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Abstract: Modern low-voltage distribution lines, especially those linked with renewable energy
sources, face technical hurdles like unaccounted and illegal electricity use, increased power losses,
voltage control issues, and overheating. Tackling these challenges effectively requires continuously
monitoring power flows and identifying problematic network spots. This study introduces a method
involving ongoing energy flow monitoring from distribution transformers and other sources to
end-users through auxiliary facilities. The algorithm seamlessly integrates with consumers’ existing
smart power meters and supporting infrastructure, eliminating the need for extra equipment or data.
Deployed in several distribution networks totaling about 40 GWh/year over two years, this diagnostic
system showed promising results. It notably cut total power consumption by around 6% by detecting
and mitigating illegal energy waste and addressing technical issues. Additionally, it reduced technical
personnel involvement in operational tasks by approximately twentyfold, significantly enhancing
network profitability overall.

Keywords: low-voltage smart networks; smart power meters; monitoring electricity flows; power
losses reduction; prevention illegal energy usage

1. Introduction

The expansion of modern smart grid networks comes with a host of technical chal-
lenges, such as asymmetrical phase loads, voltage control issues, and weak connections
between infrastructure elements like distribution transformers, auxiliary facilities, and
end-users. Additionally, unauthorized and illegal energy consumption poses a significant
hurdle to the widespread adoption of smart grids [1–4]. This problem includes issues
like electricity theft, technical errors, and the improper use of network equipment and
facilities, as highlighted in previous studies [5–16]. Addressing these challenges requires
estimating line currents and node voltages, as well as developing mathematical models for
the distribution network [5–7].

One idea from [5] proposes adding more sensors to every network node and using
data from individual consumers’ meters. While this could improve monitoring accuracy,
the added cost of these sensors makes this approach less practical.

Another approach discussed in [6–8] involves monitoring current and voltage, consid-
ering how cable resistance changes with temperature due to factors like current flow and
environmental conditions. This method shows promise in boosting diagnostic accuracy.

Original methods using Artificial Intelligence (AI) applications have been documented
in [9–18]. It is worth noting that these methods seem to be some of the most reliable
diagnostic approaches, capable of providing more accurate and dependable results. A
representative sample of existing AI methods applicable for detecting electricity theft in
smart grids can be found in [9–12]. Presently, all the AI-based methods mentioned can
be grouped into two main categories. The methods and algorithms in the first category
directly incorporate data from individual consumers [13–16]. There are several notable

Energies 2024, 17, 2123. https://doi.org/10.3390/en17092123 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en17092123
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-9412-3786
https://doi.org/10.3390/en17092123
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en17092123?type=check_update&version=2


Energies 2024, 17, 2123 2 of 17

advantages to using these AI-based algorithms. Firstly, they offer the flexibility to assess
non-standard situations using information from only a subset of consumers. In this case, the
methods [13,14] use a special neural recurrent network. The gradient boosting approach and
wide deep convolutional neural networks are represented in [15,16], with both providing
more accurate identification of illegal consumption locations.

The methods from the second category of AI methods conversely analyze energy
profile data from distribution transformers alongside individual consumer data [17,18].
They provide the functional capability to determine the network state without needing
precise topology knowledge. However, AI methods do have drawbacks, such as extended
adaptation times where the control system needs to accumulate consumer information,
potentially leading to erroneous conclusions. Additionally, AI systems can be used to
monitor for illegal energy consumption at nodes where power meters are installed.

Another crucial aspect of the monitoring system is its role in providing recommendations
to balance individual consumer connections for distributing transformer load evenly. Various
solutions addressing this phase identification (PI) challenge are discussed in [19–24]. All
methods mentioned for monitoring the PI problem rely on statistical analysis of electricity
consumption alongside voltage monitoring in network nodes equipped with power meters.
However, some systems only utilize information from individual power consumers [19–21],
while others combine power metering with instantaneous voltage magnitude measurements
at energy users’ nodes [22–24]. These latter systems require frequent voltage and power
metering measurements, leading to increased system memory usage, broader communication
line bandwidth requirements, and more complex calculations.

Another important aspect of monitoring involves continuously estimating the state
of the grid, which includes measuring and assessing various technical parameters (such
as voltages, currents, power flows, and temperatures) at all network nodes and segments.
These data are crucial for ensuring the network functions properly and for distinguishing
between technical issues beyond human control and problems related to unaccounted or
illegal electricity usage. The studies referenced in [25–29] focus on addressing this task.

