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Abstract: The underground mining industry is at the forefront when it comes to unsafe conditions
at workplaces. As mining depths continue to increase and the mining fronts move away from the
ventilation shafts, gas hazards are increasing. In this article, the authors developed a statistical
polynomial model for nitrogen oxide (NOx) emission prediction of the LHD vehicle with a diesel
engine. The best-achieved prediction accuracy by the 4th order polynomial model for 11 and 10 input
variables is about 8% and 13%, respectively. It is comparable with the sensors’ accuracy of 10% at a
stable regime of loading and 20% in the transient periods of operation. The obtained results allow
planning of ventilation system capacity and power demand for the large fleet of vehicles in the deep
underground mines.
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1. Introduction

One of the main tasks of an employer is to ensure safe working conditions for its em-
ployees regardless of the industry in which they work. According to [1], the underground
mining industry is at the forefront when it comes to unsafe conditions at workplaces.
As mining depths continue to increase, and the mining fronts move away from the venti-
lation shafts, gas hazards are increasing. This article will analyze the danger of nitrogen
oxides (NOx). Sources of NOx emissions into the mine atmosphere can be divided into nat-
ural and technological. It is assumed that diesel mining machinery has the greatest impact
on air pollution. It is important to properly control gas concentrations in mine workings.
Unfortunately, not all mining machines have NOx measurement sensors installed—making
it difficult to control the concentrations of these gases in workings. Rapidly changing
standards for reducing gas concentration limits at workplaces are forcing the use of new
methods in assessing workers’ exposure to harmful gases. Not only is the lack of machine-
mounted sensors a major problem in assessing the work environment, but also the problem
of variable selection or data recording errors.

Monitoring, analyzing, and now also predicting parameters to ensure safe and trouble-
free continuous operation of underground crews has been carried out for years [2–5]. Due to
the difficult working conditions and unreliability of electronic equipment in underground
conditions, the use of prediction sometimes turns out to be the only option for assessing
the state of the environment or the condition of the equipment/vehicle.

The article uses measurement data from the SYNAPSA system, which data is obtained
from the monitoring system mounted on an LHD. Authors selected from the full list of
parameters those ones, which affect the value of NOx concentrations. Based on them,
a model for the prediction of the value of these concentrations was created. To ensure safe
working conditions for underground crews, it is important to know the values of emissions
of harmful compounds from mining machinery. The created prediction model can be used
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to estimate the values that are generated by mining machines that do not have a nitrogen
oxide sensor installed.

Nitrogen oxides are currently a critical problem. Their negative impact on human
health results in continuous changes and lowering of nitrogen oxide concentration limits
in the working environment of underground crews. The solution presented in the article
will help improve working conditions. In further research, the proposed statistical models
can provide valuable assistance in determining further parameters that can affect NOx
from vehicle emissions, like measurements of other important engine variables such as
cylinder pressure. In addition, statistical modeling can be very useful for predicting
emissions under transient conditions of engine operation, where physical models still need
significant improvement.

The main difference is that we used a new multi-polynomial statistical model to
predict the NOx emissions and verified it by the unique data of LHD working in the
underground mine with harsh environmental conditions. The majority of previous studies
were conducted either for different types of diesel vehicles on-surface or in-lab conditions.
The obtained accuracy of NOx emission prediction allows applying the developed model
for practical needs.

Problem Formulation

Following the own observations of the ventilation systems in the deep underground
mines and taking into account the capabilities of onboard monitoring systems in Load-
Haul-Dump (LHD) vehicles, the following problems can be distinguished:

• Although all manufacturers of diesel engines for heavy-duty vehicles include the
exhaust gas aftertreatment systems, NOx sensors are not present in the LHD machines
working in deep underground mines.

• To solve the urgent issues of ventilation, especially in the deep underground mines,
and provide safe working conditions, the engineering and management staff would
like to know immediately the NOx emissions from every vehicle working in different
geological conditions. This is practically more efficient to realize by the on-board
monitoring systems instead of permanent numerous sensors installation in the mines
with constantly changing the configuration of tunnels. However, all recorded data,
including signals from onboard NOx sensors, are uploaded to the server via wireless
connections only once per working shift (about 6 h). Therefore, mathematical models
and software tools are required for the post-processing of big data sets offline.

