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Abstract: Faults and unintended conditions in grid-connected photovoltaic systems often cause a
change of the residual current. This article describes a novel machine learning based approach to
detecting anomalies in the residual current of a photovoltaic system. It can be used to detect faults
or critical states at an early stage and extends conventional threshold-based detection methods. For
this study, a power-hardware-in-the-loop approach was carried out, in which typical faults have
been injected under ideal and realistic operating conditions. The investigation shows that faults in a
photovoltaic converter system cause a unique behaviour of the residual current and fault patterns
can be detected and identified by using pattern recognition and variational autoencoder machine
learning algorithms. In this context, it was found that the residual current is not only affected by
malfunctions of the system, but also by volatile external influences. One of the main challenges here
is to separate the regular residual currents caused by the interferences from those caused by faults.
Compared to conventional methods, which respond to absolute changes in residual current, the two
machine learning models detect faults that do not affect the absolute value of the residual current.

Keywords: renewable energies; photovoltaic; predictive maintenance; reliability; anomaly detection;

residual current; machine learning; reconstruction error

1. Introduction
1.1. Background

In earth-grounded power supply systems, the use of residual current devices (RCD)
has been an effective means of protecting people, animals and installations from damage
caused by currents flowing through bodies and ground earth if they exceed critical values.
In addition, residual current monitors (RCM) offer the possibility of monitoring currents
flowing through earth with the same procedure and sending a message if adjustable
threshold values are exceeded. Both types of devices record the sum of the currents flowing
to and from active conductors. If the sum of currents is not equal to zero, there are usually
undesired currents flowing back to the source via the body and earth, which are generally
referred to as differential currents (also known as residual currents) [1].

In earlier times, residual currents were essentially caused by insulation faults in
systems and were thus referred to as fault currents. Today, due to the enormous increase
in non-linear electrical loads, as well as regulated power generation systems such as
photovoltaic (PV) systems with their high-frequency controlled current converter stages,
we also see massive amounts of so-called operation-related leakage currents taking the
same path as fault currents. Measures to ensure electromagnetic compatibility (EMC) often
divert interference currents against the earth potential and amplify the operational leakage
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currents, which can have frequencies of up to 150 kHz. Furthermore, modern electrical
loads such as generators contain direct-current (DC) circuits with high voltages that can
also generate DC fault currents.

1.2. Motivation

Modern residual current circuit breakers and residual current monitors (see Table 1)
map the residual current (that is, operational leakage current + fault current) with the
help of their active summation current transformer as a total RMS value of the geometric
addition of the different frequency components. In simplified terms, the calculation is
as follows:

IResidual = \/(ILeakage)z + (IFuult)zz (1)

where Igesigua represents the effective differential current, I1eqx,qg. the leakage current and
Irqus the fault current. Due to the physically determined geometric addition of the residual
current components, this results in different constellations, for example, the challenge
of being able to detect a low but critical fault current in a system with a high leakage
current component.

A new generation of smart RCM are using the residual current data frequency, selective
over a broad frequency range. This makes it possible to achieve completely new protection
concepts that minimize failure, fire, corrosion and other risks. Thus, in addition to the sum
effective signal, effective values of discrete frequencies and frequency ranges are extracted
from the residual current signal. This approach makes it possible to separately detect a
very small fault current, for example, at 50 Hz or DC, despite a high leakage current in
high-frequency ranges.

Table 1. Overview of state-of-the-art systems to detect and analyse residual currents.

. . Environmental Separation Leakage &
Device Type Frequency Range Fault Detection Adaption Fault Current
Conventional RCD f =50 Hz, single band Fixed threshold No No
type A
Conventional RCD  DC, f > '50 Hz Fixed threshold No No
type B (harmonics), single band
Conventional RCM f > 50 Hz (harmonics), Variable threshold No No

single band (manually set)
Frequency selective
Smart RCM DC < f <100 kHz, variable threshold  No Yes

multiple bands

(manually set)

1.3. Contribution

This article describes a machine learning based approach to analyse the residual
current on the AC side of a grid-connected PV system over a broad frequency range in
realtime. The approach combines a smart RCM sensor system with two machine learning
algorithms (pattern recognition and variational autoencoder). The goal of this approach
is either to automatically adapt to different environmental conditions as well as to pre-
maturely detect faults or critical states (“predictive maintenance”) in grid-connected PV
systems to enhance the functionality of modern detection methods. Section 2.1 briefly
describes the input data used for the analysis followed by Sections 2.3 and 2.4 describing
the principle of the used machine learning algorithms. The laboratory experiments are
described in Sections 2.5 and 2.6 of this article followed by the test results representing pure
fault patterns in Section 3.1 and the results of the algorithm training and fault detection
in Section 3.2. The terms failure, fault and error are used in the sense of the terms defined
in [2]
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1.4. Related Works