The existing approaches proposed so far require ongoing and instant monitoring of
power consumption and RMS voltages at each metering node, including users and local low-
voltage transformers. This requirement poses a significant challenge to widespread adoption
due to the complexities involved in the measurement and communication equipment.

In recent years, the control of power flows has been introduced in low-voltage smart-
grids as well [30,31]. Monitoring the network for these novel control approaches represents
an important task. The principles of monitoring developed in the present work can also
be useful for this mission. Novel methods like the electricity market clearing model [32],
which incorporates networks with renewable energy facilities, show promising potential in
modern and future networks that require monitoring systems. This is similarly applicable
to developing energy systems reliant on renewable electricity sources and peer-to-peer
energy trading markets, as outlined in [33,34]. The energy monitoring approach proposed
in our current work has the potential to enhance the efficiency, quality, and reliability of
these networks in both the near and distant future.

In this study, we aim to enhance the accuracy and efficiency of monitoring systems
for detecting unaccounted and illegal electricity consumption while also simplifying the
supervising equipment. Our goal is to make such systems compatible with existing net-
works that have specific infrastructure equipped with automatic reading and measurement
capabilities.

To achieve this, we propose a method that involves:

(a) Improving the circuitry model of a network based on the predominantly provided
approximate grid topology and continuously collecting measurement data using
numerical optimization of a specific objective function.

(b) Employing statistical modelling to develop a correlation matrix that describes the
correlation coefficients between all power flows within the network.
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By implementing these approaches, we anticipate improved precision in identifying
unaccounted and illegal electricity consumption while streamlining the monitoring process.
This will make the system more accessible and applicable to a wider range of network
infrastructures.

The primary contributions of the current paper are as follows:

• The algorithm for the adaptation of the initial grid topology model during network
exploitation ensuring a permanent improvement in the exactness of the system param-
eters evaluation.

• The developed approach for the exact localization of unaccounted and illegal electricity
consumption.

• The improved method for the PI determination of all participating grid consumers.

This article is organized as follows: Section 2 represents the method for the estimation
of network techno-electrical parameters (currents, voltages in different nodes, resistances,
and temperatures of connecting wires) based on power metering only, as well as the lo-
calization of illegal users and PI. Section 3 describes the design of the monitoring system.
Results of the system exploitation in a real network grid are accumulated and represented
in Section 4. Section 4 provides conclusions and a discussion of the proposed monitor-
ing system.

2. Method

In our study, we were looking into spotting irregularities within a network where
energy provided by the electrical company was being wasted, either due to technical issues
or unauthorized usage. Our main goal was to pinpoint and track down the end-users
responsible for this improper usage. Our method mainly involved:

• Estimating various techno-electrical parameters across the network, such as currents,
voltages at different nodes, resistances, and wire temperatures.

• Identifying phases for all network loads.
• Locating users who are illegally consuming energy in case of any abnormal situations

in the grid.

By focusing on these aspects, we aimed to improve the efficiency of identifying and
addressing energy wastage and unauthorized consumption, ultimately benefiting the
overall functioning of the network.

The main reason behind developing this approach was the need to depend solely on
data from the existing metering infrastructure. This included regular power meters installed
in local transformers and at the end loads, along with automatic meter-reading systems
(AMRs). It was crucial that all data from these meters be synchronized in time to ensure
accurate analytical results. These data were collected through existing telecommunication
equipment and then processed using the algorithms we had developed.

2.1. The Detection and Localization of Illegal Energy Consumption

The primary objective of the presented study was to localize unaccounted energy
consumption and identify illegal end-users. Detection of unaccounted energy consumption
was based on the verification of a balance ∆It between what was coming from a local
transformer and the sum of all end-users’ currents.

∆It = I0t −
N

∑
n=1

Înt (1)

where I0t is the RMS current from a local transformer, Înt is all consumer currents (n = 1, 2,
. . ., N), and t is the number of sequential intervals of a current examination. All currents
are considered as average RMS values.

When the value of ∆It provided by the current balance (1) is noticeably greater than
the total measurement error, it is illegal consumption. As soon as this anomalous state
of the energy supply is acknowledged, the location of the unreported electricity use is
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unavoidably necessary. The localization of such illegal end-users is based on the equation
of power balance where the sum of all end-users’ powers and technical losses in connecting
infrastructure is subtracted from the energy supplied by the local transformer. If the
accuracy of metering equipment ensures the correctness of consumed power, then the
estimation of technical losses encounters several challenges.