• Since the onboard monitoring system can record a huge number of working param-
eters, the problem arises of their optimal selection from the whole set. Moreover,
due to different reasons, data are not always correctly stored (NaN values, missed
data, etc.); therefore, data pre-processing and cleaning procedures are required for
correct calculations.

• While designing a NOx prediction model, the problem exists of the balance between fit
quality and overfitting related to smoothing of initial data (already after pre-processing
and invalid data cleaning). Also, having an even enough accurate model tested over
certain working conditions and machine technical state, its robustness should be
provided for other working locations, operators’ experience, and critical elements
deterioration (engine, turbine, exhaust system, tires).

2. State of the Art

The safety of a worker while at work these days should be the most important cri-
terion for an employer. However, there are industries where the health and safety of
workers are at risk more than others. One such process is raw materials mining - mainly
in underground mines. The ever-increasing demand for mineral resources results in the
exploitation of deposits from ever deeper. The great depth of mining (up to 1000–1500 m)
is associated with an increase in the exposure of workers to natural hazards prevailing
underground [6–8]. The most dangerous at present is the climatic hazard associated with
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the constantly increasing primary temperature of the rocks, which in Polish copper ore
mines is almost 50 °C [9]. Another critical problem is the gas hazard. As the mining
depth increases and the mining fronts move away from the ventilation shafts, the rate of
rarefying of harmful gases and ventilation of the workings decreases. According to Stru-
minski [10] and Szlazak [11], the most harmful gases are carbon monoxide (CO), hydrogen
sulfide (H2S), methane (CH4), and nitrogen oxides (NOx). In the recent studies of Yin and
Linga [12], it has been proposed to use hydrogen or natural gas hydrate as a source of
primary fuel to eliminate NOx and SOx.

As reported by Shaw et al. [13], NOx is understood as the sum of nitrogen oxide (NO)
and nitrogen dioxide (NO2) compounds. In underground mines, NOx gas hazards can have
a natural or technological source. Natural sources include the oxidation of nitrogen from
the atmosphere or the natural outflow of nitrogen oxides from the rock mass. The most
significant, however, are nitrogen oxides that are generated by technological processes—
these include nitrogen oxides that originate in the blasting process, those from welding
processes, and, above all, those from diesel engines [14–16].

According to Kampa [17], nitrogen oxides are gases that are harmful to a living
organism. Both NO and NO2 are odorless gases. Nitrogen oxide is additionally a colorless
gas, while nitrogen dioxide in higher concentrations can take on a brown color [18–20].
According to Galbreath et al. [21], in the exhaust of a diesel engine, the percentage of
nitrogen oxides is about 90% NO and about 10% NO2. As reported by Hori et al. in [22], it
is nitrogen dioxide that is more toxic. NO2 causes respiratory problems as low as 1.5 ppm,
while at 5 ppm, it causes a drop in blood pressure. Death occurs at concentrations near
200 ppm of NO2 [23].

Given the chemical and physical properties of nitrogen oxides and how they affect the
human body working in the underground mine, continuous monitoring of the values of
these concentrations is being introduced. Measurements are made of the values of NOx
concentrations in the mine atmosphere and at the exhaust of the internal combustion engine.
The limit values in the exhaust gases are 500 ppm for NO2 and 750 ppm for NO.

Due to the harmfulness of the compounds in the exhaust, numerous studies are being
conducted on predicting the emissions of harmful compounds, including nitrogen oxides,
into the atmosphere from diesel vehicles [24–26].

This article represents the research results related to NOx emission from load-haul-
dump (LHD) vehicles driven by diesel engines.

The articulated load-haul-dump (LHD) machine (LKP-1701), which was under in-
vestigation (see Figure 1), is designed for underground application in a confined space of
low transportation tunnels. The main parameters of its diesel engine (DEUTZ TCD 12.0
V6) are given in Table 1. These LHDs are equipped with an onboard system for machine
working parameters monitoring via CAN bus. The exhaust gas NOx concentration signal
from the sensor is stored in the database among other signals of the diesel engine and
operator actions (gear selection, torque converter locking, acceleration, and braking). This
type of machine is characterized by the continuous reverse motion for blasted bulk material
(copper ore) taking and haul truck loading. Due to that, diesel engine exhibits excessive
exhaust gas emissions. The most intensive mode of engine loading determined based on
working cycles analysis [27] and dynamical model [28] is the bucket digging in the hill.

