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Abstract: This paper presents a comprehensive study of winter temperatures in Norway and northern
Sweden, covering a period of 50 to 70 years. The analysis utilizes Singular Spectrum Analysis (SSA) to
investigate temperature trends at six selected locations. The results demonstrate an overall long-term
rise in temperatures, which can be attributed to global warming. However, when investigating varia-
tions in highest, lowest, and average temperatures for December, January, and February, 50% of the
cases exhibit a significant decrease in recent years, indicating colder winters, especially in December.
The study also explores the variations in Atlantic Meridional Overturning Circulation (AMOC) varia-
tions as a crucial climate factor over the last 15 years, estimating a possible 20% decrease/slowdown
within the first half of the 21st century. Subsequently, the study investigates potential similarities
between winter AMOC and winter temperatures in the mid to high latitudes over the chosen locations.
Additionally, the study examines another important climatic index, the North Atlantic Oscillation
(NAO), and explores possible similarities between the winter NAO index and winter temperatures.
The findings reveal a moderate observed lagged correlation for AMOC-smoothed temperatures,
particularly in December, along the coastal areas of Norway. Conversely, a stronger lagged correlation
is observed between the winter NAO index and temperatures in northwest Sweden and coastal areas
of Norway. Thus, NAO may influence both AMOC and winter temperatures (NAO drives both
AMOC and temperatures). Furthermore, the paper investigates the impact of colder winters, whether
caused by AMOC, NAO, or other factors like winds or sea ice changes, on electrical power and
energy systems, highlighting potential challenges such as reduced electricity generation, increased
electricity consumption, and the vulnerability of power grids to winter storms. The study concludes
by emphasizing the importance of enhancing the knowledge of electrical engineering researchers
regarding important climate indices, AMOC and NAO, the possible associations between them and
winter temperatures, and addressing the challenges posed by the likelihood of colder winters in
power systems.

Keywords: winter temperatures; Atlantic Meridional Overturning Circulation (AMOC); weakening;
North Atlantic Oscillation (NAO); Singular Spectrum Analysis (SSA); electrical power and energy systems

1. Introduction
1.1. Problem Description

Climate change has heightened global concerns, imposing a comprehensive under-
standing of its regional effects to develop effective adaptation strategies. In Scandinavia,
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Sweden and Norway face severe winters that rely heavily on stable electrical power and
energy systems to meet specifically heightened heating demands. However, studies such
as [1,2] indicate that climate change may induce substantial alterations in the Atlantic Merid-
ional Overturning Circulation (AMOC), as a crucial component of global oceanic circulation.
The AMOC includes a northward surface warm water flow (upper 1000 m) of North At-
lantic drift, which is balanced by the southward cold deep flow (1000–5000 m) [2–4]. It
plays an essential role in climate by transporting heat, freshwater, and carbon [5–7]. AMOC-
associated poleward heat transport substantially contributes to the North American and
continental European climates [8,9]. The Gulf Stream (GS), in contrast to other western
boundary currents, is expected to slow down because of the AMOC weakening. North
Atlantic Oscillation (NAO) is also another key climatic index. According to a traditional
definition, it is “the difference of normalized sea level pressure anomaly between Iceland
and the subtropical eastern North Atlantic” [10]. The changes in AMOC/GS, in terms of
weakening, have the potential to impact winter temperatures in the European climate [11]
and possibly the regions of Scandinavia. The impact of NAO on the AMOC and/or cli-
mate change is also probable [12,13]. Consequently, investigating the possible influence of
AMOC/NAO on Sweden and Norway’s winter temperatures becomes imperative to assess
the vulnerability of their power and energy systems. Hence, there is a knowledge gap in
analyzing historical temperature data, examining AMOC/NAO variations, and evaluating
their potential effects on power generation and energy systems.

1.2. Literature Review

Several studies have been conducted on the AMOC and GS patterns and trends. The
variability in the AMOC is credited to wind forcing (interannual time) and to geostrophic
forces (interannual to decadal scales) [14]. Increased freshwater fluxes from melting Arctic
Sea and land ice can make “open-ocean convection” and “deep-water formation” weaker in
the Labrador and Irminger Seas, leading to AMOC weakening [11,15]. While one study [15]
has suggested that the AMOC has weakened over the past 13,000 years, and another
study [16] suggested slowing on faster timescales, there is insufficient data-based evidence
to support a conclusion of AMOC-weakening strength over the 20th century in a long-term
view [17] or the last 50 years [14]. Some studies have shown long-term trends [18,19];
however, combining sparse data and large cyclic variability may also cause an improper
understanding [20]. Later, several high-resolution modeling studies, constrained with
limited data, suggested that the detected AMOC weakening at 26◦ N from 2004 is mainly
due to natural variability and that anthropogenic forcing has not yet produced a substantial
AMOC weakening. In addition, direct observations of the AMOC in the South Atlantic
fail to demonstrate an anthropogenic trend unambiguously. Moreover, under a higher
scenario (RCP (Representative Concentration Pathway) 8.5) in CMIP5 (Coupled Model
Intercomparison Project Phase 5) simulations, the AMOC will likely weaken over the
21st century [21], with a decline ranging from 12 to 54% (with uncertainty in the AMOC
behavior projections). Another study [22] predicts a possible AMOC decline between 34
and 45% over the 21st century. According to this study, in a lower scenario, such as RCP4.5,
CMIP5 models forecast a 20% AMOC weakening within the first half of the 21st century,
followed by a subsequent stabilization (minor recovery). The projected AMOC weakening
will be counteracted by deep ocean warming (below 700 m), which will be disposed to
make the AMOC strong. The saltiness transport versus observations in the models, as a
criterion of AMOC stability, showed complicated situations.

However, some argue that coupled climate models require correction for the known
bias and that AMOC variations could be even larger than the gradual decreases predicted
by most models, explaining if the AMOC were to entirely shut down and “flip states”.
Any AMOC slowdown could result in less heat and CO2 absorbed by the ocean from the
atmosphere, which is positive feedback to climate change [21].

Zhang et al. [23] analyzed data obtained from temporally homogenous two-satellite
merged altimeter observations from 1993 to 2016 and inferred that the transport, max-
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imum surface speed, and meridional location of the GS exhibit negative linear trends
east of 61◦ W at the 95% level, although they are small and not significant between 72
and 61◦ W. Additionally, the weakening trend of GS in the 1993–2016 range is combined
with a southward-shifting path, which is associated with the NAO decline in 2010 and a
30% reduction in the AMOC, indicating the link between NAO, AMOC, and sea level.

Andres et al. [24] verified that the mean GS transport at 68.5◦ W within 2010–2014
is almost 10% weaker than that observed by a moored array in the late 1980s. The sixth
assessment report of the intergovernmental panel on climate change (IPCC) [25] has stated
that GS collapse is unlikely, and although GS decreases with a weakening in the AMOC, it
will not shut down in a warming climate. Climate models confirm that GS weakening in
the 21st century is due to global warming [26]. It is suggested that the changes in the GS
strength are related to the variations in the AMOC, and the GS will likely weaken due to
the weakening of AMOC in a warmer climate [26–29]. Chen et al. performed ocean general
circulation model (OGCM) experiments and concluded that AMOC weakening was caused
by a global warming-induced surface freshening of the high-latitude North Atlantic, leading
to the GS weakening [27]. While IPCC is uncertain about the GS behavior as studied in [27],
the GS weakening is highly likely during the latter part of the 21st century [1]. Another
study [30] proposes that AMOC contributes 25% to maintaining a temperature climate in
North-Western Europe. On the other hand, the AMOC has experienced an unprecedented
decline over the past century as well as around 2009–2010. Regarding some models stated
in [30], this weakening by 2100 is 5 to 40% of the historical average state of a separate
model; while others predict 15 to 60% for the same period [30]. It is also suggested that the
GS is one of the reasons for the AMOC weakening [31]. However, having a proper model to
observe AMOC is important. For example, the study in [32] shows that the eddy-rich ocean
model VIKING20X is capable of representing realistic forcing-related and ocean-intrinsic
trends. A potential slowing of the AMOC, of which the GS is one key component, because
of increasing ocean heat content and freshwater-driven buoyancy changes, could have
dramatic climate feedback as the ocean absorbs less heat and CO2 from the atmosphere.
This slowing would also impact the climates of North American and European climates, as
stated in [21].

The major effects of a slowing AMOC are expected to be colder winters and summers
around the North Atlantic Ocean to the Norwegian Sea and small regional increases in
sea levels on the North American coast [33]. Refs. [34,35] estimated, on a global scale,
that the weakened AMOC will cause a 0.2 ◦C cooling in the global mean sea surface
temperature (SST) by 2061–2080. An increase in the frequency of winter extremes due to
AMOC weakening is investigated in [36]. The possible link between AMOC anomalies and
colder winters around 2009–2011 in Europe was studied in [37–39]. Later, in [40], the link is
understood with more evidence. In [41], the impact of AMOC weakening on the Europe
winter climate concluded a large temperature decrease; however, the analysis is general.

The impact of NAO on the AMOC and/or climate change has been studied in many
works. In [12], the relation between NAO, AMOC, and large-scale climate is mentioned. A
positive phase of NAO (NAO+) strengthens AMOC for timescales bigger than 20–30 years.
The study in [13] showed that one European blocking event (which is less movable) and
three NAO+ events contributed to the two heatwaves of July and August 2018.

Although some works have been conducted on the AMOC variations [42–44] and
NAO concepts [45,46], there is still a need to go further and firstly analyze historic tem-
perature data in particular countries (Norway and Sweden, in our case), and, secondly,
investigate any protentional relationships with climate indices such as AMOC and NAO.
The impact of colder potential winters on humanity, especially regarding electrical power
and energy systems, is another needed topic to be considered in terms of energy consump-
tion and generation, peak electrical loads, electrical grid planning (including renewable
energy sources), security of electricity supply, power grid resilience, and buildings’ energy
planning. One evident illustration is the rise in electricity consumption during colder win-
ters due to the substantial usage of electricity for heating. Additionally, extreme weather
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conditions like powerful winds and storms can lead to operational disturbances, potentially
resulting in power outages. Section 5 of this paper conducts an extensive literature review
on these matters to emphasize the significance of this topic for professionals in electrical
power and energy system engineering.

1.3. Contribution and Paper Organization

The contributions of this paper are made in a way to answer the following ques-
tions: What are the latest observations of AMOC and its components? Any evidence for
AMOC/GS weakening as local or long-term? What are the long-term trends in winter
temperatures for Sweden and Norway? Is there any upward/downward trend for the
temperatures as highest, lowest, or average in the different winter months, and if so, how
is it for selected locations in Sweden and Norway? Can any evidence be found to show
some protentional similarity between AMOC variations and the winter temperatures in the
mid to high latitudes? Does another climate index, NAO, have a possible impact on winter
temperatures in the studied locations? Can possible colder winters affect the electrical
power and energy systems, and are the multidisciplinary researchers prepared to address
the colder winters, whether caused by the investigated climatic indices in this study or
other factors like winds or sea ice changes, and associated changes in the electrical power
and energy systems? In order to address these questions, we analyzed the latest measure-
ments of AMOC and its components. Then, we selected six locations to investigate winter
temperatures in terms of highest, lowest, and average values over a span of approximately
50 to 70 years. Two locations in northern Sweden were chosen due to their historically
very cold winters in the past, making it important to predict any potential colder winters
in those areas. Additionally, four locations in Norway, ranging from northern to almost
southern regions, were selected based on data availability. This selection allows us to
assess the potential impact of climatic indices on the entire coastline of Norway, which
is expected to be more susceptible to the effects of the indices compared to other regions
in the country. Our results, obtained from analyzing long-term trends of temperatures,
yearly averages of the climatic indices and temperatures, and lagged correlations between
winter AMOC and temperatures as well as between winter NAO and temperatures show a
stronger possible link of NAO-winter temperatures (particularly December) for northwest
Sweden and coastal areas in Norway, with more confidence for most of the Norwegian sites.
The results also confirm that plans in the face of colder winters in those countries must
commence for the different aspects and parts of the electrical power and energy systems.