Firstly, accurate calculation of power losses in the infrastructure is hindered by the
difficulties of defining resistances of wires and cables. This circumstance is owing to the
uncertainty of the knowledge of the exact topology of end-consumer connections to specific
network phases. Typically, grid specifications do not provide this accurate information,
adding to the difficulty of the problem. However, certain fundamental topological aspects
must be confirmed. In targeted grid operations, verification can be achieved through the
implementation of Artificial Intelligence (AI) methods such as neural networks or through
the expertise of qualified personnel. An additional hurdle relates to the low resistances
of wires and cables, leading to the restricted accuracy of their definitions. But on the
other hand, the low resistance of wires causes relatively low losses, many times smaller
than illegal losses. As a result, this circumstance simplifies the exact estimation of illegal
losses. Both challenges are addressed by representing the entire grid topology using a
single-phase equivalent circuit as represented in Figure 1. The topology scheme comprises
local transformer T, n number of end-users, power meters, and connecting wires and cables
defined by their impedances. End-users are denoted by the letter L, followed by symbols
indicating their branching degree from the main line. For instance, loads connected to the
main line before the first offshoot are designated by the letter L, followed by an underscore
and the number 1, with all subsequent loads in this line ordered sequentially after the
minus sign. End-users situated after the first offshoot are identified by two underscore
symbols after the minus sign, followed by their sequential order. This principle applies to
all users situated at any offshoots.
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The same principle of denotation applies to the power meters connected to the corre-
sponding users, with their designation starting with the letter S. Similarly, impedances of
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connecting wires and cables follow a similar naming convention, commencing with the
letter Z.

Given that the simplified scheme may not precisely reflect a network’s topology, inaccu-
racies can arise when estimating technical losses and unaccounted energy use. To address this,
a specialized approach was proposed to mitigate such discrepancies. Any errors stemming
from this simplification are alleviated through statistical methods, which involve aggregating
multiple energy consumption measurements from all individual end-users.

Expanding on the aforementioned, the described approach can be outlined as reliant
on sequential evaluations of the average power consumed by all end-users, with values ag-
gregated by the control system for subsequent decisions. Each observation interval should
ideally range from several to tens of minutes. The imbalance, denoted as ∆Pt, signifies the
residual energy remaining after deducting the total consumed power determined by the
metering infrastructure from the average power supplied by the local transformer. This
imbalance is calculated as follows:

∆Pt = P0t −
N

∑
n=1

Pnt (2)

where P0t andPnt represent the average supplied and consumed power, respectively.
It is important to emphasize that every consumer, whether legal or not, contributes to

power losses resulting from the current flowing through connecting wires. Regarding legal
consumers, the average power losses (∆PLt) within each observation time interval (t) can
be calculated using information gathered from all power meters:

∆PLt =
L

∑
l=1

J2
lt·R(T

◦)lt (3)

where l is the sequential number of each grid network segment; L is the number of segments,
where each of them represents the line connecting two neighbor nodes; Jlt is the average
current in the observation time interval t; and R

(
T

◦)
lt is the thermally dependent resistance

of the l-network section during time interval t.
Since the control system solely gathers information from power meters, losses (3) can

only be estimated for lawful consumption. Currents associated with illicit consumption, not
captured by individual power meters, thus do not affect the magnitude of expression (3).

To define power imbalance, indicating unaccounted electricity, we should represent and
analyze the average power P0t supplied from the local transformer to the grid (Equation (4)).

P0t =
N

∑
n=1

Pnt +
L

∑
l=1

(Jlt + Ixlt)
2·R(T◦)lt + Pxt (4)

The expression (4) includes summarized legal energy use ∑N
n=1 Pnt estimated from

all power meters, losses of energy in connecting wires, cables, and electrical connections
caused both by legal and illegal electricity usage ∑L

l=1(Jlt + Ixlt)
2·R(T◦)lt, (Ixlt is average

current of the illegal consuming) plus illegal energy consumption Pxt. As the result of
Equation (4) cannot be obtained at this stage of the calculations, we recommend first
estimating the residual imbalance δPt associated with the entire grid network after the
transformer. This can be calculated as:

δPt = ∆Pt − ∆PLt = Pxt + ∆PLxt (5)

where Pxt is the illegal consumption in the t-interval of observation.
The final expression of the residual imbalance (Equation (5)) incorporates both illegal

energy use Pxt and its corresponding energy losses ∆PLxt. Due to the relatively minor
magnitude of energy losses ∆PLxt, the residual imbalance δPt closely aligns with the
unaccounted electricity. Given this consideration, the identification of problematic users



Energies 2024, 17, 2123 6 of 17

can be assessed as follows. Initially, it is crucial to emphasize that all calculations are
performed within each observation interval t.