To reduce the harmful gas emission due to lower combustion temperature, the diesel
engine is equipped with the exhaust aftertreatment (EAT) or exhaust gas recirculating
(EGR) systems. The exhaust gas is typically routed through a Diesel Oxidation Catalyst
(DOC) where a chemical reaction is induced to convert hydrocarbons, NOx, and other
pollutants of diesel exhaust to less harmful compounds like carbon dioxide. The remaining
particles (soot) are reduced by the Diesel Particulate Filter (DPF).
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Figure 1. The LHD vehicle under investigation: LKP-1701 (KGHM ZANAM) with a powerful diesel
engine for the underground mines [29].

Table 1. Parameters of DEUTZ TCD 12.0 V6 diesel engine [30].

Parameter Value Units

Power output as per ISO 14396 390 kW
at speed 2100 rpm
Max. torque 2130 Nm
at speed 1400 rpm
Min. idling speed 600 rpm
Max. nominal speed 1800–2100 rpm

CanmetMINING Diesel Research Laboratory (Canada) conducted a progressive load
test (PLT) and vehicle transient test (VTT) to estimate the contribution in NOx emission of
Diesel Oxidation Catalysts (DOC) [31]. The VTT simulated operation of a load-haul-dump
(LHD) vehicle’s working cycle. Three groups of DOCs are tested: (1) platinum; (2) base
metal/palladium; and (3) the “advanced” group. All groups showed a good reduction of
carbon monoxide (CO) and total hydrocarbon emissions. However, the change in NO2
(g/kWh) emissions varied from an increase of 446% to a reduction of 47% for groups 1 and
2 while group 3 showed NOx reduction in any mode of operation.

Those systems provide Tier 4 Interim (Stage IIIB) emissions in accordance with EU
regulations. For this class of engine power (up to 560 kW), the allowed maximum amount of
nitrogen oxides (NOx) is 3.3 g/kWh; non-methane hydrocarbons (NMHC) —0.19 g/kWh;
particulate matter (PM) 0.025 g/kWh. In other types of vehicles and EU regulations, these
emission parameters are given per kilometer regardless of engine power. Although ad-
vanced technologies for emissions reduction are proposed and applied in civil cars [32],
e.g., Lean NOx Trap (LNT), Selective Catalytic Reduction (SCR), they have not been yet
widely implemented in underground mining vehicles. Moreover, the Common Rail Direct
Injection (CRDI) system stabilizes the output power and reduces the fuel consumption of
the turbocharged diesel engine under transient modes of loading and speed.

The important role in exhaust gas emission is the setting made by the machine pro-
ducer in the Electronic Control Unit (ECU), which controls the whole process of machine
operation. Depending on certain operator experience, the machine can be operated at
different engine rotations and motion speeds. The real power and torque characteristics
are given in Figure 2. For this engine, the maximum torque is provided at about 1400 rpm.
Although the operators intuitively try to work around this point by gear selection and accel-
eration regulation; it could not be the optimum by the minimum of exhaust gas emission.

As mentioned earlier, nitrogen oxides from combustion engines are the largest con-
tributor to pollution of the mine atmosphere. Therefore, it is important for the safety of
the underground crew to monitor them constantly. Since not all machines are equipped
with appropriate sensors, this problem can be solved by modeling. Once the factors and
their influence on the increase in the value of NOx concentrations on the engine exhaust
have been determined, it is possible to determine the top-down operating parameters of
the machine, which the machine operator can control independently, e.g., machine speed,
and engine rotation.
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Figure 2. The characteristics of the output power and torque by the rotation speed for DEUTZ TCD
12.0 V6 diesel engine [30].

