571.23 570.35 571.26 567.3 571.26 571.26 571.26
29 886.81 951.43 942.48 996.59 996.59 996.58 996.59 996.56 537.29 567.45 569.02 571.23 532.48 571.26 571.26 571.25
30 961.41 996.42 994.65 995.45 996.59 996.59 996.59 996.59 564.53 571.24 571.21 571.26 537.91 571.26 571.26 571.26
31 996.59 996.56 957.84 995.69 782.4 995.31 996.59 996.59 571.26 568.63 571.26 571.26 571.26 571.26 568.29 571.26
32 996.59 995.32 571.26 996.59 996.59 996.59 996.59 996.59 571.26 570.87 570.5 571.26 571.26 571.26 569.55 571.26
33 996.33 996.31 970.67 995.71 996.59 996.59 996.59 996.59 571.26 570.83 570.18 571.26 571.26 571.26 571.26 571.26
34 996.59 945.51 979.82 996.54 996.59 996.59 996.59 995.99 518.3 562.77 568.48 571.25 571.26 571.26 571.26 571.26
35 978.27 996.17 955.64 996.57 996.59 996.59 571.26 996.54 571.26 571.26 561.39 571.26 571.26 571.26 571.26 571.26
36 996.59 996.19 839.03 996.03 952.78 996.59 996.59 996.58 571.26 569.61 571 571.26 571.26 561.75 571.26 571.26
37 989.51 883.8 993.14 996.59 571.26 996.59 996.58 991.36 571.26 570.6 570.5 571.25 571.26 571.26 571.26 571.26
38 996.59 996.51 994.31 995.87 996.59 996.59 996.59 985.47 571.26 571.26 570.78 571.26 571.26 570.07 571.26 571.26
39 996.59 992.17 993.11 996.55 996.59 996.58 571.26 994.57 571.26 571.25 571.26 571.26 571.26 571.26 565.34 571.26
40 996.59 996.46 985.25 996.55 961.31 996.58 996.59 993.7 571.26 570.01 531.45 571.26 571.26 571.26 571.26 571.26
41 990.34 984.36 867.5 982.12 996.47 996.59 996.59 996.51 561.66 560.4 571.26 571.26 571.26 571.26 571.26 571.26
42 996.59 892.7 996.54 996.5 933.26 971.32 996.58 996.41 569.6 570.69 570.92 571.26 571.26 571.26 571.26 571.26
43 907.92 953.01 925.08 996.35 996.59 996.59 996.59 996.59 571.15 571.25 566.59 571.26 571.26 571.26 571.26 571.26
44 651.08 971 988.92 974.35 978.38 996.59 996.59 996.59 571.26 570.01 566.7 571.26 517.17 571.26 571.26 571.26
45 742.15 952.68 968.23 995.33 996.59 996.59 996.59 981.63 568.43 571.12 570.31 570.78 571.26 571.26 571.26 571.26
46 996.59 910.04 967.11 995.16 996.48 996.59 996.58 932.52 571.26 571.16 570.8 571.26 571.26 571.26 571.26 571.26
47 996.59 925.24 996.55 995.57 917.46 996.59 996.58 994.69 571.26 563.25 571.23 571.18 571.26 570.7 571.26 571.26
48 571.26 995.87 996.22 996.57 996.59 996.59 571.26 996.59 548.02 571.26 499.77 571.2 488.81 571.26 438.81 571.26
49 973.04 995.56 991.9 996.57 996.59 996.59 996.59 996.55 571.26 566.02 547.25 571.2 571.26 571.26 571.26 571.26
50 934.86 989.16 995.91 996.59 996.59 996.59 996.59 973.61 571.26 571.19 571.09 571.26 571.26 571.26 571.26 571.26
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Table A2. The detailed performance of each optimizer for the 3rd and 4th shading scenarios.