Stylianos et al. [3] briefly discuss identification methods detecting faults on the DC side
of a PV system. Various fundamental strategies, such as I-V curve analysis and machine
learning approaches, are compared regarding efficiency, reliability and economic aspects.
Another brief overview about typical faults as well as machine learning based detection
algorithms in PV systems is given in Kumaradurai et al. [4].

Fazai et al. [5] use a Gaussian process regression (GPR)-based generalized likelihood
ratio test (GLRT) named approach to detect faults such as bypass diode and mismatch faults
on the DC side of a grid-connected PV system. The approach measures and analyses the
output values (DC voltage and current) of a PV array. Principle component analysis (PCA)
in combination with support vector machines (SVM) to detect especially incipient faults
on the DC side is shown in Attouri et al. [6]. In this work, experiments were conducted
variating the line to ground resistance in a PV system. The methodology of PCA for fault
detection and diagnosis is also used in Hajji et al. [7], where several faults on the DC and
on the AC side of an emulated grid-connected PV system have been injected. Supervised
machine learning approaches have been used for analysing the system’s common signals
(DC and AC output voltage and current).

2. Methodology
2.1. Dataset

The analysed dataset consists of residual current data, which are measured using a
closed loop ferrite sensor with multiple magnetic coupling circuits for different frequency
bands (see Table 2). The data are sampled at a rate of fg = 200 kHz. All measures are taken
in a range from 1 mA-30 A separated into three, automatically switched measurement
ranges (0-3000 mA, 3000 mA-10,000 mA and 10,000 mA-30,000 mA). The applied accuracy
per range is at least 1% or better. The collected data are transmitted to a cloud-based
machine learning environment at an interval of 1/s.

Table 2. Measured sensor channels.

Name Unit Description

DC mA Direct current component of residual current
AC mA Sum of all alternating current components
50 Hz mA Residual current in 50 Hz band

<100 Hz mA Residual current in below 100 Hz band

150 Hz mA Residual current in 150 Hz band

100 Hz-1 kHz mA Residual current in mid frequency band

>1 kHz mA Residual current in 1 kHz band

>10 kHz mA Residual current in high frequency band

2.2. Input Data Preparation

For data processing, the sensor values are collected and converted into SI units rep-
resenting floating point numbers. After acquisition, the samples are stored in a database
together with the timestamp of the measurement. The sampling period is not constant, but
is in the range of 1 s. There is also model-specific data processing, which is described in the
subsections for the two machine learning methods used in this project. The following is
true for both models:

*  Resampling: Due to the varying sampling period it is necessary to convert the data to
a dataset with a constant sampling period;

*  Removal of duplicates;

¢  Filling of missing values. Forward filling, followed by backward filling is used.
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2.3. Pattern Recognition

The “Anomaly Factor Estimator” algorithm attempts to generate a set of valid hy-
potheses for each time of day and type of day. A hypothesis is defined by the pattern of
data from the time series and by what period of the day it may occur and how many times
it was seen.

The analysis of the training data first starts with the segmentation of the time of day.
Each segment found contains a pattern that can occur in its time range. If a similar pattern
is not already present in the hypothesis set, the hypothesis set is expanded. This process is
repeated for each day of the same type and for each day type (e.g., days with different solar
output). In the end, a set of hypotheses is obtained in which each time-of-day hypothesis
is defined by a set of segments. Since there is no guarantee that the training data itself is
free of anomalies, the next step is to clean the hypothesis space. In this case, hypotheses of
the same time segment are compared. Highly discrepant hypotheses are removed from
the hypothesis space. The third step of training is to find a threshold above which a model
defines a deviation as an anomaly. This process is performed by a simple pass through
each hypothesis space. Each hypotheses from its hypothesis space is compared to the other
hypotheses in the same space to evaluate the deviation, and the respective maximum of the
deviation of the anomaly factor is defined as the threshold.