In the area of exhaust gas emission prediction, there are several approaches to get a
relation based both on physical and empirical models [33,34]. The limitations of physical
models are, in fact, that they require some not measured parameters, e.g., in-cylinder burned
gas temperature, the ambient gas-to-fuel ratio, the mass of injected fuel, etc. [35]. Engine
emissions due to components’ aging, parameters drift, and tolerances violation pose serious
problems in meeting emission regulations. To meet practical demand, some authors [36]
proposed an optimal linear output feedback controller and a set-point adaption loop on the
exhaust gas recirculating rate. Low accuracy restricts the application of physical models in
practice. Therefore, in the paper [37], the authors used a statistical approach and correlation
analysis to study the main influencing factors of engine torque and NOx emission. They
obtained accurate regression models and discovered that ambient temperature in the
range 5–30 ◦C has a great influence both on torque and NOx prediction. The experimental
research of intake air humidity influence on the emissions of a turbocharged diesel engine
has been conducted in [38]. The relative air humidity was varied from 31 to 80% at a fixed
ambient air temperature of 26 ◦C. The results of tests under three levels of load and rotation
speed showed that increasing the intake of air moisture causes less by 3–14% of the NOx
emissions. However, since the ambient temperature and humidity in certain underground
mines do not variate significantly (+35 ◦C and 60%), these factors can be neglected in the
prediction model.

In general, ANN-based engine models offer a multi-dimensional, adaptive, and learn-
ing tool, which does not require knowledge of the governing equations for engine combus-
tion kinetics for emissions prediction [39]. However, this approach requires model training
and is difficult to implement in the vehicle onboard monitoring systems due to restricted
computing resources. For earth-moving operations with wheel loaders, authors in [40]
analyzed energy use and emissions (CO2, CO, NOx, CH4, VOC, PM) based on the crite-
rion of the fuel consumption per cubic meter of hauled material. Using Artificial Neural
Networks (ANN) and discrete event simulations, they showed that the fuel consumption
and emissions of wheel loaders are mostly dependent on engine load, utilization rate (idle
time), and bucket payload.

In the paper [41], three nonlinear models were evaluated: ANN, the split and fit
algorithm, and a polynomial NARX model with linear parameters. In the transient mode of
the automotive diesel engine, each algorithm showed good prediction accuracy and a short
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time (0.3 ms) of calculation. By the training time, the split and fit algorithm was the quickest
(50 s). The authors concluded that such models are much more accurate than the frequently
used engine map and the linear fit models, moreover, in the transient mode. Authors
in [42] developed fast one-dimensional models for NOx emission prediction based on the
Extended Zeldovich mechanism and different calibration multiplier maps. It is shown that
turbine inlet temperature, in-cylinder maximum temperature, maximum pressure, load,
CA50 (Crank Angle position where 50% of the heat is released), exhaust gas recirculating
rate, and fuel-air ratio are the most critical map parameters for accurate NOx prediction.
The problem of input parameter selection for the AI-based NOx emission prediction models
is considered in [43]. The gradient boosting regression (GBR) model was used to train
based on 10 input features. The coefficient of determination (R2) values is within 0.88–0.99
for different driving routes. The most important features for the NOx prediction are mass
air flow rate (g/s), exhaust flow rate (m3/min), and CO2 (ppm).

3. Measurement Method

The NOx sensor is permanently installed on the underground articulated LHD vehicle
with the diesel engine DEUTZ TCD 12.0 V6 (see Figure 3). This is a 6-cylinder in-line engine
with a charge air cooling and exhaust turbocharger. The engine manufacturer declares a
lifespan of about 1 million km. By official information, the engine copes well with sharply
increasing loads providing 90% of the maximum torque already at 1300 rpm. Additional
parameters of the engine are given in Table 2. Best point consumption refers to diesel with
a density of 0.835 kg/dm3 at 15 ◦C.

Figure 3. The diesel engine DEUTZ TCD 12.0 V6 installed on the LHD-1701 vehicle and its SCR
system [30]: 1—Engine control module; 2—AdBlue® pipe; 3—AdBlue® pump; 4—AdBlue® tank;
5—Solenoid valve; 6—Coolant line for preheating the AdBlue® tank; 7—Exhaust gas temperature
sensor; 8—Coolant line for cooling the proportioner; 9—Dispenser; 10—SCR catalytic converter;
11—NOx sensor.

Table 2. Additional parameters of DEUTZ TCD 12.0 V6 diesel engine [30].