Run
3rd Shading Scenario 4th Shading Scenario

ALO GSA FPA SFS IWO FA CS JAYA ALO GSA FPA SFS IWO FA CS JAYA

1 1351.42 1307.49 1261.59 1351.4 1290.65 1351.37 1129.41 1351.42 1129.41 1127.61 1116.32 1129.41 984.62 1129.41 1129.41 1076.61
2 1193.59 1320.68 1133.97 1347.46 1351.42 1351.42 1129.41 1350.54 1129.3 1128.3 1064 1129.3 1129.41 1129.41 1129.41 1129.41
3 1350.08 1321.68 1285.9 1350.03 1351.42 1351.39 1351.42 1342.21 1092.04 998.68 1119.9 1129.4 1129.41 1129.41 1129.41 1107.97
4 1351.42 1351.23 1346.38 1349.88 1351.42 1351.42 1129.41 1348.92 1111.61 1125 1127.75 1129.21 571.26 1129.41 1129.41 1129.41
5 1112.64 1351.24 1351.02 1351.38 1351.42 1351.41 1351.41 1350.51 1129.41 1071.02 1129.29 1128.82 1129.41 1129.41 1129.41 1129.39
6 1305.31 1351.08 1248.22 1351.04 1351.42 1351.06 1351.42 1331.93 1129.41 1106.51 1094.83 1129.41 1129.41 1129.41 1129.41 1129.33
7 1129.41 1351.41 1298.65 1351.4 987.56 1351.42 1351.42 1351.37 1003.2 1126.38 1078.5 1129.39 1129.41 1129.41 1129.41 1129.41
8 1235.56 1326.85 1349.98 1342.92 1129.41 1351.42 1129.41 1348.87 571.26 1126.81 1087.75 1129.4 1096.43 1129.41 1129.41 1129.4
9 1351.42 1346.66 1319.55 1351.26 1351.42 1351.36 1351.42 1351.41 1129.41 1124.49 1121.48 1129.41 1010.61 1129.41 1129.41 1129.4
10 812.59 1350.85 1258.75 1351.17 1351.42 1351.41 1351.4 1129.41 1129.24 1129.41 1125.06 1129.39 973.49 1129.41 1129.41 1129.41
11 1351.42 1349.08 1333.59 1351.37 1129.41 1351.41 1351.41 1334.34 1056.59 1129.38 1102.32 1127.98 1070.83 1129.41 1129.41 1129.12
12 1351.42 1318.32 1332 1351.41 1314.22 1351.39 1129.41 1351.41 1129.41 1050.08 886.01 1129.18 1129.41 1129.41 1129.41 1129.41
13 1129.41 1351.36 1342.63 1326.58 1129.41 1351.42 1351.39 1351.41 998.4 1099.9 1127.79 1129.34 1129.41 1129.41 823.92 1129.17
14 1351.41 1241.38 1335.35 1351.37 1351.42 1351.38 1351.41 1349.46 1129.41 1036.49 1125.74 1129.37 1129.41 1129.41 1129.41 1129.36
15 1351.42 1277.46 1351.41 1346.66 1351.42 1351.42 1351.42 1351.41 1129.41 1129.28 1090.51 1129.41 1129.41 1129.41 1129.41 1129.41