When analysing the measured realtime data, the model finds possible hypotheses
for each data point at that time. For each hypothesis, the model compares the hypothesis
pattern with the actual pattern and calculates the anomaly factor. The comparison of the
patterns is done by comparing the maximum, minimum and mean of the two patterns.
The result is the minimum value of the anomaly factor of each hypotheses for that time of
day. This value of the anomaly factor is very unstable, so smoothing is performed with a
low-pass filter. If the new value is higher than the previous one, the change of the anomaly
factor is faster, if it is lower, the change is correspondingly slower.

In the next step, the model tries to evaluate the reliability of the analysis and the state
of the model. To evaluate the reliability, new unknown data sets are compared with the
training hypotheses during runtime and new hypotheses are formed if necessary. For
a specific estimate of the reliability of the anomaly factor, both hypothesis spaces from
new data and training data are compared by calculating the variance. The more similar
the two hypothesis spaces, the more reliable the output of the anomaly factor. While the
reliability of the analysis or the anomaly factor is only evaluated on the basis of the subsets
of the hypothesis spaces, the evaluation of the model or health status is based on the entire
hypothesis space. Here, the variance between training hypotheses and runtime hypotheses
also provides information on the extent to which the current overall model deviates from
the original model. Shortly after training, the variance is 1, since training hypotheses and
runtime hypotheses are almost the same. The more the system to be monitored deviates
from the original system due to external influences, the lower the variance. If this value falls
below a defined threshold, the model is trained again using the new data (model retraining).

2.4. State Estimation

The state estimation model has two combined purposes: (1) to learn and predict a
distinct state representation of the system under observation; and (2) to detect anomalies in
the observations.

Learning a state representation [8,9] for an electrical system like a production plant
or a solar inverter requires learning a mapping function from the measured multivariate
electrical input data (residual current measurements) to estimate modes of operation of
the system. Such a mapping function has to meet certain objectives. In our use-case one
key objective is to find latent states for disjoint operational modes of the system. An
alternative objective could be to identify generative factors, which correspond to on-off
states of individual machines or system parts. The later objective is aligned to methods in
the area of unsupervised non-intrusive load monitoring (NILM), while the first objective is
considered more suitable for the conducted experiments. A classical approach to find a
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mapping function is to apply a dimensionality reduction method on the multivariate input
data and to perform a clustering on the reduced state representation. However, classical
dimensionality reduction methods like principle component analysis (PCA) [10] follow
unsuitable objectives (e.g., maintain variance) instead of preserving information for disjoint
modes of operation.

2.4.1. Variational Autoencoder

To gain control over the objectives of the state mapping function, the method of au-
toencoders [11] has been selected. Autoencoders are machine learning models which learn
to represent multivariate input data through an intermediate latent space representation.
The latent space representation can have a smaller dimensionality than the input data
dimensionality. With a smaller latent space, an autoencoder performs the combined task of
dimensionality reduction and state mapping. Autoencoders provide already some level of
control over the objectives for latent space representation via regularization (e.g., sparsity
of latent space values). However, regularization provides only limited influence on the
properties of the selected representation in the latent space. Recent work on variational
autoencoders [12] has focused on finding state representations, which are based on an
estimation of disjunct generative factors for the observed input data. A variational autoen-
coder enforces a very dense representation of the input data in the latent space. Under
such constraints, individual elements of the latent space tend to represent the activity of
each of the generative factors. A variant of variational autoencoders, the beta-VAE [13],
provides even better control of the goal of the mapping function by providing a parameter
beta that controls whether the model focuses either on reconstructing the input data or on
separating the generative factors. It has been shown in [14] that a dense representation of a
variational autoencoder favours a separated placement of generative factors in dimensions
of the latent for certain use cases. This is also the main driver to select a beta-VAE for
learning a state representation for the electrical input data.

In the next step of the processing pipeline, the generated state representation values
are clustered to identify states which are found frequently in the training data. The resulting
clusters are used as training data to classify new state representation values. Since the
placement of states in the state representation space is stochastic when using a VAE, a
post-processing step of state labels is done by reordering the states in a way that states with
a high interconnection are close together in the label space (states are labelled with integers).

2.4.2. Anomaly Detection

Besides estimation of a state mapping, autoencoders also provide the basis for anomaly
detection (2). Autoencoders are trained to reconstruct the input data on the output neurons.
For new unseen input data, a reconstruction is calculated and the difference between the
input data and the predicted reconstruction is evaluated (reconstruction error). This error
produces a useful signal for the detection of anomalies. The higher this scalar error value
is, the more likely it is that the distribution of the input data is not part of the training data.