Parameter Value Units

Number of cylinders 6
Piston stroke 145 mm
Cylinder bore 132 mm
Displacement 11.900 cc
Specific fuel consumption 194 g/kWh
Euro standards Euro 5
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The typical parameters of the NOx sensor are given in Table 3. The current regulation
implies the minimum NOx mass measurement accuracy requirements of either ±20%
or ±0.1 g/bhp-h [44]. However, the majority of NOx sensors are not able to meet these
demands under transient loading due to different factors of noise like NOx sensor tolerance,
exhaust flow rate, cross-sensitivity to ammonia (NH3), mass airflow (MAF), and sensor
position. The noise of many sensors is about 10 ppm at a zero NOx concentration, which
can be caused by residual NOx in the exhaust system. While at 100 ppm NOx concentration,
the accuracy is approximate±10% and achieves a better than±10% accuracy at NOx values
of 500 ppm or higher [45].

Table 3. Parameters of NOx sensor.

Parameter Value Units

Measuring range (NOx) 0–1500 ppm
Accuracy ±10 (20) %
Operating temperature −40–105 ◦C
Exhaust gas temperature <800 ◦C

In the data given for analysis taken from the onboard monitoring system, any of
the above-mentioned combustion process model parameters were not available. Instead,
the list of parameters stored on the server of the mining enterprise is given in Table 4.

Table 4. Parameters of the monitoring system taken for analysis.

Nr Parameter Description Units

ENGNOX NOx Emissions ppm

1 ENGCOOLT Coolant temperature ◦C
2 ENGOILT Oil Temperature kPa
3 ENGRPM Engine rotations rpm
4 ENGTPS Engine acceleration %
5 FUELUS Fuel consumption L/h
6 GROILP Gear oil pressure kPa
7 GROILT Gear oil temperature C
8 HYDOILP Hydraulic oil pressure MPa
9 INTAKEP Intake air pressure kPa
10 INTAKET Intake air temperature ◦C
11 SPEED Machine speed km/h

The sampling frequency of all parameters is 1 s except for INTAKEP, with 5 s. Results
of preliminary data analysis of are represented in Figures 4 and 5. On the first graph, several
cycles are shown of LHD loading and unloading, each lasting about 4 min (240–250 s).
In every cycle, the largest oscillating values of NOx are observed at the beginning and
during the completion of the cycle. On the other graphs, for the different engine parameters,
the first cycle is shown along with moving average (10 points) curves. The most correlated
with a NOx parameter is intake pressure (INTAKEP), although it has the longest sampling
period (5 s). The other parameters, namely, rotation speed (ENGRPM). fuel use (FUELUSE)
and engine acceleration (ENGTPS) are less statistically related to emission (ENGNOX) due
to larger short-time deviations. The smoothed curves have fewer deviations and follow
the ENGNOX curve more clearly. The other parameters from Table 4 react more slowly to
NOx changes. The highest accuracy of the second-order polynomial regression function
(R2 = 0.5216 for INTAKEP) is enough low. Other types of regression functions with a single
input parameter do not increase fitting accuracy. Hence, further improvement of prediction
methodology is needed based on multivariate regression models.
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Figure 4. Relation of NOx emission (ENGNOX) with engine rotation speed (ENGRPM) over several
working cycles with corresponding second-order polynomial regression.

Figure 5. Relations of NOx emission (ENGNOX) with engine rotation speed (ENGRPM); engine
intake pressure (INTAKEP); fuel use (FUELUS); and engine acceleration (ENGTPS) with the corre-
sponding second-order polynomial regressions.
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Variables for multivariate analysis were selected based on their impact on the fit of the
predictive model to real data. The indicator referred to by the authors was primarily the
coefficient of determination R2. Additionally, information value and weight of evidence
analysis have been conducted, and the results are consistent with the R2 assessment.

4. Methodology

After the input variables selection, the algorithm of data processing assumed in this
paper consists of the following steps:

1. Selection of recorded data segment not less than 10–20 working cycles.
2. Data is split into 90% training part and 10% test part.
3. A model is selected for the training data set (polynomial).
4. Model is tested on the test data.
5. From the original data and model output, R2 and RMSE statistics are calculated, which

allows evaluation of the prediction quality.
6. Moreover, the RMSE is calculated normalized to the segment length to be able to

calculate the learning and test parts and compare them correctly.
7. The above steps have been done for two different model orders: 3 and 4, to see

which model is good enough on the learning part, but not too good that there is no
over-fitting on the test part, as seen in the higher order predictions.