16 1117.59 1348.94 1326.24 1351.36 1351.42 1351.4 1351.41 1350.75 922.54 1119.35 1128.05 1129.41 1062.02 1129.41 1129.41 1129.37
17 1351.42 1288.36 1348.92 1351.37 1129.41 1351.32 1351.42 1351.12 1129.41 1121.76 1117.38 1129.41 1129.41 1129.41 1129.41 1129.41
18 1129.41 1315.63 1237.32 1351.41 1129.41 1351.42 1351.42 1312.69 1129.25 1066.6 1128 1129.41 810.94 1129.41 1129.4 1129.31
19 1351.19 1328.89 1332.01 1341.65 1351.42 1351.42 1351.41 1350.47 1102.11 1126.62 1123.76 1122.96 1129.41 1129.41 1129.41 1129.41
20 1129.23 1257 1297.06 1350.86 1129.41 1351.41 1351.42 1351.38 1007.31 1128.94 1129.36 1095 1081.3 1129.41 1129.41 1129.41
21 1322.02 1299.09 1347.6 1345.82 1351.42 1351.41 1129.41 1129.41 1129.41 1129.41 1096.19 1120.3 871.91 1129.41 1129.41 1129.41
22 1351.42 1321.74 1327.89 1351.41 1129.41 1351.41 1351.42 1347.97 1103.19 1096.97 1082.72 1129.4 1129.41 1129.4 1129.41 1129.05
23 1350.14 1344.51 1351.36 1351.35 1129.41 1351.36 1351.42 1347.37 1129.41 1129.09 1066.06 1127.58 858.92 1088.79 1129.41 1129.41
24 1351.42 1301.94 1319.74 1349.51 1351.42 1351.42 1351.41 1302.43 800.95 1119.95 1127.47 1129.32 1129.41 1129.41 1129.41 1129.41
25 1317.21 1216.37 1311.53 1351.08 1351.42 1351.41 1351.38 1129.4 1129.24 1129.08 1116.5 1128.41 1129.41 1129.41 1129.41 1121.23
26 1129.41 1315.47 1256.1 1335.3 1351.42 1351.42 1351.41 1351.31 1129.41 1125.3 1061.94 1129.32 1047.7 1129.4 1129.41 1129.4
27 1351.42 1317.78 1126.53 1324.41 1351.42 1349.58 1351.42 1351.02 1129.3 1127.58 1121.41 1129.39 1129.41 943.2 1129.41 1129.41
28 1351.42 1349.2 1300.28 1349.9 1351.42 1351.42 1351.4 1343.35 749.76 1077.13 1101.87 1129.32 1089.73 1129.41 1129.41 1129.41
29 1129.41 1328.87 1349.7 1351.07 1351.42 1351.41 1351.41 1351.34 1077.88 1129.01 1129.02 1129.4 982.52 1129.39 1129.41 1129.41
30 1273.17 1331.99 1344.89 1349.37 1351.42 1129.41 1351.38 1289.7 1129.41 1127.85 1129.28 1129.41 1129.41 1129.41 1129.41 1129.38
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Table A2. Cont.