It is assumed that within each observation interval, illegal consumption occurs in only
one location. The scenario where two or more unaccounted illegal users are present in the
network simultaneously will be examined later. As previously mentioned, the estimated
residual imbalance (δPt) (5) indicates unaccounted energy usage if it exceeds zero or a
minimal value defined by the accuracy of the estimation. To pinpoint the precise location
of this unaccounted energy usage, we add the sequentially calculated residual imbalance to
the average power of the network nodes, including those related to individual consumers.

After this adjustment, we recalculate the network’s residual imbalance, which will
inevitably yield a new value. If the unaccounted energy usage indeed occurs at the selected
node, this newly calculated residual imbalance should become zero, as the surplus energy
compensates for the waste power. However, practical considerations such as inherent errors
in technical measurements may cause deviations in the residual imbalance at problematic
points. Hence, the node with the minimal absolute value of residual imbalance appears
suspicious and warrants further investigation. The process of identifying these problematic
nodes is illustrated in Figure 2a,b.
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residual imbalance calculation for the illegal consumption related to the different nodes.

Any technical system implemented for monitoring and identification within the grid
is subject to limitations in measurement accuracy, which can potentially lead to erroneous
conclusions. To mitigate such instances, we propose employing statistical methods, which
involve accumulating calculations and conclusions obtained over multiple observation
intervals. Only after multiple repetitive results consistently identify a specific node or
end-user should a final solution be reached. Building on the aforementioned approach, the
following expression outlines the process for obtaining the final decision:

T

∑
t=1

|δPtn| → min for(n = 1, 2, . . . , N) (6)
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where T is the number of observation intervals; and n, N are the sequential and total
numbers of nodes in the grid.

Based on experimental trials with pilot systems, it was shown that for statistical
analysis to be effective, we need a minimum of 30–40 observation intervals. However, to
achieve even better accuracy, a larger dataset of around 100 intervals proved to be more
reliable. With this larger data set, we managed to pinpoint problematic points with accuracy
levels reaching an impressive 92–95%.

When the grid incorporates multiple illegal users, the same algorithm can be applied
with modifications to accommodate the broader statistical data. These modifications
stem from the realization that there is a non-zero probability that not all illegal loads
will consume unaccounted energy simultaneously. It is conceivable that during certain
observation intervals, only one of the illegal users engages in electricity theft. Therefore, the
solution in this scenario is to expand the statistical data gathered during grid monitoring.
As demonstrated by experimental exploitation, this expanded dataset should consist of no
fewer than 400–500 observations if there are not more than two or three illegal users.

The next challenge in the task involves assessing network parameters such as voltage,
current, and resistance, and estimating wire temperatures.

2.2. Estimation of Network Parameters

It is worth highlighting that when evaluating network parameters, we should focus
solely on power metering. A key initial step in understanding the grid involves calculating
current magnitudes. As discussed earlier, an important signal of an abnormal situation is
the imbalance between supplied and consumed currents in the grid.

Estimating current poses a significant challenge because power meters offer real-time
data on active–reactive power but do not measure voltage magnitudes. We can only access
network input voltage after the local transformer for these estimations. Hence, we opted
for a special artificial procedure to assess current. This method employs a search algorithm
to estimate the resistances of all connecting wires and currents. The goal is to find a
combination of these parameters that minimizes the deviation between the calculated total
network power and its measured counterpart.

The challenge in calculating a summarized network power arises from the need to
evaluate all currents flowing through connecting wires and cables, along with their resis-
tances. These resistances vary with alternating temperatures, influenced by the magnitudes
of the currents themselves, and are not initially known to the algorithm. Consequently, the
conventional approach to solving N non-linear algebraic equations is not feasible.

To address this challenge, a new method for estimating currents and resistances was
proposed. This method revolves around the formulation of equations, each incorporating
individual load voltages and forming loops extending to the local transformer through con-
necting resistances. The additional generating facilities presented in the grid are accounted
for in the loop equations as consumers with negative powers. In essence, these equations
represent N current loops that are combined to derive a solution. Importantly, all circuit
currents are inevitably accounted for at least once in these equations.