8. The above-mentioned steps are fulfilled for two scenarios: first, for all 11 variables
that are initially selected, and then for those 10 variables, for which the predicted and
initial data are correlated most strongly.

4.1. Model Estimation

Multivariate polynomial (sometimes called “multinomial”) fitting procedure solves
for the coefficients of a polynomial regression model using traditional linear least squares
technique [46]. It is implemented using QR factorization with pivoting to solve the system.
This is more stable than the simple, unpivoted QR. We have also used automatic variable
scaling to deal with a simple cause of ill-conditioning.

Once the model has been specified, the estimation procedure itself is rather simple.
The problem becomes that of estimation of the vector x, given the linear system of equations:

A ∗ x = y (1)

For this estimation to have a unique solution, matrix A should be both non-singular
and have more rows than columns. Problems with fewer rows than columns are called
under-determined, and in such cases, it is strongly recommended to either obtain more
data or reduce the order of the model. Assuming matrix An×p with n > p, we can solve this
system via many different approaches, such as the pseudoinverse method, least-squares
method, normal equations, i.e., x = (A′A) \ (A′y), QR or pivoted QR, just to name a
few. Of these methods, only those based on the QR factorization will also directly yield
estimated variances for the parameters. A pivoted QR is also reasonably efficient, as well
as numerically stable, which is why this approach has been chosen.

5. Data Analysis

For testing the methodology, the authors used data describing a single work shift in
the mine. In the first step, a subset of usable variables have been selected from all of the
channels since most of them contained only (or almost only) empty values. Out of those,
the authors selected the ones that presented any meaningful behavior at all. For example,
the variable describing if the engine is on or off is not helpful, since it is on during the
entire shift. At this point, 11 variables remained, and those were used for the analysis (see
Table 4). Raw signals of the selected variables are presented in Figure 6.
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Figure 6. Full set of input variables.

The remaining data set has been divided into the training set and a testing set with
a proportion of 90–10%, respectively. The input variables of the training set are then
provided to the multivariate polynomial fitting procedure (see Section 4.1). When the
models are fitted, they are evaluated in the testing segment. Models of orders 3 and 4 were
tested. Those orders were chosen because orders lower than 3 presented poor quality of fit,
and orders higher than 4 experienced too strong over-fitting errors. The results of fitting
the models can be observed in Figure 7. RMSE values are summarised in Table 5.

Table 5. RMSE values for the different input variables taken in the model.

10 Variables 11 Variables

Model of order 3 23.231 21.179
Model of order 4 17.342 14.131

Additionally, Table 6 presents the normalized RMSE (NRMSE) values for both orders
with the distinction of training and testing segments. It is obtained by calculating the
ordinary RMSE value and then dividing it by the number of samples in each respective
segment. This way, the values can be compared. It is clearly visible that with higher order,
the quality of fitting the model to the training segment increases, but it also causes increasing
over-fitting problems in the testing segment. Moreover, the error value is always lower for
the training segment in comparison to the testing segment, which is understandable.
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Figure 7. Orders 3 and 4, all 11 variables.

Table 6. NRMSE errors for respective model orders and 11 variables.

Training Segment Testing Segment

Model of order 3 0.0024 0.0342
Model of order 4 0.0016 0.0478

After that, the authors measured the cross-correlation between the obtained mod-
els and the individual input variables. One variable with the lowest correlation factor
(ENGCOOLT—temperature of engine coolant) has been removed from the set of input
variables. A reduced set of 10 input variables was used again to fit the models. The results
are presented in Figure 8. Similarly, Table 7 presents the NRMSE values. In this case, one
can also observe the effect where with increasing model order, the fit quality increases but
also over-fitting values increase the error on the testing set.

Figure 8. Orders 3 and 4, selected 10 variables.
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Table 7. NRMSE errors for respective model orders and 10 variables.