The remainder of the paper is organized as follows: Section 2 presents the latest
datasets on AMOC variations from the Rapid Climate Change (RAPID) monitoring pro-
gram [42], the winter temperatures’ dataset extracted from the Norwegian Climate Service
Centre and the Swedish National Knowledge Centre for Climate Change Adaptation for the
selected sites [47,48], and daily variations in the NAO index, based on 1000 hPa pressure
height, obtained from [49]. Section 3 describes the signal processing methods used in this
study. The results of the variability of AMOC (and its components), winter temperature
variations over the selected locations, the possible similarity between winter AMOC and
winter temperatures, and the potential impact of other variables, particularly NAO, on
AMOC and/or temperatures are presented in Section 4. Section 5 states some findings
on the potential impact of colder winters on the operation of electrical and energy power
systems, and, finally, Section 6 concludes the paper.

2. Dataset and Selected Locations

To examine the trend of the AMOC, the most recent daily (a daily aggregation on
the half-day measurements is performed) time-series data of AMOC, and its components
(at 26.5◦ N line) are utilized from the RAPID monitoring program [42]. The dataset is the
daily measurements in Sverdrup (Sv (1 Sv = 106 m3 s−1)) from 7 April 2004 to 10 December
2020. However, it is important to note that while the RAPID dataset has facilitated a better
understanding of the AMOC complexities, some literature, such as [50,51], has identified



Energies 2023, 16, 5575 5 of 34

certain limitations and biases associated with it. For instance, Sinha et al. [50] suggest that
the estimated variability at 26.5◦ N is robust on seasonal–interannual timescales, but the
presence of geostrophic transport results in a significant mean bias with minimal variability.
McCarthy et al. [51] also mention that AMOC mooring arrays of RAPID (and SAMBA
(South Atlantic Moored Buoy Array at 34.5◦ S)) have limited coverage on continental
shelves and face challenges in observing deep ocean flows. Nevertheless, this study relies
on the advantages presented by utilizing the RAPID dataset for AMOC investigations, as
reported in [43,44], among the other relevant studies. These data estimate the strength
of the overturning circulation in the North Atlantic at 26.5◦ N. As shown in Figure 1, the
northward red arrow is a schematic of warm surface flow (top 1000 m) of North Atlantic
drift, balanced by the southward blue arrow regarding deep cold flow (1000 to 5000 m).
Both red and blue arrows together make AMOC. However, GS as a key component of
AMOC, by default, flows northward. The dataset of daily NAO index variations since 1950
is obtained from [49], with values derived from 1000 hPa pressure height. Additionally, to
examine potential correlations between climatic indices and temperatures in mid to high
latitudes, six locations are selected, as depicted in Figure 1 and described in Table 1.

December, January, and February are selected as the winter months for the countries
mentioned in Table 1, and their temperatures are extracted from the Norwegian and
Swedish centers for climate adaptations [47,48]. The initial time resolutions for temperature
measurements are 1 h, 2 h, 3 h, 6 h, and half-day.
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Figure 1. The geographical representation of the six selected locations in Northern Sweden and
Norway (Loc. 1 to 6). The part of the northward red arrow (warm surface flow of AMOC) and the
southward blue arrow (deep cold flow of AMOC) are marked. However, the real circulation of the
arrows is from the Antarctic Ocean to the Greenland Sea and back.
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Table 1. Candidate temperature measurement locations.

Location City/Country
Measurement Period Observed

Years No.
Measurement

StationFrom To

1 Kiruna/Sweden 1958 2020 63 Kiruna
Flygplats

2 Katterjakk/Sweden 1970 2019 50 Katterjåkk
3 Fruholmen/Norway 1955 2022 68 SN94500
4 Torsvag/Norway 1956 2021 66 SN90800

5 Tromsø-
Langnes/Norway 1965 2022 58 SN90490

6 Nordøyan/Norway 1951 2021 71 SN75410

In order to create an integrated dataset for winter temperatures, the temperature
values are aggregated daily (as average/maximum/minimum). It is important to note
that the authors of this study first considered the daily temperature measurements and
found that they had a limited impact on the correlation analysis. Hence, to ensure a
smoother representation of temperature variability and better alignment with the daily
AMOC and/or NAO time series, an averaging with a running 10-day window is then
applied to temperature variations. This approach is effective in reducing the discontinuities
in the data resulting from connecting different months over the years. The choice of a
“10-day time window” was based on the consideration that each month typically consists of
approximately 30 days. While alternative window sizes such as 5, 15, or 20 days were also
considered, they did not impact the analysis of long-term trends or yearly averages. The
selected 10-day window allows for a more meaningful comparison of winter temperature
variations with AMOC and/or NAO, particularly for correlation analysis.

Examining the criteria of average, lowest, and highest temperatures is ascertaining
potential disparities in their respective temperature trends. It is important to consider that
the lowest temperatures recorded at midnight may have originated from colder initial
conditions, whereas the highest temperatures may not have, or to a lesser extent. The
three winter months were examined individually to conduct a comprehensive analysis and
ascertain the most distinct month and potentially the most impacted month in terms of
climatic indices. This analysis holds particular significance for regions such as northeast
Sweden and the coastal areas of Norway, where the characteristics of winter months vary
in terms of cooling intensity, wind patterns, and other contributing factors. However, to
provide a comprehensive assessment and encompass the entirety of the winter season, the
analysis also includes the collective temperatures across all winter months.

3. Methods

The results presented in [52], regarding the use of composite analyses with an ex-
ample for heat wave-SST, highlight the importance of applying comprehensive statistical
approaches before making physical inferences on apparent climate associations. Hence, it is
important to employ true statistical/signal processing methods for our analysis in this study.
A recent method, based on the singular spectrum analysis (SSA (SSA algorithm in this study
is motivated by its usefulness in situations where the periods of seasonal or oscillatory
trends are unknown; additionally, the number of such trends is not predetermined)) [53,54],
is employed to extract the existing patterns within the time series by decomposing them
into their principal parts. This method has not been previously used in such studies. In
this way, AMOC and its components, as well as each of the average/lowest/highest winter
temperatures, are decomposed into a long-term trend (slowly varying component) and
seasonal/variational/oscillatory trends (periodic components—a minimum of one trend is
expectable from the SSA analysis) to show the oscillations and a noise/residual signal. The
steps in SSA to decompose the trends in the time series X = (x1, . . . , xN) with length N are
as follows: 1—embedding X as mapping into K subseries of the X as lagged vectors with
dimension L (L is selected as a number within [3, N/2] automatically with the function
trendcomp in MATLAB R2022b) (1) in a trajectory/embedding matrix (Henkel matrix), as
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columns (2); and 2—applying singular value decomposition (SVD) [55] on the trajectory
matrix:

Xi = (xi, . . . , xi+L−1)
T , 1 < L < N; 1 ≤ i ≤ K; K = N − L + 1 (1)

X = [X1, . . . , XN ] =

x1 · · · xK
...

. . .
...

xL · · · xN

 (2)

Once the eigenvalues of matrix X are calculated, the decomposition of the time series
is completed. Any separation/decomposition of times series X needs the separation of
Henkel matrix X and a set of eigenvalues produced by the SVDs of each separated part. The
primary focus of this study is to analyze the long-term trends observed in the temperature
data and the AMOC. However, seasonal trends specifically for AMOC and its components
are also presented. Furthermore, yearly averages are calculated for the temperature time
series, AMOC, and the NAO index, providing insights into the anomalies within the trends.
The Pearson correlation coefficient [56] is employed at lag zero and at its maximum lagged
value to evaluate the similarity between the AMOC and its components. These correlation
measures serve as quantitative indicators to assess the degree of association between the
AMOC and its constituent elements. The potential relationships between winter AMOC
and temperatures, as well as winter NAO and temperatures, are examined using two
approaches. First, the yearly average of winter AMOC, NAO, and winter temperatures
(spanning the entire winter season) was analyzed. Second, lagged-correlation analysis
(cross-correlations) [57] is conducted between the winter climatic indices and temperatures
over different time lags (in years) for different months of winter as well as for the entire
winter season. The maximum correlation values are then identified. A higher positive
correlation at positive lags could indicate a similarity or potential link between the winter
climatic indices and winter temperatures.

4. Results

This section presents the findings related to the observations of AMOC, winter tem-
perature analysis at selected locations, the possible connection between winter AMOC and
temperatures, and the influence of other variables, such as winter NAO, on AMOC and/or
temperatures.

4.1. AMOC Variations

First, the variability of the AMOC transport using the latest existing recordings is
explained using two approaches. Initially, the AMOC is divided into its components, i.e.,
Florida current (GS transport), meridional Ekman transport, and upper mid-ocean (UMO)
transport between the Bahamas and the Canary Islands, as shown in Figure 2, in terms of
overturning strength (OS in Sv) versus year. GS transport (always observed positive) is
based on electromagnetic cable measurements; Ekman transport (observed as sometimes
negative) is based on the interaction between wind and ocean surface; while the UMO
transport (always observed negative) is the vertical integral of the transport per unit depth
down to the deepest northward velocity (~1100 m) on each day. Overturning transport
(AMOC) is the sum of the three explained components and represents the maximum
northward (positive values) transport of upper-layer waters each day.

The correlation analysis between the daily time series of AMOC and its components is
conducted, and the results are presented in Figure 3. Figure 3a displays Pearson coefficients
at zero lag, Figure 3b shows the corresponding p-values, and Figure 3c illustrates the
maximum or minimum lagged-correlation values. All Pearson coefficients in Figure 3a
have p-values that are very close or equal to zero indicating statistically significant. These
p-values are smaller than the significant obtained level of 3.24 × 10−28, corresponding to
a confidence level of 100 × (1–3.24 × 10−28)~100%. Therefore, the observed correlation
values are considered significant. The results reveal the highest positive similarity between
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AMOC and its Ekman component as +0.69 at zero lag (with a p-value of zero) and as
+0.692 for a one-day lead. This shows a strong direct impact of the Ekman component,
which represents wind stress, in transporting heat into the AMOC during the daily periods.
This finding is consistent with a previous study [44] that also confirmed this relationship
for periods shorter than two months. Additionally, the maximum negative correlation
(minimum) of −0.52 at zero lag and −0.552 at a one-day lag is observed between the GS
and UMO. These components flow in two different directions and the negative correlation
is also supported by [44] for timescales shorter than 1 year. Furthermore, Figure A1 in
Appendix A presents the results using two alternative methods to calculate correlations:
Kendall and Spearman. The Pearson and Spearman methods yield almost similar results,
while the Kendall method shows lower correlation values in comparison.

1 
 

 

Figure 2. Daily time series of AMOC and its components from 7 April 2004 to 10 December 2020.
Positive transports correspond to northward flow, while negative values show southward flow.
AMOC negative values are marked by *.
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Figure 3. Correlation between daily time series of AMOC and its components: (a) Pearson coefficients;
(b) p-values corresponded; (c) Minimum/Maximum Pearson lagged correlation.