Given the impracticality of finding a conventional solution, an initial set of prob-
ing currents and resistances is repeatedly defined, encompassing those associated with
consumers and flowing through connecting wires. The initial resistances of connecting
cables and wires are evaluated based on their specifications and the approximate network
topology. The initial currents of consumers are estimated using their nominal voltages
and powers. Kirchhoff’s current law is applied to calculate identical initial currents for all
connecting cables. Subsequently, all actual resistances (obviously different from their initial
values) are computed using a specialized algorithm based on a set of network Equation (7)
corresponding to a selected grid topology, as represented in Figure 1.

Ui + ∑ki
j=1 Rij·Ij = U0, i = 1 . . . N (7)



Energies 2024, 17, 2123 8 of 17

where j is a sequential number and ki is the total quantity of lines segments connecting
i-load to the transformer.

In the subsequent step, the obtained resistance values undergo modification based on
previously determined currents, considering the temperature of the wires as a function of
power losses and environmental temperature. Subsequently, these modified resistances are
integrated into Equation (7), and new current values are computed. This iterative process,
involving the successive modification of resistances and subsequent estimation of new
circuit currents, represents a sequential convergence process culminating in the numeric
result providing the required accuracy.

The necessity to incorporate temperature arises from its significant impact on resis-
tances and, consequently, on the accuracy of parameter estimation, which is crucial for the
success of the proposed method. Indeed, temperature fluctuations in wires are observable
in many Western countries within the range of −40 ◦C to +90 ◦C. Under these operating
conditions, the resulting resistance deviation (∆R) can vary significantly, up to:

∆R =
α·∆θw

2
≈ ±28% (8)

where:
α is the average coefficient of thermal resistance (0.0043 1/◦C for aluminum);
∆θw

◦ is a range of operating temperatures of the wire (−40◦. . .+90◦).
The temperature of connecting wires and cables is estimated in accordance with wire

specifications, flowing current, and ambient temperature:

θ = θ0 + K·I2 (9)

where θ0 is the ambient temperature, ◦C; I is the RMS of a wire’s current; and K is the
integral coefficient considering specifications and conditions for wire usage.

Once the set of calculated circuit parameters (currents, resistances) is obtained, it
ensures the summarized power. Utilizing this data, the decision algorithm compares the
calculated summarized network power with the measured one. Based on this comparison,
the algorithm systematically adjusts a set of new initial probing currents in a specialized
manner, aiming to minimize the criterion (10). Upon reaching the global minimum devia-
tion, it becomes possible to declare that the set of resistances and currents associated with
this minimum accurately represents the real parameters of the network.

This described procedure essentially constitutes a specialized optimization problem
employing the Hooke–Jeeves approach [35]. The foundation of this approach lies in the
Hooke–Jeeves algorithm, which involves formulating an objective Function (10) and itera-
tively refining the solution space to converge towards the optimal solution.

D = ∑N
i=1 [(Pest )i − (Preal)i]

2 → MINglobal (10)

where D is the summarized deviation representing the criterion of parameters estimation;
and (Pest)i, (Preal)i are the estimated and real measured power of a load number i.

Expression (11) symbolizes the disparities between the estimated and actual power
output from the local transformer. Essentially, it quantifies the cumulative differences
between measured and calculated power grid flows, with the objective of minimizing these
variations throughout the estimation process. The procedural framework for determining
current magnitudes is depicted in Figure 3.

The localization of unaccounted users can be significantly enhanced by conducting
phase identification for all consumers during network operation. Knowing which phase of
the grid a specific load is connected to ensures improved specification of network topology,
thereby enabling more accurate estimation of network parameters.



Energies 2024, 17, 2123 9 of 17Energies 2024, 17, x FOR PEER REVIEW 9 of 17 
 

 

 
Figure 3. Block scheme for grid parameters estimation. 

The localization of unaccounted users can be significantly enhanced by conducting 
phase identification for all consumers during network operation. Knowing which phase 
of the grid a specific load is connected to ensures improved specification of network to-
pology, thereby enabling more accurate estimation of network parameters. 

2.3. Phase Identification 
Ensuring a balanced distribution of loads across grid phases is crucial for keeping the 

three-phase network symmetrical. This balance not only helps regulate consumer voltages 
but also cuts down losses in the neutral conductor. Yet, figuring out which phase of the 
line (referred to as L1, L2, and L3) each subscriber is linked to poses a challenge because 
of the absence of prior information. 