Training Segment Testing Segment

Model of order 3 0.0026 0.0337
Model of order 4 0.0019 0.0362

It is also interesting to compare NRMSE tables. For 11 variables, errors for training
segments are lower than for 10 variables. There is more input data to work on, so the
fit is better. However, for 11 variables, errors for testing segments are higher than for 10
variables, because the over-fitting is more significant, and models with 10 input variables
have better generalizing quality.

One can observe that NRMSE values for the training segment are lower for a full
set of variables than for the reduced set. It comes from the fact that the model has more
information to learn on. Similarly, NRMSE values are higher for a full set of variables than
for the reduced set, because the model fitted on the full set is more specialized and has worse
generalization properties, hence it tends to display over-fitting problems. The correlation
of predicted and original data on NOx emission is shown in Figures 9 and 10.

Figure 9. Correlation of predicted and original data for all 11 variables.

Figure 10. Correlation of predicted and original data for selected 10 variables.
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6. Discussion

The research presented in this paper allows putting forth several points for the discussion:

• The decision of the model order selection has to be balanced between the quality of fit
during the fitting phase and the amount of over-fitting exhibited while testing on a
new portion of data.

• It is important to select the meaningful input variables. The authors made an attempt
to use the full data set of 56 variables, no matter how irrelevant they were, because in
theory, it would maximize the information. In practice, the results were meaning-
less and unusable. Moreover, even if one thinks that they selected the meaningful
data set, it becomes visible that removing some variables can improve the general-
ization capability of the model, even if it slightly decreases the quality of fit on the
training segment.

• For a larger data set (in terms of time), it is not obvious if the modeling with the same
parameters will yield better or worse results. The authors attempted to use not one but
two shifts of time as a working data set. It turned out that for the second shift, some
other operator was driving the machine, and the data looked completely different.
One could say that more data did not provide more information, and with the same
parameters, the results were much worse.

• Some other parameters of LHD vehicle’s operation, which are not explicitly reflected
in the signals available via CAN bus, may have an influence on the NOx prediction,
such as road waviness and its watering. However, this factor is reflected in several
working parameters (FUELUS and partly ENGRPM). Temperature and humidity are
also among the factors influencing the fuel combustion process. However, they are
enough stable in a certain location of every underground mine and easily measured by
the simple, low-cost digital sensors, which signals can easily be added to the onboard
monitoring system.

• The achieved deviation of the values predicted by the model from the values measured
by the permanently installed sensor is less than 15%, which is comparable with the
accuracy of the NOx sensor itself (up to 20% under sharp loads application). Following
Figure 9, the certain role in accuracy level plays the outliers, which are also visible in
time series graphs as rare peaks during the transient periods of work. The duration of
these separate periods and in total is very short; hence, they can be rejected to increase
the accuracy of NOx prediction over the majority of remaining data samples.

• Subjectively, the authors assess that the result of the presented research was successful.
However, it is obvious that further research needs to be conducted to try different
modeling techniques. In this paper, the authors made the first attempt to solve the
problem of the lack of NOx sensors on a large scale using the simplest possible
technique, which is modeled using polynomial fitting. This way, it is possible to
provide a practical solution for NOx emission assessment for the industry using
simple software tools and not time-consuming procedures. The authors are well
aware that there are a lot of different techniques of mathematical modeling, and the
investigation of their potential for such use cases will be the subject of further work.

7. Conclusions

The conducted research resulted in the development of the statistical model for NOx
emission values prediction.

1. The model structure is optimized by order of polynomials and the number of in-
put parameters. During the research, it was decided to include 11 parameters mea-
sured with SYNAPSA systems (Table 4). In addition, models of orders 3 and 4 were
compared. The choice is explained in Section 5—Data Analysis. The best achieved
prediction accuracy by the 4th order polynomial model for 11 and 10 input variables
is about 8% and 13%, respectively. It is comparable with the sensors’ accuracy of 10%
at a stable regime of loading and 20% in the transient periods of operation.
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2. The developed model can be considered as a “soft sensor” and used for NOx emis-
sions monitoring and prediction in heavy-duty LHD vehicles with diesel engines.
The solution presented in the article will contribute to a better understanding of the
working atmosphere of underground crews at workplaces near LHDs. Since most
machines are not equipped with sensors for measuring the concentrations of harmful
gases, the proposed statistical methods can help improve working conditions by
predicting the possible threat of atmospheric pollution by nitrogen oxides.