In the second kind of AMOC analysis, the AMOC measurements (Figure 4a) are
decomposed into three parts according to the SSA method mentioned in Section 3: a
long-term trend, a seasonal trend, and the residual (noise) signal as shown in Figure 4b–d,
respectively. Additionally, the analysis of critical change points (this method finds the years
in which the AMOC change most significantly in terms of the mean value [53,54]; in this
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way, the AMOC variations can be divided into a finite number of regions (selected by the
user as far as is possible by the algorithm in [53]), and the sum of the residual (squared)
error from its local mean can be minimized for each region separately) identified three
critical years (Figure 4a) and four different time windows (with different mean values over
that period): the beginning of 2009, the end of 2009, and the spring of 2010. The minimum
value of AMOC is observed in the interval 2009–2010. However, instantaneous minima are
also recorded at the beginning of 2013 and 2018. The long-term trend (Figure 4b) shows a
fast decrease from 2004 to 2009 from 18 to 16.5 Sv, followed by a slight decrease from 2009
to 2010, which remains almost constant from 2010 to 2012. Small decreases are observed
from 2012 to 2016, and after that, AMOC changes its direction again toward an increase
(i.e., it seems recovering), although some changes between 2018 and 2019 are also observed.
However, the values at the end of the observation period (and of 2020) are still lower than
the ones in 2004. The difference between AMOC values from 2004 to 2020 shows a general
7% decrease for 16 years.
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Figure 4. Overturning strength of AMOC (Sv): (a) Daily time series; (b) Long-term trend; (c) Oscil-
lation trend; (d) Residual. The dashed vertical lines in (a) show the points of the year at which the
mean of transport (red horizontal lines in (a)) changes most significantly.

If the decreasing speed remains constant, a decrease of about 20% (with low confidence)
might be estimated over the first half of the 21st century. Next to [14–17], which show the
weakening of AMOC at a fast rate over the 20th century or within the last 50 years, ref. [21]
has predicted a 20% weakening of the AMOC during the first half of the 21st century
and a stabilization and slight recovery after that. The seasonal variations in AMOC are
cyclic, with a decreasing magnitude before 2009 and a constant magnitude after that. The
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high-frequency variations have shown a minimum value of −21 Sv and a maximum of
+15 Sv, as shown in Figure 4d. However, the range of noise values changes mostly from −10
to +10 Sv, which is similar to the 10-day measurements in [44] for the period of 2004–2018.

Figure 5 shows the long-term and seasonal variations for AMOC components. The
general long-term trends show GS weakening (or at least decreasing), as well as strength-
ening of Ekman, and strengthening of UMO in its negative direction (weakening in the
positive direction). However, the behavior is different for the periods after 2017–2018. The
“GS weakening in the same direction as AMOC” and the “strengthening of UMO in the
opposite direction” are the main key for the AMOC weakening, despite Ekman increasing,
as observed in Figures 4b and 5a,c,e. Although a high correlation is observed between
daily measurements of AMOC and Ekman (Figure 3), it is clear (Figures 4b and 5a) that
AMOC is governed/dominated by UMO. This result was also confirmed in [44] for time
intervals longer than a year (our case, daily from 2004 to 2020). The minimum value of GS
was observed around 2010. The cyclic variation for the three components also shows that
the behavior before 2009–2011 is different from that after that period.

1 
 

 

Figure 5. AMOC components in terms of long and seasonal trends: (a,c,e) Long-term trends for
UMO, GS, and Ekman; (b,d,f) Seasonal trends for UMO, GS, and Ekman.

To examine the anomalies within the AMOC variations and its components, a yearly
average (based on the daily time series shown in Figure 2) along with its corresponding
yearly standard deviation is depicted in Figure 6. The results in Figure 6 are more similar
to the results published in (Figure 4, [44]) for the AMOC and its component’s interannually
variability than to long-term trends in Figures 4b and 5a,c,e, in which the SSA algorithm



Energies 2023, 16, 5575 11 of 34

is applied by employing SVD analysis on the trajectory matrix including lagged sub
time series for each of AMOC and its components, separately. The mean and standard
deviation for the different transports in the year 2020 and after that are 17 ± 4.3 Sv (AMOC),
31.3 ± 3.2 Sv (GS), 4.3 ± 3.4 Sv (Ekman), and −18.5 ± 3.7 Sv (UMO). The minimum values
of AMOC are observed first for 2009–2010 and then for 2010–2011, as dashed vertical
red lines in Figure 6a. The first decline period corresponds to the UMO, and the latter
corresponds to Ekman. In 2019–2020, another local minimum for AMOC was also observed,
corresponding to the year regarding the lowest value of GS. Another observation is the
decreasing value for AMOC and UMO before 2009 and the recovery after that.

1 
 

 
Figure 6. The annual average of AMOC and its components in (Sv): (a) AMOC; (b) UMO; (c) GS;
(d) Ekman. OS values are given as mean, + standard deviation, and − standard deviation. Red
dashed lines show the standard deviation in (a–d).

Note that although the long-term trend of AMOC (Figure 4b and the results presented
in [44]) from 2004 to 2020 shows a small recovery after 2014, the under-study interval is
from 2004 to 2020 (according to the availability of data in RAPID AMOC program for
17 years); hence, the trend looks somehow similar to averaged variations for a defined
window (Figure 6a). Considering more data on AMOC and GS, which is essential in the SSA
algorithm, would conclude more precise results for a long-term trend so that the recovered
part is negligible. Moreover, a light decrease in AMOC is observed in 2012 and 2014, and
a more severe decrease is seen in 2019, as shown in Figure 6a for the winter AMOC. The
AMOC trend can be seen as an almost constant trend followed as weakened, such as the
results presented in [35], in which three periods are divided for AMOC strength: before
2000 (almost constant), 2000–2020 (weakening), and 2020–2050 (forecasted weakening with
more strength). We aimed to investigate and confirm whether the AMOC is weakening in a
general sense based on the available data.
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4.2. Winter Temperature Variations at Candidate Locations

This section provides an analysis of winter temperature variations in the selected
locations using two approaches:

(a) An investigation of anomaly detection for all winter months through a yearly average
analysis. This analysis covers the period from 2004 to the present, depending on the existing
temperature data and considering the availability of AMOC data (Figure 7).

1 
 

 
Figure 7. Yearly winter (December, January, and February) average temperatures for the selected
locations 1 to 6 from 2004 to present (a–f).

As shown in Figure 7, clearly, the winter months in locations 1 and 2 in Sweden are
much colder than the other locations in Norway. The winter temperatures over the years
can be divided into three periods: when February is the coldest month (before 2012), when
February is becoming warmer, some years even the warmest month (2012–2017), and
when February is close to January temperatures (after 2017). It also shows that February
is somehow becoming warmer over time in the selected locations. The local minima are
observed in 2007, 2009, 2010, 2012, 2018, and 2019. These anomalies in minimum values are
clearer in February. Looking at the yearly average of December, specifically for locations
3, 4, and 6, shows that there is a downward trend before 2010, an upward after that, and
again downward till the end of the observation period.



Energies 2023, 16, 5575 13 of 34

(b) A long-term analysis of temperature variations, focusing on daily lowest, highest, and
average temperatures for all winter months. This analysis spans a period of at least 50 years
and, at most, 71 years (Figures 8–13 and Table 2). The SSA’s capabilities in noise reduction,
localized trend analysis, interpretability, and handling missing values and outliers (for
example, the values at the connection point of two similar months over different years in
the temperature time series) make it a powerful tool for extracting long-term temperature
trends that may not be achievable with traditional methods.
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Figure 9. The daily highest temperatures (with a 10-day running averaging window) for January
and February in location 2: (a,b) Time series; (c,d) Long-term trend. The arrows in (c,d) show the
beginning and end of the downward sector in the long-term trend marked by an ellipse.
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Figure 10. The daily highest temperatures (with a 10-day running averaging window) for December
and January in location 3: (a,b) Time series; (c,d) Long-term trend. The arrows in (c,d) show the
beginning and end of the downward sector in the long-term trend marked by an ellipse.
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Figure 11. The daily temperatures (with a 10-day running averaging window) in location 4: (a,c) Time
series and long-term trend for average temperature in December; (b,d) Time series and long-term
trend for highest temperature in February. The arrows in (c,d) show the beginning and end of the
downward sector in the long-term trend marked by an ellipse.
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similarities in the variations of AMOC and SSTs. However, they did not pay attention to 
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Figure 12. The daily highest temperatures (with a 10-day running averaging window) for January
and February in location 5: (a,b) Time series; (c,d) Long-term trend. The arrows in (c,d) show the
beginning and end of the downward sector in the long-term trend marked by an ellipse.
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Figure 13. The daily temperatures (with a 10-day running averaging window) in location 6: (a,c) Time
series and long-term trend for lowest temperature in December; (b,d) Time series and long-term
trend for average temperature in January. The arrows in (c,d) show the beginning and end of the
downward sector in the long-term trend marked by an ellipse.
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Table 2. The obtained information in the downward temperature trends at locations 2 to 6. The colors in the column before the last one is sorted from lowest (light
pink) to highest (dark green).

Location Winter Month Type of Temp.
From To

Decreased
Temp. (◦C)

Duration of
Decreased

Temps. (Year)

Decreased Temp. Rate
(◦C/Year)

Temp (◦C) Year Temp (◦C) Year Month/Type
Temp Avg/Loc

2

Dec High −5 2011 −5.35 2018 0.35 8 0.044

0.090
Jan

Low −11.2 2011 −11.7 2019 0.5 9 0.056
High −6.85 2011 −7.9 2019 1.05 9 0.117
Avg −9 2011 −9.8 2019 0.8 9 0.089

Feb
Low −12.6 2016 −12.93 2019 0.33 4 0.083
Avg −10.4 2014 −11 2019 0.6 6 0.100
High −8.25 2014 −9.1 2019 0.85 6 0.142

3
Dec High 3.6 2019 3.5 2021 0.1 3 0.033

0.040Jan High 1.3 2017 0.8 2022 0.5 6 0.083
Feb High 0.1 2000 0 2022 0.1 23 0.004

4

Dec Avg 2.3 2017 1.2 2021 1.1 5 0.220

0.088Jan
Avg 0.04 2017 −0.015 2022 0.055 6 0.009
High 2.25 2020 2.13 2022 0.12 3 0.040

Feb High 1.9 2020 1.65 2022 0.25 3 0.083

5

Dec
Low −3.4 2018 −3.6 2021 0.2 4 0.050

0.059

High 1.19 2019 0.8 2021 0.39 3 0.130
Avg −1.1 2020 −1.22 2021 0.12 2 0.060

Jan
Low −5 2016 −5.3 2022 0.3 7 0.043
High −0.5 2016 −0.86 2022 0.36 7 0.051
Avg −2.37 2016 −2.67 2022 0.3 7 0.043

Feb
Low −5.6 2016 −6.06 2022 0.46 7 0.066
High −0.04 2017 −0.25 2022 0.21 6 0.035
Avg −2.91 2016 −3.3 2022 0.39 7 0.056

6

Dec Low 2.48 2017 1.46 2021 1.02 5 0.204

0.076
Jan Avg 3.33 2020 3.21 2022 0.12 3 0.040

Feb
High 3.91 2020 3.89 2022 0.02 3 0.007
Avg 2.36 2021 2.25 2022 0.11 2 0.055
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Figures 8–13 showcase a chosen set of temperature plots for each location, with a
specific emphasis on the highest temperatures. These plots represent a selection from
various potential combinations, including average, highest, and lowest temperatures, for
December, January, and February, a total 6 × 3 × 3 = 54 time series. The long-term trend of
December/January/February highest temperatures in location 1 for 63 years from 1958 to
2020 (Figure 8b) shows an increase with a constant slope from −9.5 to −5 ◦C (December),
−11 to −7 ◦C (January), and −9 to −7 ◦C (February). This location seems to be affected
more by global warming since the long-term trend is just increasing.