To address this challenge, the main idea of phase identification involves establishing 
a correlation between the power consumption of each load phase and those supplied by a 
local transformer. This correlation can be determined through prolonged monitoring of 
each load profile (consumed power, energy) and that of the transformer in sequential time 
intervals. This process generates a series of numerical arrays of instantaneous and syn-
chronized power for every consumer and local transformer phase, which are then ana-
lyzed. 

Subsequently, matrices of Pearson correlation coefficients [36] between the power of 
the corresponding transformer phases and the load lines are calculated for each consumer. 
Separate matrices are calculated for three-phase and single-phase loads. In the case of a 
three-phase load, a matrix consisting of nine (3 × 3) coefficients is generated, illustrating 
the dependence between the power of specific load phases and transformer phases. Each 

Figure 3. Block scheme for grid parameters estimation.

2.3. Phase Identification

Ensuring a balanced distribution of loads across grid phases is crucial for keeping the
three-phase network symmetrical. This balance not only helps regulate consumer voltages
but also cuts down losses in the neutral conductor. Yet, figuring out which phase of the line
(referred to as L1, L2, and L3) each subscriber is linked to poses a challenge because of the
absence of prior information.

To address this challenge, the main idea of phase identification involves establishing a
correlation between the power consumption of each load phase and those supplied by a lo-
cal transformer. This correlation can be determined through prolonged monitoring of each
load profile (consumed power, energy) and that of the transformer in sequential time inter-
vals. This process generates a series of numerical arrays of instantaneous and synchronized
power for every consumer and local transformer phase, which are then analyzed.

Subsequently, matrices of Pearson correlation coefficients [36] between the power of
the corresponding transformer phases and the load lines are calculated for each consumer.
Separate matrices are calculated for three-phase and single-phase loads. In the case of a
three-phase load, a matrix consisting of nine (3 × 3) coefficients is generated, illustrating the
dependence between the power of specific load phases and transformer phases. Each row
of the matrix represents the correlation coefficient of a load phase with the three transformer
phases, allowing for accurate phase identification.
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The matrix representing a one-phase load is characterized by three coefficients, high-
lighting the stochastic relationship between the load and the transformer phases.

Phase identification can initially rely on the highest Pearson correlation coefficient
within each row of the matrix. However, this determination should prioritize the most
heavily loaded consumer line, considering its highest correlation coefficient as the pri-
mary indicator. Subsequently, the phase determination of the remaining terminals of
consumer’s lines is carried out by each power meter alone based on the information of
phase rotation direction.

Phase verification based on Pearson coefficients offers quick and relatively accurate
results. However, the stochastic relationship between transformer and consumer power
can lead to false outcomes, and the likelihood of this occurrence cannot be disregarded. To
ensure final phase identification reliability, additional verification steps are necessary.

An additional verification method involves confirming energy imbalances in each
transformer phase. Phase identification can be deemed correct if the discrepancy (∆Pphase)
between the total energy over an extended period in each transformer phase and the
combined energies of all consumers connected to the same line is either zero (neglecting
power losses in the network) or minimized in practical scenarios.

The mathematical formulation below (Equation (11)) outlines how to assess this
discrepancy for each phase (A, B, and C):

∆Pphase =
T

∑
t=1

Pphase(t)−
N

∑
n=1

T

∑
t=1

Pnphase(t) = min (11)

where Pphase(t) is the total power of the grid phase during time intervals t; n is the N
sequential and total load numbers; T is the total number of observation intervals; Pnphase is
the consumer power at input n, in the current arrangement assigned to phase (phase); and
n = 1, 2, 3.

It is crucial to note that the number T of observation intervals should be no less than
three times the number of consumers (3N).

It is essential to emphasize that phase identification should occur only after excluding
all uncontrolled consumption from the grid. The elimination of illegal loads should be
conducted using the method detailed in Section 2.1 above.

3. Results
3.1. Confirmation of System Functionality

We created a software solution for the control algorithm, which can be used in both
real networks and simulations, using the GOLANG programming language [37]. The goal
of this software was to test the approaches we have outlined and simulate real network
scenarios, showing the key benefits of the systems we developed. The algorithm and
software are part of a cloud-based platform. You can see how it all works in Figure 4, which
illustrates the functionality of the software with a block scheme diagram.

The block scheme encompasses a simulation of a grid topology with the capability for
grid modifications. The emulator is tasked with imitating energy flows and the stochastic
behavior of consumers within the system.
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3.2. Verification on Grid Emulator

As a vital part of the monitoring system, we developed a specialized three-phase
grid emulator. Its purpose is to mimic real operations in electrical networks, including
AC electrical sources, loads, and connecting infrastructure. Just like the main monitoring
system, this emulator runs on GOLANG software and operates in a cloud-based internet
environment. You can see how the emulator works in Figure 5, which illustrates its
block scheme.