Run
3rd Shading Scenario 4th Shading Scenario

ALO GSA FPA SFS IWO FA CS JAYA ALO GSA FPA SFS IWO FA CS JAYA

31 1276.8 1303.6 1350.41 1351.42 1129.41 1351.41 1351.41 1351.16 1128.19 1129.07 1094.03 1129.41 946.07 1129.41 1129.41 1129.37
32 1351.24 1351.41 1345.65 1345.3 1351.41 1268.67 1351.42 1307.63 1129.41 1129.18 1107.59 1128.7 933.17 1129.41 1129.41 1127.81
33 1347.79 1351.42 1336.77 1351.03 1171.71 1351.41 1351.42 1349.36 1024.49 1128.33 1129.24 1128.68 1129.41 1129.41 1129.41 1129.4
34 1129.41 1350.11 1336.12 1343.53 1351.41 1351.4 1351.41 1339.34 1129.27 1117.03 1129.41 1129.27 1095.82 1129.41 1129.41 1128.97
35 1350.36 1145.18 1234.84 1351.11 1351.42 1351.41 1351.42 1351.3 1129.41 1124.11 1123.52 1128.78 1129.41 1129.41 1129.41 1128.1
36 1338.01 1187.94 1241.96 1350.38 1351.42 1351.42 1351.42 1344.86 1129.41 1129.41 1057.09 1129.41 1104.2 1129.41 1129.41 1129.4
37 1351.42 1227.55 1161.49 1351.16 1351.42 1351.34 1351.42 1351.07 1129.4 1128.53 1129.05 1126.42 1129.41 1129.41 1129.41 1129.31
38 1351.42 1323.14 1351.29 1351.4 1129.41 1351.42 1351.41 1329.16 1101.91 1091.09 1129.3 1129.41 1129.41 1129.41 1129.41 1114.56
39 1351.33 1262.18 1328.17 1351.42 1300.4 1351.31 1129.41 1331.94 845.76 1125.1 1129.19 1128.11 1129.41 1129.41 1129.41 1129.41
40 1079.36 1217.94 1237.77 1348.59 1351.42 1351.42 1351.42 1343.43 875.66 1118.94 1124.1 1129.41 729.24 1129.41 1129.41 1129.41
41 1351.42 1303.94 1350.65 1351.41 1279.71 1351.41 1129.41 1338.54 1129.41 1129.19 1053.49 1129.37 1129.41 1129.41 1129.41 1129.41
42 1351.4 1331.21 1242.02 1346.4 1351.42 1351.41 1351.42 1346.44 1129.41 1126.79 1129.23 1129.41 1129.41 1129.41 1129.41 1128.99
43 1188.72 1337.84 1351.15 1350.45 1351.42 1351.42 1351.42 1351.42 1077.42 1110.95 1049.5 1129.4 1012.23 1129.41 1129.41 1129.41
44 979.57 1179.29 1345.61 1348.01 1351.42 1351.41 1351.4 1351.42 998.58 1037.38 1052 1129.31 1129.41 1129.41 1129.41 1129.41
45 1351.41 1265.6 1333.71 1351 1301.83 1351.36 1351.4 1350.91 1120.12 1122.66 1126.03 1127.33 1087.47 1129.41 1129.41 1129.04
46 1233.74 1266.76 1350.43 1351.16 1129.41 1351.42 1129.41 1351.4 1129.41 1128.94 1125.66 1129.26 1129.41 1129.41 1129.41 1129.41
47 1351.42 1322.44 1348.42 1350.46 1351.42 1351.4 1351.42 1341.63 1123.81 1126.5 1129.23 1129.1 1129.41 1129.41 1129.41 1129.41
48 1349.55 1334.55 1304.97 1351.41 1351.42 1351.42 1351.42 1351.41 1129.4 1010.06 1113.27 1129.41 906.21 1129.41 1129.41 1129.4
49 1350.54 1296.76 1340.13 1339.2 1351.42 1351.42 1129.41 1349.88 1129.41 1128.86 1105.13 1128.53 953.5 1129.4 456.99 1129.4
50 1230.65 1242.62 1338.85 1350.71 1351.42 1351.35 1351.41 1351.42 1099.05 1128.43 1126.45 1129.01 1128.88 755.25 1129.41 1129.41
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Table A3. The detailed performance of each optimizer for the 5th and 6th shading scenarios.