The resulting data processing pipelines for training and prediction are shown in
Figure 1. During training (Figure 1a), the multivariate sensor input data are transformed,
cleaned and resampled to a 1min period to prepare the data for the autoencoder training.
The autoencoder model is then fitted by applying the data to the inputs and the outputs of
the symmetrical autoencoder neural network. Using a gradient descent based optimizer,
the autoencoder learns to reconstruct the input on its output neurons. The centre of the
autoencoder contains a narrow layer of neurons called the latent space. The narrowness
of this layer forces the autoencoder to learn a compressed representation of the input
data, since it has to reconstruct each input sample through this narrow vector space.
After the training of the autoencoder, the compressed representations of all input samples
from the training data are taken and a k Means clustering is performed over those state
representation values. Those clusters represent the estimated states of the system observed.
Finally, the states are ordered to give states a numerical representation which represents
close proximity of occurrence. The clustering result and the state transformation table are
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stored in the model. For prediction (Figure 1b), new data samples are transformed and
resampled and are then fed into the autoencoder. The resulting reconstruction is used to
calculate a relative reconstruction error. The compressed state representation is taken from
the latent space, transformed via the stored table and delivered as a state estimation. In
the context of this project, the training and evaluation of the model has been performed
in two different configurations. In the first configuration, the complete time series is used
for training, including the phase of normal operation and the phases with injected faults.
The resulting model is used to evaluate the phases with induced faults. In the second
configuration only the data from normal operation is used for training and the evaluation
is conducted for the phases with injected faults.

d State Estimation Training Pipeline

latent
space

clustering transformation
kMeans table
encoder decoder |[€——
reconstruction
error
means

b State Estimation Prediction Pipeline

multivariate
training data
(RC values)

scaling
cleaning

state
estimation

transformation

classification

scaling
- encoder decoder
cleaning <
relative relative
reconstruction reconstruction
error error
multivariate
sensor data
(RC values) Y,

Figure 1. Simplified models of the data processing pipelines: (a): Principle of the state estimation
training pipeline. (b): Principle of the state estimation prediction pipeline.

However, it is obvious that in the first configuration it can be assumed that there is
a higher probability to identify the different faults as different states, while in the second
configuration the effects of injected faults would be more likely identified as anomalies
with increased reconstruction error.

2.5. Experimental Data Acquisition

The experiments discussed in this article have been mainly performed with a Power-
Hardware-in-the-Loop (PHIL) setup using a Regatron TC.ACS grid simulator and two
Elektro-Automatik EA91000PSI DC sources. As Device-Under-Test (DUT) a SMA Sunny
Tripower 15000kTL-30 PV inverter has been chosen. Figure 2 shows the principle of the
test setup.
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Local Data Capturing and

Serial/USB = Analysing

Ethernet/LAN

smart.RCM :
{ Cloud 3 PoE Switch

Power Measurement

PV Simulator

PV Inverter (DUT) Failure Simulation Grid Simulator
Area

Figure 2. Principle of a Power-Hardware-in-the-Loop test setup used to physically emulate faults in
a grid-connected PV system and to analyse the effect of those faults on the residual current.

The grid simulator provides stable, non-fluctuating grid conditions needed to elim-
inate the uncontrolled effects on the residual current from the public grid. In this case,
the simulator is a semiconductor based power amplifier with a nominal output power
of Syom = 30 kVA [15]. For the tests, standard grid conditions with an RMS voltage of
Urn = 230 V (phase-neutral) and a frequency of f = 50 Hz have been chosen. To add a
more realistic grid behaviour to the setup, the neutral has been grounded during the whole
experimental period.

The DC sources [16] are used, running in PV simulator mode to provide the input
power for the DUT. For the experiments, a standard PV curve as shown in Table 3 has
been set.

Table 3. Photovoltaic simulator parameters used to simulate the irradiation behaviour of a typical

PV plant.
Parameter Value
Open Circuit Voltage Uoc =750V
Short Circuit Current Isc =9 A
Voltage @ Maximum-Power-Point (MPP) Uppp = 600 V
Current @ MPP Iypp = 8 A
Power @ MPP Pyipp = 4.8 kW

The residual current has been measured with an RCM sensor DCTR B-X Hz 035-
PoE [17] installed on the DUT side of the fault emulation area.