Figure 9a shows the highest temperatures for January in location 2 (northwestern
Sweden). The long-term trend (Figure 9c) shows the increased temperature from −9.5
(1970) to −6.85 ◦C first (around 2011) affected by global warming (+2.15 ◦C increasing
in 42 years). Between the end of 2011 and the end of 2019, the temperature decreased
from −6.85 to −7.9 ◦C, as indicated by an ellipse in Figure 9c (−1.05 ◦C decreasing in
9 years). The downward part may be attributed to specific reasons. A possible scenario is
explained here. According to the results of some of the literature, such as [35], in which a
broad range of AMOC variations are studied and show AMOC weakening (and also the
general view of AMOC in Figure 4b, which shows weakening), the marked area, which
has a faster speed of decreased temperatures than the increased temperatures before that,
may show a possible role of AMOC weakening. Note that the direct impact of global
warming is the warming and increasing temperatures; however, an indirect impact is
on the AMOC weakening, which, by itself, has the task to transfer warm surface water.
Moreover, the speed of AMOC weakening has been confirmed more often than the speed of
global warming [35]. Nevertheless, these observations could not be detected by the yearly
average temperatures shown in Figure 7b from 2004 to 2019. Figure 9b shows the highest
temperatures for February in location 2. The long-term trend (Figure 9d) shows, first, some
small variations by 2005. Between 2005 and 2010, the temperature decreased and then
increased until 2014. After that, a clear decrease in temperature is seen from −8.25 ◦C to
around −9.1 ◦C by the end of 2019, as indicated by an ellipse in Figure 9b. The observations
for the marked period could be also detected by the yearly average temperatures shown in
Figure 7b from 2014 to 2019.

Figures 10–13 show the daily temperatures for locations 3 to 6, respectively. From the
first year of study to around 2017/2019 (for location 3), 2017/2020 (for locations 4 and 6),
and 2016/2017 (for location 5), there is a slight (linear/nonlinear) upward long-term trend.
This is followed by a downward trend, shown by an ellipse in Figures10c,d, 11c,d, 12c,d
and 13c,d.

An analysis of the results from the six locations (some of which are depicted in
Figures 8–13) reveals a general long-term temperature trend indicating an increase, which
can be attributed to global warming. However, it is noteworthy that 50% (27) of these vari-
ous combinations of long-term trends have shown a considerable decrease in recent years.
Additional details regarding the downward long-term temperature trends are presented in
Table 2. The rates of decreasing temperatures, represented as slopes of linear trends, are
sorted by color in the column before the last one. In this column, December exhibits the
highest decreasing rate in locations 4 and 6. The average rate of change in decreasing tem-
peratures per location is as follows: 0.09, 0.04, 0.088, 0.059, and 0.076 ◦C/year for locations
2 to 6, respectively. As seen, locations 2, 4, and 6 have experienced colder temperatures
in recent years. In order to further examine the underlying factors contributing to the
observed downward trends in long-term winter temperatures, indicating the possibility
of colder winters in recent years, a thorough and detailed analysis is required. This inves-
tigation should involve studying temperature change maps and conducting analyses to
establish connections between potential causes and the decrease in temperatures, as well
as explaining why these effects are particularly prominent in December and vary across
different locations. While multiple factors could contribute to these downward trends,
Sections 4.3 and 4.4 will provide valuable insights into two significant climatic indices,
namely, AMOC and NAO, as potential explanatory factors.
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4.3. Possible Similarity between Winter Variations in AMOC and Temperatures of
Candidate Locations

Previous research, including the study referenced as [58], has demonstrated that a
1 Sv alteration in the AMOC can lead to approximately a 0.3 ◦C change in SSTs for decadal-
centennial changes, i.e., a 0.03 ◦C/(year. Sv). Moreover, these studies have also identified
similarities in the variations of AMOC and SSTs. However, they did not pay attention to
the regional winter temperatures affected by AMOC variations.

In a more recent investigation [59], an artificial weakening of the AMOC was con-
ducted, reducing it by an average of 57% over 60 years, equivalent to an average of 7.55 Sv,
i.e., a 1 Sv weakening for 7.94 years. The results indicated that a weakened AMOC has
a cooling effect on the global near-surface air temperature in the Northern Hemisphere,
with an average decrease of −1.09 ◦C/year to −0.14 ◦C/(year. Sv). The majority of cooling
occurs in the Northern Hemisphere, which experiences an average temperature decrease of
−2.09 ◦C/year to −0.26 ◦C/(year. Sv). Notably, the most significant changes are observed
during winter, with a cooling effect of −2.42 ◦C to −0.3 ◦C/(year. Sv). These findings sug-
gest that other factors, such as regional warming/cooling, can also influence the magnitude
of cooling associated with a weakened AMOC. However, it is important to note that the
analysis in the study [59] is conducted using artificially weakened AMOC simulations and
climate models, rather than real observational data.

With the information derived from the previous paragraph, this section examines the
possible similarity between winter variations in AMOC and winter average temperature
variations in the selected locations. Figure 14 illustrates the yearly average variations in
AMOC and temperatures at the locations throughout the entire winter season. This analysis
covers the period from 2004 to the present, depending on the existing temperature data and
considering the availability of AMOC data, which covers from April 2004. The observations
from Figure 14 reveal the winter AMOC deep anomalies in 2010 and 2019. The yearly
average winter temperatures across all locations indicate a synchronized response to the
winter temperatures without any time lag before 2010. Notably, the light and deep minima
observed in AMOC in 2007 and 2010, respectively, coincide with the winter temperature
minima. From 2010 to 2016, specifically for locations 3 to 6, a slight positive lag can be
observed between the AMOC and temperatures. However, starting from 2016 onwards,
it appears that there is a larger time lag between smaller AMOC variations and larger
variations in temperature. It is also noteworthy to pay attention to the local minima of
AMOC in 2018, which is followed by a decrease in temperatures with a lag observed in
locations 3 to 6.

The highest lagged correlation along with their corresponding lag values between
winter AMOC and average temperatures time series spanning from 2005 to 2020, are
presented in Table 3. Almost the same results were concluded for the highest and lowest
temperatures. In general, all computed correlation values are higher than 0.2 for the average
temperatures; however, December exhibits the highest correlation among the winter months
with the AMOC variations. Specifically, locations 4, 6, and 3 demonstrate the strongest
correlations (0.58, 0.52, and 0.49) compared to the other locations. The lag values increase
from locations 1 and 2 to 3 and 4, and further to 5 and 6. From Table 3, the maximum lagged
correlations are notably 0.49 and 0.58 at a lag of 0.065 years (approximately 24 days). For
the entire winter season, the highest correlations and the corresponding lags are observed
in locations 3, 4, and 6 as 0.32, 0.37, and 0.43 with the lags 28, 20, and 12 days, respectively.
The lag values decrease from locations 3 to 6, while almost no lag is observed for locations 1
and 2.

The results from Figure 14 and Table 3 show (1) The possible contribution of AMOC
(indirect most likely) to colder winters locally around 2010, and further, due to the positive
lagged correlations between AMOC and winter temperatures. It should be noted that there
is a decrease observed in 2018–2019 in Figure 14. Although there is no available information
for 2020–2022, according to reference [53], there is a possibility of a decreasing trend in
AMOC during that period. (2) Higher correlations between winter AMOC and temper-
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atures (>0.49) are observed specifically in December, for locations 3, 4, and 6. (3) There
is a pattern where the correlation value increases and the corresponding lag decreases
from location 3 to 4 and then to 6, which are those areas along the southern part of the
coastline of Norway. There is a clear pattern where the correlation value increases and the
corresponding lag decreases from location 3 to 4 and then to 6.
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Table 3. Maximum lagged correlation and the corresponding lags between winter AMOC and winter
average temperatures (as per separated months and whole winter) for locations 1 to 6. Colors in the
columns indicate the sorted values from low (bright pink) to high (dark red).

Correlation Lag (Year)

Location Dec Jan Feb Winter Dec Jan Feb Winter
1 0.44 0.24 0.3 0.25 0.032 0.871 3.150 0.011
2 0.45 0.33 0.27 0.26 0.032 0.806 3.080 0.000
3 0.49 0.32 0.29 0.32 0.065 1.129 1.381 0.078
4 0.58 0.35 0.27 0.37 0.065 1.194 2.973 0.055
5 0.47 0.2 0.3 0.28 0.097 1.000 2.973 0.044
6 0.52 0.43 0.3 0.43 0.097 0.258 0 0.033

The objective of this study is not to quantify the exact magnitude of temperature
decrease resulting from changes in AMOC strength but rather to determine if there are
considerably lagged correlations between them. Our focus has primarily been on the impact
of AMOC weakening in low latitudes on colder winters in mid to high latitudes, even
though an AMOC strengthening would be observed for high latitudes [60] linked to colder
winters. According to Table 2, locations 3, 4, and 6 experienced an average temperature
decrease of −0.04 ◦C/year, 0.088 ◦C/year, and 0.076 ◦C/year, respectively. In a simple
analysis, one could consider that an AMOC weakening of 1.3 Sv, 2.6 Sv, and 2.53 Sv, based
on the findings in [58], or 0.28 Sv, 0.63 Sv, and 0.54 Sv, based on the findings in [59], might
have contributed to these temperature decreases. Based on the findings of this section, it
can be concluded that the weakening of AMOC around 2017 played a significant role in
reducing the transfer of warm surface waters. However, despite observing a moderate
correlation, establishing a direct link between winter AMOC and temperatures, as well as
identifying the mechanisms through which AMOC impacts temperatures on daily/monthly
timescales, proves challenging. Nevertheless, there may still exist, with a lesser degree
of certainty that necessitates further investigation, a potential connection between winter
AMOC and winter temperatures in mid to high latitudes, as well as a potential link between
winter AMOC and the downward patterns observed in Table 2. The next section will focus
on examining another variable that may influence winter temperatures.

4.4. Possible Impacts of Other Variables, Particularly NAO, on the Winter AMOC
and/or Temperatures

The moderate correlations observed between winter AMOC and temperatures
(Section 4.3) may not necessarily imply a direct causal relationship. It is possible that
a third variable, such as wind or the NAO, influences the AMOC, the temperatures, or
even both. The previous study [23] explored the relationship between GS weakening,
AMOC weakening, and the NAO decline in 2010, confirming the connection between
AMOC weakening and NAO reduction. Additionally, it has been observed that NAO+

(positive phase of NAO) strengthens the AMOC on timescales exceeding 20–30 years [12].
Research conducted on various mountain cities in Europe, Morocco, Turkey, and Lebanon
in 2011 indicated that projected NAO trends could lead to increased winter modes and
a decrease in the number of cold winters during the 21st century, due to the influence of
global warming [61]. The direct impact of NAO+ on the warm summer in 2018 was also
demonstrated [13]. The spatial variability of NAO has been found to play a crucial role in
regulating the European climate in addition to its temporal variability [62].

In addition to the factor of AMOC weakening, it has been observed that the AMOC
exhibits a strong response to wind-driven variability, particularly by the Ekman component,
which is in turn influenced by the NAO. During NAO+, stronger winds over the subpolar
North Atlantic increase surface heat loss to the atmosphere, promote the formation of dense
water, and result in a strengthened AMOC [63]. A study conducted in [44], utilizing AMOC
anomalies from the RAPID and GloSea5 datasets at 26◦ N, along with Atlantic indices
such as NAO, examined the relationship between NAO phases and various parameters. It
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was found that during an NAO− (NAO+) state period, there is a reduction (increase) in
surface heat loss and weakening (strengthening) of winds over the subpolar North Atlantic,
resulting in a weaker (strengthened) AMOC. Consequently, the transport of heat by AMOC
toward the northward direction decreases (increases), leading to a cooling (warming) effect
on the North Atlantic, and possibly the Norwegian Sea. This aligns with a delayed decrease
(increase) in SST. Hence, a clear link between NAO, winds, AMOC, and SST is established.
A study conducted by [64] examined the influence of winds on the AMOC. They proposed
a fully-coupled climate mode where nudging winds poleward of 45◦ N, through a response
from the Ekman component of AMOC, resulted in statistically insignificant trends in
AMOC and SST trends in the North Atlantic. These findings were pretty consistent with
the observations of AMOC from RAPID at 26.5◦ N. Another study [65] focused on the
impact of NAO on the low-frequency variability of AMOC. The simulation results revealed
that the influence of NAO varied among different models. Some models indicated less
sensitivity of AMOC to NAO, while others suggested a higher sensitivity. This study also
highlighted the importance of the oceanic mean state as a crucial aspect of climate change
that requires improvement in models.