Run
5th Shading Scenario 6th Shading Scenario

ALO GSA FPA SFS IWO FA CS JAYA ALO GSA FPA SFS IWO FA CS JAYA

1 939.38 950.51 990.08 995.98 907.11 996.59 996.59 996.55 1351.42 1336.92 1348.42 1343.8 1351.42 1351.41 1339.96 1351.42
2 996.59 994.74 981.81 994.76 996.59 996.59 996.59 995.48 1351.42 1350.78 1199.44 1351.39 1129.41 1232.81 1351.41 1351.41
3 939.28 988.01 973.6 996.59 907.11 996.59 907.1 996.58 1129.41 1349.07 1305 1351.04 1351.42 1351.42 1351.41 1351.11
4 844.73 926.31 978.06 996.45 996.59 996.59 996.59 995.13 1319.3 1318.03 1303.07 1351.32 1351.42 1351.42 1351.41 1351.38
5 996.59 978.87 983.29 996.23 996.59 996.57 996.59 980.06 1209.81 1331.44 1224.09 1350.98 1232.81 1351.32 1351.42 1351.4
6 996.58 927.99 987.18 996.58 996.59 996.58 996.59 996.55 1350.36 1171.01 1347.6 1348 1351.42 1351.41 1351.42 1351.4
7 909.69 994.74 964.39 996.55 615.1 907.1 907.11 996.57 1232.81 1348.37 1205.61 1351.41 1351.42 1351.41 1351.41 1349.54
8 995.36 984.35 962.82 995.86 996.59 996.59 907.11 996.55 1351.42 1231.64 1351.04 1351.38 1232.81 1343.09 1351.41 1350.67
9 967.36 974.98 990.46 996.46 996.59 996.59 996.59 996.36 1351.41 1338.18 1349.93 1351.18 1351.42 1351.41 1351.4 1351.41
10 906.96 978.72 995.61 996.59 996.59 996.59 996.56 996.59 1351.41 1349.75 1350.45 1351.37 1351.42 1351.41 1351.42 1351.35
11 954.93 995.8 961.44 996.55 996.59 996.59 996.59 996.54 1223.46 1240.9 1351.01 1351.41 1129.41 1351.41 1351.41 1351.28
12 996.59 913.79 995.88 996.56 996.59 996.59 996.59 996.59 1203.42 1232.59 1200.91 1351.41 1351.42 1347.67 1351.36 1349.58
13 996.58 994.53 966.39 995.86 996.59 996.59 996.59 994.18 1351.42 1326.31 1351 1351.04 1351.42 1351.42 1351.42 1351.41
14 996.59 996.38 973.52 996.57 968.48 996.59 996.59 996.37 1351.42 1301.86 1228.04 1351.3 1232.81 1232.81 1351.42 1349.01
15 907.11 993.24 979.35 996.57 996.59 996.59 996.59 986.17 1351.42 1216.2 1281 1351.33 1351.42 1351.41 1351.41 1333.17
16 996.59 906.8 991.89 996.37 996.59 907.11 996.58 993.34 1213.4 1309.47 1337.02 1351.39 1351.42 1351.41 1351.42 1342.97
17 864.78 982.63 984.35 991.56 996.59 996.59 996.59 996.03 1349.12 1350.48 1350.88 1351.42 1351.42 1351.42 1351.42 1347.65
18 983.83 994.55 990.8 996.54 615.1 996.59 996.59 996.56 1232.81 1350.75 1350.64 1351.08 1129.41 1351.4 1232.79 1344.08
19 907.1 996.39 994.57 996.59 907.11 996.58 996.59 996.44 1114.19 1351.03 1326.12 1351.42 1351.42 1351.41 1351.42 1351.32
20 766.35 858.85 985.61 996.59 996.59 996.59 996.59 996.01 1351.42 1343.99 1312.09 1350.85 1351.42 1351.42 1129.41 1329.21
21 784.12 936.68 996.54 996.59 996.59 996.54 907.11 996.58 1351.41 1240.25 1346.05 1351.02 1351.42 1351.42 1351.39 1338.16
22 996.59 996.36 906.94 996.55 907.11 996.59 996.59 996.58 1301.8 1330.12 1345.14 1301.42 1351.42 1351.42 1351.41 1351.32
23 902.6 991.62 960.23 996.58 996.59 996.59 907.1 995.62 1232.81 1324.78 1249.8 1347.58 1351.42 1129.41 1351.42 1351.31
24 996.59 988.57 991.98 996.48 953.19 996.59 996.59 996.59 1338.74 1224.51 1227.18 1348.95 1232.81 1351.29 1351.41 1347.67
25 996.59 989.31 996.13 996.55 996.59 996.59 996.59 990.3 1128.36 1351.23 1232.66 1351.41 1348.39 1351.42 1351.41 1351.4
26 996.59 941.08 963.75 996.54 907.11 996.59 996.59 996.44 1105.75 1310.2 1350.39 1351.35 1232.81 1351.31 1351.42 1351.4
27 996.59 996.47 939.96 996.59 996.59 907.1 996.59 994.07 1351.42 1350.47 1351.37 1351.39 1351.42 1351.41 1351.42 1351.41
28 924.74 989.82 990.55 996.56 907.11 996.58 907.09 889.85 1350.96 1329.27 1350.68 1351.38 1232.81 1351.35 1232.81 1335.18
29 996.59 982.86 994.68 996.59 996.59 996.59 996.59 996.53 1351.41 1349.8 1346.01 1351.16 1351.42 1129.41 1351.42 1337.29
30 907.11 983.31 990.24 995.94 996.59 996.59 996.59 995.52 1351.32 1349.57 1332.32 1351.42 1129.41 1351.41 1351.42 1351.08
31 996.58 995.5 980.56 996.59 907.11 996.58 996.59 996.2 1232.81 1331.7 1335.1 1347.76 1232.81 1351.39 1351.41 1323.23
32 960.86 981.25 963.64 996.22 996.59 996.59 996.59 571.26 1232.81 1281.59 1323.51 1347.51 1351.42 1351.42 1351.41 1350.09
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Table A3. Cont.