2.6. Scenario Description

Table 4 shows five fault scenarios that were physically emulated in the laboratory
experiments. In the following Sections 2.6.1-2.6.5, the causes of the errors and the detailed
implementation of those are discussed.
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Table 4. Overview of the physically emulated fault scenarios in the laboratory experiments.

Scenario Number Description
1 Instantaneous increase of the capacitive resistance
2a Instantaneous decrease of the ohmic resistance
2b Gradually decrease of the ohmic resistance
3 Increased series resistances and broken lines
5 DC electric arcs

2.6.1. Scenario 1: Instantaneous Increase of the Capacitive Resistance

The cause of an increase in capacitive resistance is, among other things, the degradation
of the insulation due to ageing and external influences such as moisture or contamination.
In this case, the cable to ground capacitance increases with time. To emulate this effect,
external capacitors, connected between line and ground, with values from C = 0.22 nF to
C =680 nF are used (Figure 3).

DUT
DC 3 — u

AC N

B\ S

1 C=const.

B I B

Figure 3. Physical emulation of faults in an inverter based energy system: Instantaneous increase of
the capacitive resistance between line and ground.

2.6.2. Scenario 2a: Instantaneous Decrease of the Ohmic Resistance

Ground faults and short circuits due to cable damage cause an immediate change in
the ohmic resistance between the affected lines. To emulate this behaviour, variable power
resistors have been connected between line and ground as shown in Figure 4.

DUT 7
DC ‘ — L1

AC | N

B\ S

i R=const.
i

‘—-— PE

Figure 4. Physical emulation of failures in an inverter based energy system: Instantaneous decrease
of the ohmic resistance between line and ground.

2.6.3. Scenario 2b: Gradually Decrease of the Ohmic Resistance

Responsible for a relatively slow decrease of the ohmic resistance from line to ground
over the time is, among other things, the degradation of the insulation due to ageing and
outside influences like humidity or soiling. Manually decreased variable resistors are used
to investigate the effects of those creeping failures on the residual current (Figure 5).
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DUT
DC | — u

AC [~ N

P :,__ — PE

Figure 5. Physical emulation of faults in an inverter based energy system: Slow decrease of the ohmic
resistance between line and ground.

2.6.4. Scenario 3: Increased Series Resistances and Broken Lines

Line breaks are often a result of long-term mechanical stress and can lead to arcing
and fires (Figure 6a). On the other hand, preceding deterioration of connections due to
corrosion can lead to an increase in series resistance (Figure 6b). This leads to a sharp rise
in temperature at the point of increased resistance and ultimately to a greatly increased risk

of fire.
DUT DUT

DC u DC u
2 2
3 3

~
AC ; N AC N

S

[

[

‘ =
oD o e

,,,,,,,,,, PE —

Figure 6. Physical emulation of faults in an inverter based energy system: (a): Instantaneous
disconnection of the neutral line N. (b): Slow increase of the ohmic series resistance of the ground
potential PE.

2.6.5. Scenario 5: DC Electric Arcs

Arcing due to cable damage or contact problems can cause dangerous secondary
effects such as fires, especially in DC circuits. To determine the effects of arcing in a DC
circuit on the fault current, experiments were conducted using a special experimental setup
(Figure 7) to generate arcs. A simple DC source with a constant output voltage Upc = 80 V
is used in combination with an arc generator consisting of two separable copper wires. The
arc is generated in parallel with a resistor Ry = 10 k().

smart.RCM .
@ PoE Switch
H Measurement

Upc=80V ) DCTR R=10kQ § ‘\"} :er;erator

Figure 7. Principle of a test setup used to generate arcs in a DC system to analyse the effect of those
on the residual current.
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3. Results and Discussion

The experiments are divided into two main phases. In the first phase, the pure effects
of the injected faults on the residual current shall be determined and analysed. Therefore,
parasitic influences have been minimized by operating the DUT in constant voltage mode
with a fixed DC voltage Upc = 600 V without any redundant control algorithms. The
results of this experiments are discussed in Section 3.1. Subsequently, in the fault detection
phase, the DUT has been provided with an input power time series representing a typical
irradiation curve to achieve a more realistic behaviour. In this phase, some of the faults
have been reproduced to determine if the algorithm is able to detect these faults. The results
are discussed in Section 3.2.