According to the literature investigated in this section, it is concluded that NAO could
have affected the AMOC weakening. Hence, a possible reason for the cooler winters in
the discussed locations could be due to NAO weakening (being in NAO− phase for a long
time). Another scenario for the cooler winters is the direct impact of NAO as attached with
wind changes at those locations. Therefore, the winter yearly average of the NAO index was
calculated using daily values obtained from [49]. The resulting winter yearly average of the
NAO index is presented in Figure 15. The data cover a similar period as Figure 14, ranging
from 2004 to the latest available year of temperature data. Observations from Figure 15
reveal the presence of deep anomalies in the winter NAO index in 2010 (corresponding
to AMOC anomalies) and 2021. These are the years when the NAO anomalies align with
the winter temperatures across all locations. Notably, location 6 demonstrates a clearer
correlation between temperatures and NAO variations compared to the other locations.

The lagged correlations between winter NAO and average temperatures time se-
ries spanning from 2005 to 2020 are shown in Figure 16. Almost the same results were
concluded for the highest and lowest temperatures. Table 4 presents the highest lagged
correlations between the winter NAO index and winter average temperatures, along with
their corresponding lag values. The analysis is conducted both on a monthly basis and for
the entire winter period spanning from 2005 to 2020, which corresponds to the same period
as the AMOC-temperature analysis presented in Table 3. Overall, all computed correlation
values for average temperatures are higher than 0.28. Among the winter months, December
shows the highest correlation with winter NAO variations. However, it is worth noting
that the correlation values between the NAO index and temperatures are higher than those
reported in Table 3 regarding the possible link between winter AMOC and temperatures.
Among the locations, the weakest correlation is observed in location 1 in northern Sweden,
with a value of 0.57. Location 3 in the northernmost part of Norway exhibits a slightly
higher correlation of 0.58. As we move to locations 4, 2, 5 (Locations 2 and 5 are in almost
the same latitude positions), and 6, the correlation values increase to 0.6, 0.62, and 0.66,
respectively. To illustrate this, Figure 17, as a sample, depicts the daily variations in the
NAO index and temperature in December for locations 5 and 6, in which, on most days,
the temperature follows the NAO with or without lag. For the entire winter, the highest
correlations and the corresponding lags are observed in locations 2, 4, and 6 as 0.42, 0.42,
and 0.55 with the lags 16, 12, and 20 days, respectively.

The results obtained from Figures 15 and 16, and Table 4 provide insights into the
possible link between winter NAO and temperatures; the following conclusions are drawn:

(1) There is a strong relationship between winter NAO and temperatures, particularly
during December, for locations 2, 4, 5, and 6. These locations, situated closer to the
coastal areas of Norway rather than the northernmost regions, exhibit correlation
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values exceeding 0.6. Such values suggest a potentially significant influence of NAO
on the temperature patterns observed in these locations.

(2) Among locations 2, 4, 5, and 6, there is a higher probability of having colder winters
influenced by the NAO for locations 2, 4, and 5. This conclusion is supported by the
following observations: (i) the correlation values between the winter NAO index and
winter temperatures are greater than 0.42; (ii) the highest average rates of temperature
decrease in Table 2 support this pattern for locations 2, 4, and 6.
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Figure 16. Lagged correlations versus lag (per year) between winter NAO and winter average
temperatures (as per separated months and whole winter) for locations 1 to 6 from 2005 to 2020: (a–f).
Positive correlations at positive lags indicate that the NAO strengthening/weakening leads to an
increasing/decreasing temperature.

In addition to the previously mentioned factors, it is important to consider other
atmospheric parameters such as atmospheric pressure, humidity, solar radiation, and wind
when analyzing the temperatures over those locations. In particular, local wind speed
variations, influenced by factors like the NAO or regional storm activities, could potentially
contribute to the observed temperature reductions in those locations. Researchers [66]
examined the connection between the winter NAO and wind climate in Norway from 1920
to 2010. The findings indicated a strong correlation between NAO+ and a higher occurrence
of southwest winds from the southwest parts (such as location 6 in our study), as well as a
decrease in the frequencies of northeast winds (such as location 3 in our study). However,
there was no significant relationship found between the wind climate and the NAO in
the northernmost part of the country (such as locations 2, 4, and 5). Therefore, based on
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this research, colder temperatures experienced in location 6 might also be attributed to
the increased wind patterns in the area. It is also worth noting that wind simulations for
certain cities in southwestern Norway (near location 6 in our study), between the 1990s
and 2050s, forecast higher possible temperatures [67] around our considered period, which
could mitigate the impact of local winds on observed temperatures. These findings show
that further investigation and research are necessary to fully understand and explore the
factors like winds, and this is an ongoing endeavor for the authors of this study.

Table 4. Maximum lagged correlation and the corresponding lags between winter NAO index and
winter average temperatures (as per separated months and whole winter) for locations 1 to 6. Colors
in the columns indicate the sorted values from low (bright pink) to high (dark red).

Correlation Lag (Year)

Location Dec Jan Feb Winter Dec Jan Feb Winter
1 0.57 0.35 0.31 0.40 0.097 0.129 3.044 0.044
2 0.62 0.37 0.33 0.42 0.065 0.129 3.044 0.044
3 0.58 0.28 0.32 0.37 0.097 0.226 2.973 0.044
4 0.60 0.33 0.32 0.42 0.161 0.129 3.044 0.033
5 0.62 0.32 0.41 0.37 0.194 0 3.044 0.011
6 0.66 0.48 0.51 0.55 0.129 0.194 0.142 0.055
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5. Cold Winter Impact on the Electrical Power System’s Aspects

The results from Section 4.3 demonstrate a less likely relationship between the weaken-
ing of AMOC (caused by the indirect effects of climate change, specifically global warming
(the direct impact of global warming is evident in the warmer weather patterns we have ob-
served (Figure 8, for instance); however, there is also an indirect impact of global warming
with a possible delay, which can weaken the AMOC; this weakening can lead to a weaker
transfer of warm surface water toward the north, resulting in colder weather [59] conditions
in the affected regions)) and the potential occurrence of colder winters in northwest Sweden
and Norway. Additionally, there is a higher level of confidence regarding the presence
of these colder winters in the coastal areas of Norway. The findings from Section 4.4 also
highlight the more likely role of NAO in influencing the winter temperatures directly.

Therefore, this section focuses on analyzing the potential impact of cold winters,
whether caused by AMOC, NAO, or other climate factors, on the operation of electrical
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power and energy systems in Norway and Sweden. The analysis encompasses aspects such
as electricity generation, consumption, and the security of the electrical grids. Potential
risks are identified from the perspective of ensuring a reliable electricity supply and the
resilience of the power grid. Moreover, potential avenues for future research in this area
are discussed.

5.1. Colder Winters and Electricity Generation

According to the public data available in [68], the installed generation capacities in
2022 were as follows: hydro 82.59% (33.36 GW) and wind 12.64% (5.1 GW) for Norway,
and hydro 37.3% (16.3 GW), nuclear 19.79% (6.9 GW), and wind 27.69% (12.1 GW) for
Sweden. The dominating investments in both countries are in wind power units [69]. In
Norway, hydropower units generated 90% (134.4 TWh), and the generation of wind power
units covered 6.4% of the total electricity generation in 2020 [69]. Electricity generation in
Sweden amounted to 161 TWh, of which 29% was from nuclear, 45% from hydro, 17% from
wind, and 8% from combustion-based power units in 2020 [70,71]. Electricity generation
from solar power units in both countries is becoming increasingly important; however, it is
still negligible.

The operation of hydro generation units during winter months highly depends on
the capacity of reservoirs since water inflow is generally very low [69]. Fortunately, water
inflow in Norway has shown an increasing trend during the past 60 years, and the increase
is relatively the largest during the winter [72]. However, colder winters might reduce
the reservoir capacities due to the possibility of ice formation, which is different for high-
head and low-head hydropower units [73]. Therefore, further research on the impact
of colder winters on electricity generation from hydropower units in Norway is needed.
Such research is also essential because Norwegian reservoirs are likely to mitigate the
intermittent generation of wind power units [74] and support the lack of energy during the
winter months in Europe. Also, the potential risk of reduced electricity generation due to
the shutdown of Sweden’s nuclear power units should be considered.

Furthermore, a possible reduction in electricity generation in Norway and Sweden will
also impact the neighboring countries. The results of modeling the multi-national impacts
of Finland’s closure of coal-fired generation and Sweden’s decrease in nuclear generation
showed reduced import possibilities, increased electricity prices, and the expected rise of
the EU CO2 allowance prices in the Baltic countries [75]. In Nordic countries, CO2 intensity
is expected to decrease due to the planned structural changes in the energy systems.
However, short-term (2009–2010) and long-term (until 2030) hour-by-hour analyses of
marginal electricity generation show that the highest CO2 intensity is from October to
March, especially in Finland [76].

5.2. Colder Winters and Electricity Consumption

The annual electricity consumption per person in Nordic countries, especially in
Sweden, is one of the highest in the world [77]. In Sweden, the residential and service sector
uses the most electricity, followed by the industrial sector and the transport sector [71].
According to public data available in [78,79], electricity consumption in both countries
has been increasing in recent years, as shown in Figure 18, where the average trend is
1.64 TWh/Year for Sweden and 1.19 TWh/Year for Norway. Considering this increasing
trend in electricity consumption, it can be seen that the local maxima for Norway are
around 2010, 2018, and 2021, which are in concert with the local minima of the yearly
winter temperatures, as seen in Figure 7c,d.
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Norway faces an energy deficit almost annually, with the winter season being partic-
ularly crucial. This is due to the predominant use of electric heaters in most residential
buildings, increased demand from the industrial sector, and the growing need for charging
electric cars [74]. Almost 20% of heating comes from electricity [80,81]; consequently, colder
winters will directly increase electricity consumption, mainly because people will spend
more time at home. Therefore, energy savings should be prioritized in the retrofitting of
buildings, even though the investments may not be profitable, as concluded for studied
Swedish cities [82]. One promising technology that can be used for multi-family houses
is a PV/thermal system combined with a ground-source heat pump system [83]. Energy
efficiency should also be increased through the integrated electricity and heating sectors of
municipal energy systems, as proposed in [84] for a case study of Piteå in northern Sweden.
Another possible source of the increased electricity consumption could be the hydrogen-
based steelmaking technology, also known as HYBRIT [85]. In Sweden, HYBRIT requires
approximately 10% of electricity generation, which is possible only when electricity exports
are reduced [86]. Fortunately, hydrogen storage has the potential to provide balancing
services to the power grid.