Run
5th Shading Scenario 6th Shading Scenario

ALO GSA FPA SFS IWO FA CS JAYA ALO GSA FPA SFS IWO FA CS JAYA

33 907.11 996.44 993.84 996.59 996.59 996.59 996.59 986.99 1351.36 1300.8 1336.93 1342.73 1129.41 1351.41 1351.41 1351.41
34 885.45 938.28 990.12 996.44 996.59 996.54 996.59 902.57 1351.42 1223.62 1231.32 1350.45 1351.42 1351.42 1351.41 1349.11
35 866.26 905.37 996.55 995.83 996.59 996.59 907.1 996.59 1024.74 1334.06 1330.94 1350.91 1232.81 1351.42 1129.41 1349.27
36 926.53 996.42 979.84 996.59 907.11 996.55 907.11 996.36 1232.43 1335.73 1208.43 1351.41 1351.42 1351.42 1351.41 1350.39
37 996.59 996.58 995.78 996.28 996.59 996.59 996.59 907.05 1351.42 1327.92 1349.17 1345.87 1232.81 1351.42 1351.42 1342.39
38 996.59 996.22 963.32 996.48 996.59 996.59 996.59 958.68 1351.42 1287.83 1324.33 1345.1 1292.17 1351.4 1351.41 1349.15
39 996.59 996.49 961.18 993.35 907.11 996.59 907.1 996.59 1351.41 1292.35 1339.31 1351.19 1351.42 1351.41 1351.42 1351.41
40 996.59 986.92 996.44 988.93 996.59 995.58 907.1 987.75 1337.47 1341.78 1254.11 1351.16 1351.42 1351.41 1351.42 1351.42
41 996.59 911.19 989.76 996.58 996.59 996.59 996.59 887.88 1129.41 1298 1274.52 1351.41 1232.81 1351.42 1351.41 1351.16
42 907.11 983.36 985.93 996.19 907.11 996.53 907.1 996.59 1232.81 1351.37 1280.14 1345.29 1351.42 1351.42 1351.42 1351.38
43 992.82 971.77 995.25 996.59 907.11 996.59 996.59 995.88 1351.4 1299.38 1351.42 1351.4 1351.42 1351.42 1351.42 1351.37
44 996.59 972.83 993.1 996.56 907.11 907.1 996.59 996.59 1251.52 1351.35 1340.51 1349.03 1351.42 1351.41 1351.41 1231.64
45 996.44 965.42 948.62 996.59 996.59 996.59 996.59 995.47 1232.81 1291.23 1345.08 1336.01 1351.42 1351.41 1232.81 1349.7
46 857.23 946.23 956.01 995.61 996.59 996.59 907.06 996.59 1351.42 1350.83 1275.63 1351.42 1232.81 1351.42 1232.8 1351.41
47 996.59 986.65 996.59 996.59 996.59 996.59 996.59 993.91 1129.41 1225.89 1320.86 1351.37 1232.81 1351.4 1351.41 1349.22
48 907.1 996.59 970.45 996.23 907.11 996.59 907.09 996.57 1208.63 1337.53 1229.11 1343.06 1350.1 1351.41 1351.41 1351.41
49 907.02 989.8 957.72 996.51 996.59 906.98 996.59 996.33 1312.34 1296.68 1349.64 1351.31 1351.41 1351.41 1232.8 1129.38
50 996.59 992.75 996.39 996.59 907.11 996.57 996.59 990.7 1129.41 1342.95 1332.66 1351.41 1351.42 1351.42 1351.42 1232.72
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