3.1. Fault Patterns
3.1.1. Scenario 1: Instantaneous Increase of the Capacitive Resistance

As shown in Figure 8, the residual current Irc increases at relatively high capacities
esp. in the frequency ranges f < 100 Hz and f > 1 kHz. Capacities 0.22 nF < C < 10nF
do not have a visual effect. The DC part is also not affected.

80 T
470nF 680nF ——DC
50Hz
60 F ‘ <100Hz
— 150Hz
— 100Hz - 1kHz
<E: >1kHz
~ >10kHz 7
[¢]
_UZ
16:30 16:45
Feb 23, 2021

Figure 8. Experimental results of scenario 1: Behaviour of the residual current depending on
immediately switched capacitors between line and ground.

3.1.2. Scenario 2a: Instantaneous Decrease of the Ohmic Resistance

As a result of this experiment, Figure 9 shows the behaviour of the residual current
Irc when external resistors are immediately switched between line and ground. Down to a
resistance R = 100 () the current increases rapidly in the frequency range f < 1 kHz, while
the upper frequency ranges and the DC part are not affected. At resistances R < 100 €3, the
residual current increases over the whole observed frequency range including DC.

105 T T
—DC

50Hz 27Q
4 <100Hz 500 ‘
107 | ——150Hz ey 3
——100Hz - 1kHz 10092
>1kHz

3 >10kHz
2 10° F 50092 E
9550 S

c(m

14200

= 102 [— h E
{ ;Mwm~ MM | ]

L |
Vs
M T T
] S L i e
S Y S R S I 0 o |
0 A R 1111
13:28 13:30 13:32 13:34 13:36 13:38 13:40 13:42 13:44 13:46 13:48 13:50 13:52 13:54
Feb 23, 2021

101,

Figure 9. Experimental results of scenario 2a: Behaviour of the residual current depending on
immediately switched resistors between line and ground.
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3.1.3. Scenario 2b: Gradually Decrease of the Ohmic Resistance

Analogue to the experiment before, the residual current in the lower frequency ranges
gradually increases with the decrease of the resistance. At resistances lower than R ~ 100 (),
also the higher frequency parts and the DC part are affected, as shown in Figure 10. In
this case, the resistances started at R ~ 1.4 k() (1) respectively R ~ 160 2 (2) and have
been manually decreased to an end value of R ~ 230 Q) (1) respectively R ~ 27 () (2).
Notably, the higher frequency ranges do not show the same gradual increase than the lower
frequency ranges and DC but are limited to a certain value. The cause for this behaviour can
be explained with the switchover to another measuring range of the used DCTR sensors.
The spikes on the graph at Izc ~ [30 mA, 100 mA, 300 mA, 1 A, 3 A] can be also tied to the
adjustment of the measuring range.

[ DC \ /,///
50Hz M
| <100Hz /
10%F //»T 150Hz 1
et 100Hz - 1kHz
L >1kHz
< / 1 >10kHz

E 02k ‘ 2 1

(@] \

e LAY
ey I
WuW A
Y e

14:14 14:16 14:18 14:20 14:22 14:24 14:26
Feb 23, 2021

Figure 10. Experimental results of scenario 2b: Behaviour of the residual current depending on
slowly decreasing resistances between line and ground. 1: Resistance decreased from R = 1420 (2 to
R =234 (). 2: Resistance decreased from R = 158 () to R = 27 Q.

3.1.4. Scenario 3: Increased Series Resistances and Broken Lines

Figure 11 shows the behaviour of the residual current, when a series resistance is
connected in line with the ground potential PE and manually increased starting at R ~ 0 ()
to an end value of R = 10 Q). In this case, the residual current Izc in the frequency range
f > 1kHz decreases from Igc 1x ~ 19 mA to Igc 1k = 16 mA. At higher frequency ranges
f > 10 kHz the residual current decreases from Igc 10 ~ 14 mA to Igc 10r ~ 10 mA. In the
other frequency ranges including the DC part, no effects can be determined.

A complete disconnection of the neutral line N (Figure 12) from the DUT causes a drop
of Igc mainly in the lower frequency ranges f < 1 kHz. Contrary to a manipulation of the
ground potential, the higher frequency parts f > 1 kHz do not show visual differences.