The emulator functions based on the principles of AC electrical circuitry and considers
the impedance of connecting wires and cables, taking into account their temperature-
dependent characteristics.

The main benefits of the emulator are as follows:

(a) Modeling and calculation of network parameters for different situations occurring in
a grid.

(b) Confirming the system’s functionality and estimating the quality of its monitoring.
(c) Diagnostic of a metering infrastructure.

The developed emulator was applied for the assessment of the functionality of the
developed monitoring approach.
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3.3. Results of the Verification on the Emulator

The main goal of verifying the emulator was to check how well our algorithm holds
up under different conditions. We wanted to make sure it can achieve accurate results even
when there are random energy flows and some measurement errors.

To test this, we had the emulator simulate all sorts of scenarios: temperature changes,
different loads, and random measurement errors in electric meters, with a variance of
around ±1% introduced by white noise. Temperature fluctuations were modeled to follow a
normal distribution, with a variation of ±5%. We also made sure to consider any differences
that might occur due to our estimation scheme not being a perfect match for the real grid.

The monitoring system algorithm was tasked with verifying such scenarios and, de-
spite these challenges, providing accurate diagnostic solutions. Approximately one million
attempts were generated for virtual networks ranging from 10 to 200 consumers. The
distances between adjacent loads varied from around 1 m to 100 m. Various load profiles
were considered, encompassing private homes and industrial consumption during winter,
spring, summer, and autumn seasons, with average power ranging from approximately
0.1 to 100 kW. Additional generating facilities within the network, such as solar plants and
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wind turbines, were simulated as negative stochastic consumers. Stochastic illegal loads
were introduced at different grid nodes, ranging from one to eight locations.

The results of the monitoring confirmation provided by the emulator are shown in
Tables 1–4.

Table 1. The estimation error for parameters assessment.

The Number of Consumers Average Error, %

10 0.5%

50 0.6%

100 0.8%

200 1.5%

Table 2. The average number of computing iterations required for phase identification.

The Number of Consumers Average Number of Iterations

10 10

50 20

100 30

200 40

Table 3. The minimum relative consumption power possible for phase identification.

The Number of Consumers Relative Load Power, p.u.

10 0.021

50 0.025

100 0.028

200 0.03

Table 4. The probability of detecting illegal consumption.

The Number of
Consumers in a Network

The Number of Illegal Consumers in a Grid

1 2 4 8

The Probability of Finding an Illegal Consumer, %

10 consumers 98–99 97–98 90–94 88–90

50 consumers 97–99 96–98 89–92 87–89

100 consumers 97–99 94–97 85–88 82–85

200 consumers 97–99 93–95 81–82 80–82

Table 1 illustrates the average grid parameter estimation error relative to the total
number of network consumers. The estimation error ranges from 0.5% to 1.5%, gradually
decreasing as the number of consumers increases from 10 to 200.

Table 2 demonstrates the growing average number of calculation iterations needed for
phase identification of all participating loads as the number of consumers varies from 10
to 200.

Table 3 presents the minimum identifiable load power (related to the nominal local
transformer power). It appears that the minimum identifiable load should have increased
power as the number of grid consumers increases.

Table 4 illustrates the primary outcome of the monitoring system—the probability of
detecting illegal users among other consumers in a grid as the number of consumers in a
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network increase from 10 to 200. The system’s effectiveness in identifying unaccounted
users remains quite substantial across a wide range of network complexities, achieving
88–90%, 87–89%, 82–84%, and 80–82% for grids with 10, 50, 100, and 200 end-consumers,
respectively.

3.4. Results of Full-Scale Tests

The real-world testing (certification) of the proposed monitoring system occurred
across five networks in various geographic areas. These networks included a total of thirty-
seven local transformers, serving around 1600 end-users. Each network was equipped with
automatic meter reading systems, allowing for communication and data transfer with a
central monitoring facility. The certification process unfolded in the following stages:

1. Installation of the monitoring system in a selected network and verification of the
measuring and communication infrastructure.

2. Preliminary identification of grid topology and measurement equipment to ensure
compatibility between elements of the automatic meter reading system and the grid
topology.

3. Analysis of the network to identify unaccounted consumption, including phase iden-
tification of all grid loads, recognition of network technical issues such as overload
and overheating of connecting wires and cables, and detection of network nodes with
over- and under-voltages.