3. These data of predicted NOx emissions can be utilized as input information for
ventilation system power demand and capacity planning based on the production
plan, required fleet of vehicles, the length of the transportation routes, and under-
ground mining conditions. With the statistical method proposed in the article for
predicting the emission of NOx concentrations into the mine atmosphere, it will be
possible to optimize the ventilation system for underground workings. Knowing the
production plan and the demand for diesel-powered machinery will make it possible
to estimate the value of nitrogen oxide concentrations at the workplace. This will en-
able ventilation services to manoeuvre the ventilation system accordingly, for example,
by increasing the air volume flow to ventilate the workings faster.
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10. Strumiński, A.; Madeja-Strumińska, B. Mine ventilation practice in Polish copper mines. In Mining in the New Millennium
Challenges and Opportunities; CRC Press: Boca Raton, FL, USA, 2020; pp. 173–179.

11. Slazak, N.; Obracaj, D.; Borowski, M. Methods for controlling temperature hazard in Polish coal mines. Arch. Min. Sci. 2008,
53, 497–510.

12. Yin, Z.; Linga, P. Methane hydrates: A future clean energy resource. Chin. J. Chem. Eng. 2019, 27, 2026–2036. [CrossRef]
13. Shaw, S.; Van Heyst, B. An Evaluation of Risk Ratios on Physical and Mental Health Correlations due to Increases in Ambient

Nitrogen Oxide (NOx) Concentrations. Atmosphere 2022, 13, 967. [CrossRef]
14. Ghose, M.K.; Majee, S. Sources of air pollution due to coal mining and their impacts in Jharia coalfield. Environ. Int. 2000,

26, 81–85. [CrossRef]
15. Oluwoye, I.; Dlugogorski, B.Z.; Gore, J.; Oskierski, H.C.; Altarawneh, M. Atmospheric emission of NOx from mining explosives:

A critical review. Atmos. Environ. 2017, 167, 81–96. [CrossRef]
16. Banasiewicz, A.; Janicka, A.; Michalak, A.; Włostowski, R. Photocatalysis as a method for reduction of ambient NOx in deep

underground mines. Measurement 2022, 200, 111453. [CrossRef]
17. Kampa, M.; Castanas, E. Human health effects of air pollution. Environ. Pollut. 2008, 151, 362–367. [CrossRef] [PubMed]
18. Fukuto, J.M.; Cho, J.Y.; Switzer, C.H. The Chemical Properties of Nitric Oxide and Related Nitrogen Oxides. In Nitric Oxide;

Elsevier: Amsterdam, The Netherlands, 2000; pp. 23–40. [CrossRef]
19. Abdelsalam, E.M.; Mohamed, Y.; Abdelkhalik, S.; El Nazer, H.A.; Attia, Y.A. Photocatalytic oxidation of nitrogen oxides (NOx)

using Ag-and Pt-doped TiO2 nanoparticles under visible light irradiation. Environ. Sci. Pollut. Res. 2020, 27, 35828–35836.
[CrossRef] [PubMed]

20. Almetwally, A.A.; Bin-Jumah, M.; Allam, A.A. Ambient air pollution and its influence on human health and welfare: An overview.
Environ. Sci. Pollut. Res. 2020, 27, 24815–24830. [CrossRef]

21. Galbreath, K.C.; Zygarlicke, C.J.; Tibbetts, J.E.; Schulz, R.L.; Dunham, G.E. Effects of NOx, α-Fe2O3, γ-Fe2O3, and HCl on mercury
transformations in a 7-kW coal combustion system. Fuel Process. Technol. 2005, 86, 429–448. [CrossRef]

22. Hori, M.; Matsunaga, N.; Malte, P.C.; Marinov, N.M. The effect of low-concentration fuels on the conversion of nitric oxide to
nitrogen dioxide. In Proceedings of the Symposium (International) on Combustion, Sydney, Australia, 5–10 July 1992; Elsevier:
Amsterdam, The Netherlands, 1992; Volume 24, pp. 909–916.
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