50 T
——DC
50Hz
40 - <100Hz i
150Hz
——100Hz - 1kHz
>1kHz
g 301 >10kHz
2
— 20 ﬁ«\_w‘.w'A“_'unr‘f_ﬂ\ e T ;"wr\'rw‘f'ﬁv—v\—hw\‘m a
‘ ! : ‘QJ—V—W“U—‘M\M« \ | _‘
T |
L WA—W”U‘—\_M_WV_AVA VU A I~ ,
10 |- w_\‘M—V—V'\_A—J‘ -
AL A\ ] A\ Il 1A I |
T T e T e e I o an i sl oo T s 10 oo s bt
0 kﬁé VUV TWA BT I LI I Arigh-4 LIV A 1 ivi »‘M

17:22 1728 17:24 17:25
Mar 01, 2021

17:16 17117 17118 17:19 17:20 17:21

Figure 11. Experimental results of scenario 3: Behaviour of the residual current depending on slowly
increasing series resistances 0 < R < 10 () connected in series with the ground potential PE.
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Figure 12. Experimental results of scenario 3: Behaviour of the residual current in combination with
an immediately disconnected neutral line N.

3.1.5. Scenario 5: DC Electric Arcs

An arc in the DC circuit generally causes measurable high frequency parts over the
whole observed bandwidth, as shown in Figures 13 and 14. In this experiment, arcs with
different load currents 2 A < Ipc < 20 A have been produced using the setup described
in Figure 7. The level of the nominal current does not seem to have a visual effect on the
residual current at all. Since this is a DC-based setup, the DC part of the residual current is
faded out.
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Figure 13. Experimental results of scenario 5: Behaviour of the residual current influenced by
manually produced arcs in a DC circuit.
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Figure 14. Experimental results of scenario 5: Detailed view of the residual current in combination
with a manually produced arc at a load current Ipc = 10 A.
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3.1.6. Summary

Table 5 provides an overview about the subjectively perceived behaviour of the resid-
ual current under the influence of the physically emulated faults.

Table 5. Summary of the subjectively perceived effects of specific faults on the residual current
separated into frequency parts. 1: Influenced by sensor effects; 2: For ground potential PE; 3: For
neutral line N.

F R Scenario
requency Range

qanency Rang 1 2a/2b 32 33 5
DC — — 1 — —
f>50Hz 1 1 — — 1
f <100 Hz 0 1 N ! 4
f =150 Hz Ve 1 - 1 1
100Hz < f < 1kHz e T — K T
f>1kHz 1 1 \ ! 4
f >10kHz 0 51 . ! 4

3.2. Fault Detection
3.2.1. Training Phase

Figure 15 shows the residual current (Figure 15a) depending on a DC power Ppc
timeseries (Figure 15b) used as input data for the PV simulator to achieve a realistic infeed
behaviour of the DUT. The timeseries is based on infeed data measured at a PV plant
located at the DLR Institute of Networked Energy Systems. For the tests, two days have
been chosen representing a cloudy and a sunny day. The datasets of both days have been
combined and aggregated to one single curve with a length of ~7 h.
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Figure 15. (a): Residual current on the AC side of a PV inverter depending on a typical DC input
power timeseries. (b): DC Input power timeseries as input data for the PV simulator based on
combined and aggregated infeed measurements. The first half of the curve represents a sunny day,
while the second half represents a cloudy day.

The algorithm has been trained using this dataset for two days to learn the systems
normal behaviour. During the training phase, all control algorithms of the DUT were
activated. One effect that can be seen in these curves is the shading management algorithm,
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a common method to handle module shading. In this case, the inverter starts passing
through the whole PV curve every 5-6 min to detect whether there are local MPPs beside
the global MPP with the highest DC power, a phenomenon that is typical for partly shaded
PV modules. In the residual current, this algorithm has the highest impact in the upper
frequency ranges f > 10 kHz. Although there is no direct correlation between the residual
current and the input power visible, the residual current has a high fluctuation especially in
the frequency range f > 1 kHz due to the input power changes. At approx. 09:30 and 12:45,
the residual current drops throughout the whole frequency bandwidth except f > 10 kHz
and DC.

After the two-day training phase, some fault scenarios were reproduced under normal
operating load. The purpose of these experiments is to investigate the ability to detect
injected faults under normal operating conditions. A selection of three important scenarios
is discussed in the following sections. For each scenario the resulting residual current
compared to the reconstruction error given by the state estimation algorithm and the
anomaly factor given by the anomaly factor algorithm is shown.