5.3. Colder Winters, More Likely Storms, and Security of Electricity Supply

As discussed in the previous sections, colder winters in Norway and Sweden generally
increase energy consumption and decrease energy generation. In Norway, the electrical
energy balance in the winter of 2002/2003 was especially critical due to the limited trans-
mission capacity of power lines between the neighboring regions [74]. The security of
electricity supply in Norway was also in focus in the winters of 2009/2010 and 2010/2011
(the years in which AMOC and NAO showed local minima values); however, high prices
encouraged lower consumption, higher production, and increased imports of electricity [69].
In Sweden, cold winter events already require an increase in the balancing capacity of the
power system, which is needed due to the intermittent generation of wind and solar power
units [87,88]. Thus, future research must address the critical question of investments in new
storage capacities and equipment for increasing and controlling electrical energy exchange
between neighboring regions. Another consideration that might impact the power system
operation regarding stability is the amount of inertial energy. From 2017 to 2020, the total
inertial energy in Nordic countries decreased by almost 10% [89]. However, the amount



Energies 2023, 16, 5575 27 of 34

of total inertial energy is higher in winter, while the inertial energy of hydropower even
started to increase in 2019. Nevertheless, the increased investments in wind power units
and the possible shutdown of nuclear power units in Sweden might also reduce the total
inertial energy in winter.

More intense winters could result in more storms battering Europe. This, with a weak
scenario, could be a further consequence of AMOC weakening [59]. While there may be
limited scientific research on this specific aspect, some ecosystem scientists have mentioned
it, as reported in sources such as the Guardian [90] or the ClearIAS [91] websites. A study
conducted by [92] further supports the notion of increasing storms during the negative
phase of the NAO. The major event in Nordic countries was the 2005 Gudrun storm (the
year that one of the NAO declines appeared, as reported in Figure 17), causing economic
damage to the electric power service, calculated to be around EUR 3 billion [77]. With
important evidence, another winter storm in 2011 (the year that AMOC and NAO declines
appeared) caused significant disruption in Norway because the high winds brought trees
down on power lines [69]. Furthermore, researchers in [93] showed for 30 cities in Sweden
that uncertainties in renewable energy potential and demand could lead to a drop in power
supply reliability (up to 16%) due to extreme weather events. Such extreme weather events
inevitably result in the operation of protection relays to disconnect the faulty elements
(power lines, power transformers, and generation units). In order to enhance the resilience
of the power grid [94], several measures should be considered, such as the implementation
of wide-area monitoring systems in the transmission grid [95–99], smart and closed-loop
operation of the distribution grid [100–105], as well as the installation of power quality
monitoring and mitigation systems in order to check the impact on disturbances such as
RMS voltages (daily or in short time intervals) [106,107].

6. Conclusions

This study aimed to investigate the winter temperatures in Norway and northern
Sweden over a period ranging from 50 to 71 years. Six locations were selected, including two
in Sweden (1 and 2) and four in Norway (3 to 6). The analysis utilized the SSA algorithm
to examine the temperature’s long-term trends. The overall long-term trend indicated
an increase, which could be attributed to global warming. However, when considering
different combinations of highest, lowest, and average temperatures for December, January,
and February, 50% of the variations showed a significant decrease in recent years. The
average rate of decreasing temperatures was observed as: 0.09, 0.04, 0.088, 0.059, and
0.076 ◦C/year for locations 2 to 6, respectively, in which locations 2, 4, and 6 experienced
colder temperatures, particularly in December, in recent years. The time series of AMOC,
a significant climate index, was analyzed from 2004 through to 2020, and the results
showed that the values were rarely negative, implying a net flow southward. A maximum
positive correlation was observed between AMOC and the Ekman component, showing a
direct impact of this component on the AMOC transports. The long-term trend of AMOC
measurements presented a 7% general decrease over 17 years, which would lead to an
approximate 20% decrease/slowdown forecasted over the first half of the 21st century.
However, more data on AMOC would result in more precise results for the AMOC long-
term trend concluded from the SSA algorithm. Calculating yearly average values of AMOC
transfer variations and its components also showed an anomaly (local minima) during
2009–2010 for all, in 2014 for GS, and in 2019 for both GS and AMOC.

Secondly, the potential similarity between winter AMOC variations and winter tem-
peratures in the six selected locations at mid to high latitudes was investigated. This
analysis involved examining the yearly average of winter AMOC and temperatures as well
as calculating the lagged correlations between them. The results revealed (1) The possible
contribution of AMOC (indirect most likely) to colder winters was realized, particularly
around 2010, and further, due to the positive lagged correlations between AMOC and
winter temperatures. (2) Higher correlations between winter AMOC and December temper-
atures (>0.49) were observed specifically in December, for locations 3, 4, and 6. Moreover,
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higher correlation values were observed for locations 3, 4, and 6. (3) There was a clear
pattern where the correlation value increases and the corresponding lag decreases from
location 3 to 4 and then to 6, which are those areas along the southern part of the coastline
of Norway.

Thirdly, the potential link between another significant climate factor, the NAO, and
winter temperatures across the six selected locations was investigated. Similar to the
AMOC-temperature analysis, we conducted the same analysis to assess the relationship
between the winter NAO index and temperatures, and the results yielded that (1) There is
a strong association between the winter NAO and temperatures, specifically in December,
for locations 2, 4, 5, and 6, which are situated closer to the coastal areas of Norway but
not the northernmost regions. The correlation values between the winter NAO index and
December temperatures exceed 0.6, indicating a possible significant influence of NAO
on these locations. (2) Among locations 2, 4, 5, and 6, there is a higher probability of
experiencing colder winters impacted by the NAO for locations 2, 4, and 5. This conclusion
is supported by the following observations: (i) correlation values between the winter NAO
index and winter temperatures surpass 0.42; (ii) the highest average rates of temperature
decrease were observed earlier for locations 2, 4, and 6.

Fourthly, we examined the impact of colder winters on various aspects of electrical
power and energy systems such as electricity generation, electricity consumption, and the
security of supply in Sweden and Norway. It was concluded that (1) Colder winters have
the potential to reduce reservoir capacities in Norway due to the possibility of ice formation
in hydropower units. (2) Reduced electricity generation in Sweden’s winters could shut
down the nuclear power units. (3) A possible reduction in electricity generation in Norway
and Sweden will also impact the neighboring countries. (4) Colder winters directly increase
electricity consumption as the demand for electrical heaters in residual buildings rises.
Additionally, increased demand is observed in the industrial sector and for charging
electric vehicles. (5) A notable example is the winter of 2010, during which a decline in
AMOC, NAO, and winter temperatures coincided with increased electricity consumption
in Norway. (6) Winter storms, particularly in colder winters, can pose challenges to the
resilience and security of power grids, potentially leading to disruptions in the supply
of electricity.

In general, our study reveals several important findings. The cities located near the
borders of Norway exhibit an overall upward temperature trend that can be followed with
a downward trend. Although there was a moderate correlation, specifically for December,
between AMOC and temperatures, there has not been clear evidence of a direct impact
of AMOC on the winter temperatures on daily/monthly timescales. Considering the
NAO variations, in detail, highlighted that the temperatures in December can be impacted
directly from NAO, attached with stronger lagged correlations, albeit to varying degrees
across different sites. While we did not specifically examine the AMOC-NAO connection
in this study, based on the existing literature it might be concluded that NAO could impact
both winter temperatures and AMOC. Understanding the interplay between these climate
factors is crucial for comprehending temperature variations. To explain the reasons behind
the observed downward temperature trends in most locations and subsequent colder
winters in recent years, a detailed investigation is needed. The investigation must consider
the maps of the temperature changes and analysis to support the links between the reasons
and downward temperatures, and explanations as to why it affects particularly December
and some locations differently. While there are many potential reasons for these downtrend
trends, some possible scenarios could be the weakening of the climatic indices investigated
in this study. Colder winters in Norway and Sweden, whether influenced by AMOC, NAO,
or other factors, pose challenges for electrical power and energy systems. Researchers
must address the challenges of balancing between generation and consumption as well
as ensuring the resilience of power grids, which might be crucial in winter, and it is not a
good idea to wait and experience such cold winters unprepared. Finally, it is important
to note that the climatic indices of AMOC/NAO are complex and variable systems, and
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there is still considerable uncertainty surrounding their extent, so further research should
focus on improving our understanding of these climate phenomena and their possible role
in winter climate patterns. We recommend that future studies employ more robust and
physically based methods to estimate the colder winters and the phenomena impacting
them, moving beyond the statistical/signal processing approaches used in this study. In
particular, it would be beneficial to investigate the influence of winter winds in greater detail
across the study locations. Additionally, incorporating another Atlantic index, i.e., Atlantic
multidecadal variability (AMV), could provide valuable insights. Expanding the analysis
to include more locations across Sweden and Norway, and creating a comprehensive
correlation–location map would also enhance our understanding of regional variations.
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Appendix A

Figure A1 gives the correlation coefficient and corresponding p-values using Kendal
and Spearman methods.
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Figure A2 shows an uncompressed version of the temperature plotted in Figure 10a to
give an understanding of smoothed jumps between each month over different years.

Energies 2023, 16, x FOR PEER REVIEW 30 of 36 
 

 

  
(a) (b) 

  
(c) (d) 

Figure A1. Coefficient correlations and corresponding p-values: (a,c) Kendal; (b,d) Spearman. 

Figure A2 shows an uncompressed version of the temperature plotted in Figure 10a 

to give an understanding of smoothed jumps between each month over different years. 

 

Figure A2. An uncompressed version of the temperature plotted in Figure 10a. 

References 

1.  O’Hare, G. Updating Our Understanding of Climate Change in the North Atlantic: The Role of Global Warming and the Gulf 

Stream. Geography 2011, 96, 5–15, doi:10.1080/00167487.2011.12094303. 

2.  Lozier, M.S. Overturning in the North Atlantic. Ann. Rev. Mar. Sci. 2011, 4, 291–315, doi:10.1146/annurev-marine-120710-

100740. 

3.  Willis, J.K. Can in Situ Floats and Satellite Altimeters Detect Long-Term Changes in Atlantic Ocean Overturning? Geophys. 

Res. Lett. 2010, 37, doi:https://doi.org/10.1029/2010GL042372. 

4.  Xu, X.; Chassignet, E.P.; Johns, W.E.; Schmitz, W.J.; Metzger, E.J. Intraseasonal to Interannual Variability of the Atlantic 

Meridional Overturning Circulation from Eddy-Resolving Simulations and Observations. J. Geophys. Res. 2014, 119, 5140–

5159. 

5.  Johns, W.E.; Baringer, M.O.; Beal, L.M.; Cunningham, S.A.; Kanzow, T.; Bryden, H.L.; Hirschi, J.J.M.; Marotzke, J.; Meinen, 

C.S.; Shaw, B.; et al. Continuous, Array-Based Estimates of Atlantic Ocean Heat Transport at 26.5°N. J. Clim. 2011, 24, 2429–

2449, doi:10.1175/2010JCLI3997.1. 

6.  McDonagh, E.L.; King, B.A.; Bryden, H.L.; Courtois, P.; Szuts, Z.; Baringer, M.; Cunningham, S.A.; Atkinson, C.; McCarthy, 

G. Continuous Estimate of Atlantic Oceanic Freshwater Flux at 26.5°N. J. Clim. 2015, 28, 8888–8906, doi:10.1175/JCLI-D-14-

00519.1. 

7.  Talley, L.D.; Feely, R.A.; Sloyan, B.M.; Wanninkhof, R.; Baringer, M.O.; Bullister, J.L.; Carlson, C.A.; Doney, S.C.; Fine, R.A.; 

Firing, E.; et al. Changes in Ocean Heat, Carbon Content, and Ventilation: A Review of the First Decade of GO-SHIP Global 

Figure A2. An uncompressed version of the temperature plotted in Figure 10a.

References
1. O’Hare, G. Updating Our Understanding of Climate Change in the North Atlantic: The Role of Global Warming and the Gulf

Stream. Geography 2011, 96, 5–15. [CrossRef]
2. Lozier, M.S. Overturning in the North Atlantic. Ann. Rev. Mar. Sci. 2011, 4, 291–315. [CrossRef]
3. Willis, J.K. Can in Situ Floats and Satellite Altimeters Detect Long-Term Changes in Atlantic Ocean Overturning? Geophys. Res.