4. Identification of nodes with unaccounted consumption followed by physical and
visual verification, with subsequent documentation.

5. Implementation of the suggested algorithm: after eliminating unaccounted consump-
tion, instrumental clarification of network parameters and load phase identification,
in alignment with the monitoring system’s estimations.

6. Evaluation of system efficiency by comparing power losses before and after the
implementation of monitoring.

The outcomes of the full-scale deployment of the developed approach are detailed in
Table 5. The deployment was executed across various regions:

A. Northeastern Europe mid-latitude.
B. Eastern Europe mid-latitude.
C. Baltic region.
D. North Caucasus region.
E. Western Siberia region.

Table 5. The results of monitoring system’s exploitation in different geographic areas.

Region A B C D E

Exploitation period November 2019
April 2022

March 2022
June 2022

November 2022
November 2022

January 2023
March 2023

February 2022
February 2022

Duration of
observation interval 24 h 24 h 1 h 24 h 1 h

Total number of
transformers in a grid 9 7 3 16 2

Total number of
end-users 408 189 160 356 46

Power losses before
system monitoring

installation
12% 7% 10% 42% 13%

Power losses due to
technical issues 4% 2.5% 3% 5% 4%

Illegal consumers
found and eliminated 12 3 1 27 1

Power loss decrease 6% 4.5% 7% 37% 9%
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The results of the full-scale deployment demonstrated promising outcomes for the
algorithm and monitoring system developed in the present work.

4. Conclusions

This article presents the utilization of the developed algorithm and monitoring system
in low-voltage smart-grid networks to address technical challenges, particularly unac-
counted and illegal electricity usage, heightened power losses, inadequate voltage control,
and thermal overheating of connecting infrastructure.

Smart-grid networks, especially those integrated with renewable generating facilities,
encounter issues such as unaccounted electrical consumption and grid voltage instability,
along with various other technical challenges.

An effective solution for the aforementioned issues involves specialized monitoring
of consumers with metering infrastructure, employing algorithms designed to pinpoint
problematic network nodes. These algorithms focus on identifying abnormal power losses,
heating of connecting wires and cables, faulty electrical contacts and terminals, and other
potential issues within the grid. The work presented encompasses the following:

1. A monitoring algorithm and diagnostic system developed using specialized software,
operating within a cloud-based internet environment.

2. The method for the estimation of network parameters with only a metering infrastructure.
3. A method for localization of the illegal consumption.
4. An approach for detecting phase connections of individual consumers.
5. A network emulator designed using GOLANG 1.21.9 (Google) software to test moni-

toring algorithms and systems.

The advantages of the proposed work compared with other approaches are as follows:

• The use of solely the existing metering infrastructure in every consumer installation
without the need to provide additional voltage measurements in all network nodes.

• Decreased time for the algorithm’s adaptation to a specific network and simplified re-
quirements for the database regarding consumer energy profiles and for the computing
equipment.

• Significant efficiency and accuracy in identifying network electrical parameters and
unaccounted consumption, even in grids comprising up to 200 individual consumers.

• Potential hurdles in implementing the proposed monitoring system include the chal-
lenge of identifying illegal consumers whose metering devices do not transmit data to
the infrastructure or are situated far from measuring nodes. Furthermore, accurately
estimating network parameters necessitates continuous access to local transformer
voltage information. However, these difficulties will be eliminated in future versions
of the monitoring diagnostic systems.

The full-scale deployment of multiple monitoring systems over more than three
years in diverse geographic locations has confirmed the high proficiency of the developed
diagnostic method. The reduction in power losses amounts to no less than 4.5%, reaching
up to 37% in certain locations. Verification of unaccounted electricity consumption can
achieve success rates of 90–95%. Additionally, prolonged grid monitoring has the potential
to substantially reduce illegal energy use to negligible levels.

It is recommended to continue the development and refinement of monitoring algo-
rithms to further enhance the efficiency of electrical networks, reduce power losses, and
eliminate unaccounted energy usage.

Despite being proposed for low-voltage networks exclusively, the algorithms can
be adapted to high-voltage distribution and transmission lines as well. Considering the
increasing utilization of optimal power flow control and energy market clearing in modern
smart grids, it seems important to extend the applicability of the results to these areas.
However, for the successful implementation of the suggested monitoring methods, several
technical challenges need to be addressed. These include the necessity to account for the
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absence of a neutral conductor in transmission lines and the requirement to estimate the
sources of subsidiary losses.
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