3.2.2. Scenario 1: Instantaneous Increase of the Capacitive Resistance

The basic setup of the experiment is described in Section 2.6.1. As can be seen in
Figure 16, the absolute value of the residual current does not increase significantly com-
pared to the experiments from phase 1 (Section 3.1.1). This can be explained by the fact that
in this experiment the inverter is operated under realistic operating conditions and thus
the operational leakage current is generally increased compared to the experiments of the
first phase. On the other hand, both the reconstruction error and the anomaly factor show
increased values during the fault emulation. The highest reconstruction error with ~700
is recorded at a capacity value of 680 nF. For the anomaly factor, the dominant frequency
ranges are below 100 Hz.
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Figure 16. Analysis results of scenario 1: Instantaneous increase of the capacitive resistance by adding
capacitors (680 nF at 11:10, 470 nF at 11:35 and 220 nF at 12:48) between line and ground.

3.2.3. Scenario 2b: Gradually Decrease of the Ohmic Resistance

The basic setup of the experiment is described in Section 2.6.3. As can be seen in
Figure 17, a slow change in resistance does not result in a visible increase in residual current
in this experiment either. The reconstruction error increases with decreasing resistance up
to a value ~22,000. With constant resistance, the reconstruction error remains at ~15,000.
As the resistance increases, the reconstruction error drops back to the initial value. The
anomaly factor shows a similar behaviour and increases in the frequency range <100 Hz
with decreasing resistance up to a value of ~140 (for the frequency range 50 Hz).
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Figure 17. Analysis results of scenario 2b: Gradually decreasing (starting at approx. 8:50) respectively

increasing (starting at 9:05) resistive load 230 () < R < 1.4 k() between line and ground.

3.2.4. Scenario 3: Increased Series Resistances and Broken Lines

The basic setup of the experiment is described in Section 2.6.4. As can be seen in
Figure 18, a line interruption leads to an immediate drop in the residual current. It is
noteworthy that in this experiment mainly the 150 Hz < f < 10 kHz ranges are af-
fected, while in the experiments of the first phase (Section 3.1.4) mainly the low-frequency
50 Hz < f < 1 kHz range was affected. The reconstruction error shows a small increase
from 10 to 40 during the interruption, while the anomaly factor records no significant change.
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Figure 18. Analysis results of scenario 3: Interruption of the neutral line N.
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4. Conclusions

The goal of this project was a feasibility analysis that provides information about the
possibility to detect and identify faults in inverter based energy systems using two machine
learning approaches (pattern recognition and variational autoencoder) as a further stage of
modern smart residual current monitors.

Experiments have shown that specific faults in an inverter based energy system have
a significant impact on the residual current over a broad frequency range. Each of the fault
emulations chosen for these tests produces a unique fingerprint that makes it certainly
possible to detect and identify those faults using machine learning based algorithms.
Another aspect that has been found was that the change of the input power as well as other
outside influences, such as control algorithms, also affect the residual current. One of the
main challenges at that point is the separation of those regular leakage currents caused by
the interferences from the fault currents which are caused by faults. An algorithm has to be
well trained to learn the system’s normal behaviour considering the whole bandwidth of
possible system states.

Regarding the DCTR sensors, the switching of measuring ranges and as a consequence
the change of the resolution also causes different measurement values that are not a result
of faults and that could be misinterpreted. This effect has to be considered when designing
a hardware sensor for this purpose.

Compared to conventional threshold-based methods, which are responsive to absolute
changes of the residual current, the described approach basically allows for recognizing
faults that obviously do not affect the total RMS value of the residual current. Physically
emulated faults under nearly realistic conditions have shown that the reconstruction error
and/or the anomaly factor detect these faults, while the absolute value of the residual
current often does not show any significant changes despite the fluctuations caused by
outside influences. It has to be considered that the experiments described in this article are
performed using a laboratory setup that does not reflect the all-embracing behaviour of a
grid-connected PV system. It is to be expected that in real PV plants, small signal levels
especially are not that easy to detect since the Signal-to-Noise Ratio (SNR) is higher due
to the outside influences from the grid and the behaviour of the inverter. Therefore, it is
necessary to perform more investigations in real PV plants to improve the signal processing
and to optimize the algorithm.
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Abbreviations

The following abbreviations are used in this manuscript:

MDPI  Multidisciplinary Digital Publishing Institute
DOAJ Directory of open access journals

PV Photovoltaic

DC Direct Current

RMS  Root Mean Square

DUT  Device Under Test
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MPP  Maximum Power Point
PoE Power-over-Ethernet
RCM  Residual Current Monitor
RCD  Residual Current Device
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