Lett. 2010, 37. [CrossRef]
4. Xu, X.; Chassignet, E.P.; Johns, W.E.; Schmitz, W.J.; Metzger, E.J. Intraseasonal to Interannual Variability of the Atlantic Meridional

Overturning Circulation from Eddy-Resolving Simulations and Observations. J. Geophys. Res. 2014, 119, 5140–5159. [CrossRef]
5. Johns, W.E.; Baringer, M.O.; Beal, L.M.; Cunningham, S.A.; Kanzow, T.; Bryden, H.L.; Hirschi, J.J.M.; Marotzke, J.; Meinen, C.S.;

Shaw, B.; et al. Continuous, Array-Based Estimates of Atlantic Ocean Heat Transport at 26.5◦ N. J. Clim. 2011, 24, 2429–2449.
[CrossRef]

6. McDonagh, E.L.; King, B.A.; Bryden, H.L.; Courtois, P.; Szuts, Z.; Baringer, M.; Cunningham, S.A.; Atkinson, C.; McCarthy, G.
Continuous Estimate of Atlantic Oceanic Freshwater Flux at 26.5◦ N. J. Clim. 2015, 28, 8888–8906. [CrossRef]

7. Talley, L.D.; Feely, R.A.; Sloyan, B.M.; Wanninkhof, R.; Baringer, M.O.; Bullister, J.L.; Carlson, C.A.; Doney, S.C.; Fine, R.A.; Firing,
E.; et al. Changes in Ocean Heat, Carbon Content, and Ventilation: A Review of the First Decade of GO-SHIP Global Repeat
Hydrography. Ann. Rev. Mar. Sci. 2016, 8, 185–215. [CrossRef]

8. Seidov, D.; Mishonov, A.; Reagan, J.; Parsons, R. Multidecadal Variability and Climate Shift in the North Atlantic Ocean. Geophys.
Res. Lett. 2017, 44, 4985–4993. [CrossRef]

9. Lavoie, D.; Lambert, N.; Gilbert, D. Projections of Future Trends in Biogeochemical Conditions in the Northwest Atlantic Using
CMIP5 Earth System Models. Atmosphere-Ocean 2019, 57, 18–40. [CrossRef]

10. Portis, D.H.; Walsh, J.E.; El Hamly, M.; Lamb, P.J. Seasonality of the North Atlantic Oscillation. J. Clim. 2001, 14, 2069–2078.
[CrossRef]

11. Yang, H.; Lohmann, G.; Wei, W.; Dima, M.; Ionita, M.; Liu, J. Intensification and Poleward Shift of Subtropical Western Boundary
Currents in a Warming Climate. J. Geophys. Res. Ocean. 2016, 121, 4928–4945. [CrossRef]

12. Delworth, T.L.; Zeng, F. The Impact of the North Atlantic Oscillation on Climate through Its Influence on the Atlantic Meridional
Overturning Circulation. J. Clim. 2016, 29, 941–962. [CrossRef]

13. Li, M.; Yao, Y.; Simmonds, I.; Luo, D.; Zhong, L.; Chen, X. Collaborative Impact of the Nao and Atmospheric Blocking on
European Heatwaves, with a Focus on the Hot Summer of 2018. Environ. Res. Lett. 2020, 15, 114003. [CrossRef]

14. Buckley, M.W.; Marshall, J. Observations, Inferences, and Mechanisms of the Atlantic Meridional Overturning Circulation: A
Review. Rev. Geophys. 2016, 54, 5–63. [CrossRef]

15. Rahmstorf, S.; Box, J.E.; Feulner, G.; Mann, M.E.; Robinson, A.; Rutherford, S.; Schaffernicht, E.J. Exceptional Twentieth-Century
Slowdown in Atlantic Ocean Overturning Circulation. Nat. Clim. Chang. 2015, 5, 475–480. [CrossRef]

16. Smeed, D.A.; McCarthy, G.D.; Cunningham, S.A.; Frajka-Williams, E.; Rayner, D.; Johns, W.E.; Meinen, C.S.; Baringer, M.O.; Moat,
B.I.; Duchez, A.; et al. Observed Decline of the Atlantic Meridional Overturning Circulation 2004–2012. Ocean Sci. 2014, 10, 29–38.
[CrossRef]

17. IPCC. CLIMATE CHANGE 2013 Climate Change 2013; IPCC: Geneva, Switzerland, 2013; ISBN 9781107661820.
18. Longworth, H.R.; Bryden, H.L.; Baringer, M.O. Historical Variability in Atlantic Meridional Baroclinic Transport at 26.5◦ N from

Boundary Dynamic Height Observations. Deep. Res. Part II Top. Stud. Oceanogr. 2011, 58, 1754–1767. [CrossRef]
19. Bryden, H.L.; Longworth, H.R.; Cunningham, S.A. Slowing of the Atlantic Meridional Overturning Circulation at 25 Degrees N.

Nature 2005, 438, 655–657. [CrossRef]
20. Kanzow, T.; Cunningham, S.A.; Johns, W.E.; Hirschi, J.J.M.; Marotzke, J.; Baringer, M.O.; Meinen, C.S.; Chidichimo, M.P.; Atkinson,

C.; Beal, L.M.; et al. Seasonal Variability of the Atlantic Meridional Overturning Circulation at 26.5◦ N. J. Clim. 2010, 23, 5678–5698.
[CrossRef]

21. Jewett, L.; Romanou, A. Ocean acidification and other ocean changes. In Climate Science Special Report: Fourth National Climate
Assessment; Wuebbles, D.J., Fahey, D.W., Hibbard, K.A., Dokken, D.J., Stewart, B.C., Maycock, T.K., Eds.; U.S. Global Change
Research Program: Washington, DC, USA, 2017; Volume I, pp. 364–392. [CrossRef]

https://doi.org/10.1080/00167487.2011.12094303
https://doi.org/10.1146/annurev-marine-120710-100740
https://doi.org/10.1029/2010GL042372
https://doi.org/10.1002/2014JC009994
https://doi.org/10.1175/2010JCLI3997.1
https://doi.org/10.1175/JCLI-D-14-00519.1
https://doi.org/10.1146/annurev-marine-052915-100829
https://doi.org/10.1002/2017GL073644
https://doi.org/10.1080/07055900.2017.1401973
https://doi.org/10.1175/1520-0442(2001)014&lt;2069:SOTNAO&gt;2.0.CO;2
https://doi.org/10.1002/2015JC011513
https://doi.org/10.1175/JCLI-D-15-0396.1
https://doi.org/10.1088/1748-9326/aba6ad
https://doi.org/10.1002/2015RG000493
https://doi.org/10.1038/nclimate2554
https://doi.org/10.5194/os-10-29-2014
https://doi.org/10.1016/j.dsr2.2010.10.057
https://doi.org/10.1038/nature04385
https://doi.org/10.1175/2010JCLI3389.1
https://doi.org/10.7930/J0QV3JQB


Energies 2023, 16, 5575 31 of 34

22. Weijer, W.; Cheng, W.; Garuba, O.A.; Hu, A.; Nadiga, B.T. CMIP6 Models Predict Significant 21st Century Decline of the Atlantic
Meridional Overturning Circulation. Geophys. Res. Lett. 2020, 47, e2019GL086075. [CrossRef]

23. Zhang, W.-Z.; Chai, F.; Xue, H.; Oey, L.-Y. Remote Sensing Linear Trends of the Gulf Stream from 1993 to 2016. Ocean Dyn. 2020,
70. [CrossRef]

24. Andres, M.; Donohue, K.A.; Toole, J.M. The Gulf Stream’s Path and Time-Averaged Velocity Structure and Transport at 68.5◦ W
and 70.3◦ W. Deep Sea Res. Part I Oceanogr. Res. Pap. 2020, 156, 103179. [CrossRef]

25. Fox-Kemper, B. Ocean, Cryosphere and Sea Level Change. In Proceedings of the AGU Fall Meeting Abstracts, New Orleans, LA,
USA, 13–17 December 2021; Volume 2021, p. U13B-09.

26. Yang, H.; Chen, G.; Tang, Q.; Hess, P. Quantifying Isentropic Stratosphere-Troposphere Exchange of Ozone. J. Geophys. Res. Atmos.
2016, 121, 3372–3387. [CrossRef]

27. Chen, C.; Wang, G.; Xie, S.-P.; Liu, W. Why Does Global Warming Weaken the Gulf Stream but Intensify the Kuroshio? J. Clim.
2019, 32, 7437–7451. [CrossRef]

28. Caesar, L.; Rahmstorf, S.; Robinson, A.G.; Feulner, G.; Saba, V.S. Observed Fingerprint of a Weakening Atlantic Ocean Overturning
Circulation. Nature 2017, 556, 191–196. [CrossRef] [PubMed]

29. Ortega, P.; Robson, J.; Sutton, R.; Andrews, M. Mechanisms of Decadal Variability in the Labrador Sea and the Wider North
Atlantic in a High-Resolution Climate Model. Clim. Dyn. 2017, 49, 2625–2647. [CrossRef]

30. Belonenko, T.; Morozova, L.; Gordeeva, S. Key to the Atlantic Gates of the Arctic. Russ. J. Earth Sci. 2022, 22, 2004. [CrossRef]
31. Caesar, L.; McCarthy, G.; Thornalley, D.; Cahill, N.; Rahmstorf, S. Current Atlantic Meridional Overturning Circulation Weakest

in Last Millennium. Nat. Geosci. 2021, 14, 1–3. [CrossRef]
32. Biastoch, A.; Schwarzkopf, F.U.; Getzlaff, K.; Rühs, S.; Martin, T.; Scheinert, M.; Schulzki, T.; Handmann, P.; Hummels, R.;

Böning, C.W. Regional Imprints of Changes in the Atlantic Meridional Overturning Circulation in the Eddy-Rich Ocean Model
VIKING20X. Ocean Sci. 2021, 17, 1177–1211. [CrossRef]

33. University of South Florida (USF Innovation). Melting Greenland ice Sheet may Affect Global Ocean Circulation, Future
Climate: University of South Florida and International Scientists Find Influx of Freshwater Could Disrupt the Atlantic Meridional
Overturning Circulation, an Important Component of Global Ocean Circulation. ScienceDaily, 22 January 2016. Available online:
www.sciencedaily.com/releases/2016/01/160122122629.htm (accessed on 24 February 2023).

34. Ciemer, C.; Winkelmann, R.; Kurths, J.; Boers, N. Impact of an AMOC Weakening on the Stability of the Southern Amazon
Rainforest. Eur. Phys. J. Spec. Top. 2021, 230, 3065–3073. [CrossRef]

35. Liu, W.; Fedorov, A.V.; Xie, S.-P.; Hu, S. Climate Impacts of a Weakened Atlantic Meridional Overturning Circulation in a Warming
Climate. Sci. Adv. 2020, 6, eaaz4876. [CrossRef]

36. Wang, H.; Zuo, Z.; Qiao, L.; Zhang, K.; Sun, C.; Xiao, D.; Bu, L. Frequency of Winter Temperature Extremes over Northern Eurasia
Dominated by AMOC. npj Clim. Atmos. Sci. 2021, 5, 84. [CrossRef]

37. Smeed, D.; Wood, R.; Cunningham, S.; Mccarthy, G.; Kuhlbrodt, T.; Office, M.; Centre, H. Impacts of Climate Change on the
Atlantic Heat Conveyor. MCCP Sci. Rev. 2013, 4, 49–59. [CrossRef]

38. Buchan, J.; Hirschi, J.J.M.; Blaker, A.T.; Sinha, B. North Atlantic SST Anomalies and the Cold North European Weather Events of
Winter 2009/10 and December 2010. Mon. Weather Rev. 2014, 142, 922–932. [CrossRef]

39. Bryden, H.L.; King, B.A.; McCarthy, G.D.; McDonagh, E.L. Impact of a 30% Reduction in Atlantic Meridional Overturning during
2009–2010. Ocean Sci. 2014, 10, 683–691. [CrossRef]

40. Munday, A.J.; Hunt, J.B. University of Southampton. Tribology 1970, 3, 106–107. [CrossRef]
41. Bellomo, K.; Meccia, V.; D’Agostino, R.; Fabiano, F.; von Hardenberg, J.; Corti, S. The Climate Impacts of an Abrupt AMOC

Weakening on the European Winters. In Proceedings of the EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022.
EGU22-1023. [CrossRef]

42. RAPID: Monitoring the Atlantic Meridional Overturning Circulation at 26.5 N since 2004. Available online: https://rapid.ac.uk/
rapidmoc/overview.php (accessed on 26 January 2023).

43. Duchez, A.; Courtois, P.; Harris, E.; Josey, S.A.; Kanzow, T.; Marsh, R.; Smeed, D.A.; Hirschi, J.J.M. Potential for Seasonal
Prediction of Atlantic Sea Surface Temperatures Using the RAPID Array at 26◦ N. Clim. Dyn. 2016, 46, 3351–3370. [CrossRef]

44. Moat, B.I.; Smeed, D.A.; Frajka-Williams, E.; Desbruyères, D.G.; Beaulieu, C.; Johns, W.E.; Rayner, D.; Sanchez-Franks, A.;
Baringer, M.O.; Volkov, D.; et al. Pending Recovery in the Strength of the Meridional Overturning Circulation at 26◦ N. Ocean Sci.
2020, 16, 863–874. [CrossRef]

45. Wanner, H.; Brönnimann, S.; Casty, C.; Gyalistras, D.; Luterbacher, J.; Schmutz, C.; Stephenson, D.B.; Xoplaki, E. North Atlantic
Oscillation–Concepts And Studies. Surv. Geophys. 2001, 22, 321–381. [CrossRef]

46. Stephenson, D.B.; Wanner, H.; Brönnimann, S.; Luterbacher, J. The History of Scientific Research on the North Atlantic Oscillation.
In The North Atlantic Oscillation: Climatic Significance and Environmental Impact; American Geophysical Union (AGU): Washington,
DC, USA, 2003; pp. 37–50. ISBN 9781118669037.

47. Norsk Klimaservicesenter. Available online: https://seklima.met.no/observations (accessed on 26 January 2023).
48. Swedish National Knowledge Centre for Climate Change Adaptation|SMHI. Available online: https://www.smhi.se/en/theme/

climate-centre (accessed on 26 January 2023).
49. Monitoring North Atlantic Oscillation Since 1950. Available online: Https://Ftp.Cpc.Ncep.Noaa.Gov/Cwlinks/ (accessed on 15

May 2023).

https://doi.org/10.1029/2019GL086075
https://doi.org/10.1007/s10236-020-01356-6
https://doi.org/10.1016/j.dsr.2019.103179
https://doi.org/10.1002/2015JD024180
https://doi.org/10.1175/JCLI-D-18-0895.1
https://doi.org/10.1038/s41586-018-0006-5
https://www.ncbi.nlm.nih.gov/pubmed/29643485
https://doi.org/10.1007/s00382-016-3467-y
https://doi.org/10.2205/2022ES000792
https://doi.org/10.1038/s41561-021-00699-z
https://doi.org/10.5194/os-17-1177-2021
www.sciencedaily.com/releases/2016/01/160122122629.htm
https://doi.org/10.1140/epjs/s11734-021-00186-x
https://doi.org/10.1126/sciadv.aaz4876
https://doi.org/10.1038/s41612-022-00307-w
https://doi.org/10.14465/2013.arc06.049-059
https://doi.org/10.1175/MWR-D-13-00104.1
https://doi.org/10.5194/os-10-683-2014
https://doi.org/10.1016/0041-2678(70)90288-5
https://doi.org/10.5194/egusphere-egu22-1023
https://rapid.ac.uk/rapidmoc/overview.php
https://rapid.ac.uk/rapidmoc/overview.php
https://doi.org/10.1007/s00382-015-2918-1
https://doi.org/10.5194/os-16-863-2020
https://doi.org/10.1023/A:1014217317898
https://seklima.met.no/observations
https://www.smhi.se/en/theme/climate-centre
https://www.smhi.se/en/theme/climate-centre
Https://Ftp.Cpc.Ncep.Noaa.Gov/Cwlinks/


Energies 2023, 16, 5575 32 of 34

50. Sinha, B.; Smeed, D.A.; McCarthy, G.; Moat, B.I.; Josey, S.A.; Hirschi, J.J.-M.; Frajka-Williams, E.; Blaker, A.T.; Rayner, D.; Madec, G.
The Accuracy of Estimates of the Overturning Circulation from Basin-Wide Mooring Arrays. Prog. Oceanogr. 2018, 160, 101–123.
[CrossRef]

51. McCarthy, G.D.; Brown, P.J.; Flagg, C.N.; Goni, G.; Houpert, L.; Hughes, C.W.; Hummels, R.; Inall, M.; Jochumsen, K.; Larsen,
K.M.H.; et al. Sustainable Observations of the AMOC: Methodology and Technology. Rev. Geophys. 2020, 58, e2019RG000654.
[CrossRef]

52. Boschat, G.; Simmonds, I.; Purich, A.; Cowan, T.; Pezza, A.B. On the Use of Composite Analyses to Form Physical Hypotheses:
An Example from Heat Wave-SST Associations. Sci. Rep. 2016, 6, 29599. [CrossRef] [PubMed]

53. Deng, C. Time Series Decomposition Using Singular Spectrum Analysis Part of the Longitudinal Data Analysis and Time Series
Commons. Master’s Thesis, East Tennessee State University, Johnson City, TN, USA, 2014.

54. Golyandina, N. Particularities and Commonalities of Singular Spectrum Analysis as a Method of Time Series Analysis and Signal
Processing. WIREs Comput. Stat. 2020, 12, e1487. [CrossRef]

55. Miraftabzadeh, S.M.; Longo, M.; Brenna, M.; Pasetti, M. Data-Driven Model for PV Power Generation Patterns Extraction via
Unsupervised Machine Learning Methods. In Proceedings of the 2022 North American Power Symposium (NAPS), Salt Lake
City, UT, USA, 9–11 October 2022; pp. 1–5.

56. Miraftabzadeh, S.M.; Longo, M.; Brenna, M. Knowledge Extraction from PV Power Generation with Deep Learning Autoencoder
and Clustering-Based Algorithms. IEEE Access 2023, 11, 69227–69240. [CrossRef]

57. Li, H. Spectral Analysis of Signals [Book Review]; IEEE: Piscataway, NJ, USA, 2008; Volume 24, ISBN 0131139568.
58. Muir, L.C.; Fedorov, A.V. How the AMOC Affects Ocean Temperatures on Decadal to Centennial Timescales: The North Atlantic

versus an Interhemispheric Seesaw. Clim. Dyn. 2015, 45, 151–160. [CrossRef]
59. Bellomo, K.; Agostino, R.D.; Fabiano, F.; Larson, S.M.; Corti, S. Impacts of a Weakened AMOC on Precipitation over the Euro-

Atlantic Region in the EC-Earth3 Climate Model. Clim. Dyn. 2022. [CrossRef]
60. Chiang, J.C.H.; Cheng, W.; Kim, W.M.; Kim, S. Untangling the Relationship Between AMOC Variability and North Atlantic

Upper-Ocean Temperature and Salinity. Geophys. Res. Lett. 2021, 48, e2021GL093496. [CrossRef]
61. López-Moreno, J.I.; Vicente-Serrano, S.M.; Morán-Tejeda, E.; Lorenzo-Lacruz, J.; Kenawy, A.; Beniston, M. Effects of the North

Atlantic Oscillation (NAO) on Combined Temperature and Precipitation Winter Modes in the Mediterranean Mountains:
Observed Relationships and Projections for the 21st Century. Glob. Planet. Chang. 2011, 77, 62–76. [CrossRef]

62. Rousi, E.; Rust, H.W.; Ulbrich, U.; Anagnostopoulou, C. Implications of Winter NAO Flavors on Present and Future European
Climate. Climate 2020, 8, 13. [CrossRef]

63. Jackson, L.C.; Biastoch, A.; Buckley, M.W.; Desbruyères, D.G.; Frajka-Williams, E.; Moat, B.; Robson, J. The Evolution of the North
Atlantic Meridional Overturning Circulation since 1980. Nat. Rev. Earth Environ. 2022, 3, 241–254. [CrossRef]

64. Roach, L.A.; Blanchard-Wrigglesworth, E.; Ragen, S.; Cheng, W.; Armour, K.C.; Bitz, C.M. The Impact of Winds on AMOC in a
Fully-Coupled Climate Model. Geophys. Res. Lett. 2022, 49, 1–10. [CrossRef]

65. Kim, H.J.; An, S.I.; Park, J.H.; Sung, M.K.; Kim, D.; Choi, Y.; Kim, J.S. North Atlantic Oscillation Impact on the Atlantic Meridional
Overturning Circulation Shaped by the Mean State. npj Clim. Atmos. Sci. 2023, 6. [CrossRef]

66. Iversen, E.C.; Burningham, H. Relationship between NAO and Wind Climate over Norway. Clim. Res. 2015, 63, 115–134.
[CrossRef]

67. Xu, Y. Estimates of Changes in Surface Wind and Temperature Extremes in Southwestern Norway Using Dynamical Downscaling
Method under Future Climate. Weather Clim. Extrem. 2019, 26, 100234. [CrossRef]

68. ENTSO-E Transparency Platform. Available online: https://transparency.entsoe.eu/ (accessed on 24 February 2023).
69. Energifaktanorge.No-Fakta Om Norsk Energi Og Vannressurser-Energifakta Norge. Available online: https://energifaktanorge.

no/ (accessed on 24 February 2023).
70. An Overview of Energy in Sweden 2022 Now Available. Available online: https://www.energimyndigheten.se/en/news/2022

/an-overview-of-energy-in-sweden-2022-now-available/ (accessed on 24 February 2023).
71. Quarterly Statistics-Swedish Wind Energy Association. Available online: https://swedishwindenergy.com/statistics (accessed

on 24 February 2023).
72. Haddeland, I.; Hole, J.; Holmqvist, E.; Koestler, V.; Sidelnikova, M.; Veie, C.A.; Wold, M. Effects of Climate on Renewable Energy

Sources and Electricity Supply in Norway. Renew. Energy 2022, 196, 625–637. [CrossRef]
73. Heggenes, J.; Stickler, M.; Alfredsen, K.; Brittain, J.E.; Adeva-Bustos, A.; Huusko, A. Hydropower-Driven Thermal Changes,

Biological Responses and Mitigating Measures in Northern River Systems. River Res. Appl. 2021, 37, 743–765. [CrossRef]
74. François, B.; Martino, S.; Tøfte, L.S.; Hingray, B.; Mo, B.; Creutin, J.-D. Effects of Increased Wind Power Generation on Mid-

Norway’s Energy Balance under Climate Change: A Market Based Approach. Energies 2017, 10, 227. [CrossRef]
75. Farsaei, A.; Syri, S.; Olkkonen, V.; Khosravi, A. Unintended Consequences of National Climate Policy on International Electricity

Markets—Case Finland’s Ban on Coal-Fired Generation. Energies 2020, 13, 1930. [CrossRef]
76. Olkkonen, V.; Syri, S. Spatial and Temporal Variations of Marginal Electricity Generation: The Case of the Finnish, Nordic, and

European Energy Systems up to 2030. J. Clean. Prod. 2016, 126, 515–525. [CrossRef]
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