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Abstract: In this study, a novel system which integrates solar thermal energy with membrane gas
absorption technology is proposed to capture CO2 from a 580 MWe pulverized coal power plant.
Technical feasibility and economic evaluation are carried out on the proposed system in three cities
with different solar resources in China. Research results show that the output capacity and net
efficiency of the SOL-HFMC power plant are significantly higher than those of the reference power
plant regardless of whether a TES system is applied or not. In addition, the CEI of the SOL-HFMC
power plant with the TES system is 4.36 kg CO2/MWh, 4.45 kg CO2/MWh and 4.66 kg CO2/MWh
lower than that of the reference power plant. The prices of the membrane, vacuum tube collector
and phase change material should be reduced to achieve lower LCOE and COR values. Specifically
for the SOL-HFMC power plant with the TES system, the corresponding vacuum tube collector
price shall be lower than 25.70 $/m2 for Jinan, 95.20 $/m2 for Xining, and 128.70 $/m2 for Lhasa,
respectively. To be more competitive than a solar-assisted ammonia-based post-combustion CO2

capture power plant, the membrane price in Jinan, Xining and Lhasa shall be reduced to 0.012 $/m,
0.015 $/m and 0.016 $/m for the sake of LCOE, and 0.03 $/m, 0.033 $/m and 0.034 $/m for the sake
of COR, respectively.

Keywords: solar thermal energy; hollow fiber membrane contactor; CO2 capture; techno-economic
feasibility; levelized costs of electricity

1. Introduction

Global warming due to increasing concentrations of greenhouse gases in the atmo-
sphere has resulted in profound and detrimental effects on our planet, such as sea level
rise, extreme weather events, and disruptions to ecosystems and biodiversity. The Intergov-
ernmental Panel on Climate Change (IPCC) highlighted that the rise in the global average
temperature shall be limited to 1.5 ◦C above the preindustrial level to achieve the ambitions
of the Paris Agreement [1]. The European Union and the US White House both have the
ambitious targets of achieving net-zero greenhouse gas emissions by 2050 [2]. Similarly,
China has announced its commitment to peak its carbon dioxide emissions before 2030
and attain carbon neutrality by 2060 [3]. Transitioning to sustainable renewable energy,
improving energy efficiency, and carbon capture and storage (CCS) have been considered
as three effective approaches to reduce greenhouse gas emissions and the global average
temperature rise [4]. CCS is an attractive strategy to stabilize or reduce atmospheric CO2
levels in the short term, which involves the CO2 capture from industrial processes, trans-
portation from large-scale emission sources via ship or in a pipeline, and final storage in
deep underground geological formations.
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A CO2 post-combustion capture system is promising to mitigate CO2 emissions from
coal-fired power plants due to its applicability in existing power plants and industrial
facilities without major modifications. The most well-established chemical absorption
technology is facing high regeneration costs and operation problems such as flooding,
absorbent losses, entrainment, liquid channeling and foaming. Furthermore, the solvent is
generally regenerated via the thermal energy extracted from steam turbine cycles proposing
extra energy consumption, resulting in a dramatic drop of 20–25% in electricity production
during power generation [5]. Therefore, a variety of efforts have been made to reduce the
heavy energy penalty associated with the solvent regeneration process [6–9].

In the past two decades, membrane gas absorption technology has been attracting
more and more attention as an energy-efficient and cost-effective alternative because
it combines the advantages of high selectivity from chemical absorption and compact
design from membrane separation. Membrane gas absorption technology offers several
advantages, including high efficiency, low energy consumption, compact system design,
and scalability, which has been extensively utilized in various industries such as power
plants, refineries, and manufacturing facilities to reduce greenhouse gas emissions [10,11].
For a studied 685 MWe coal-fired power plant, the energy consumption and capital cost of
CO2 capture in hollow fiber membrane contactors were reduced by 43% and 31% compared
with packed bed columns, respectively [12]. An energy saving of 4.83% and a capital cost
reduction of 6.11% can be achieved by a membrane–absorption hybrid CO2 capture process
compared to a stand-alone absorption process [13]. In comparison with traditional desorber
columns, the hollow fiber membrane contactors can reduce the energy duty for desorbing
CO2 by half, from 4 MJ/kg CO2 to 2 MJ/kg CO2, indicating that membrane gas absorption
technology is a promising alternative approach to regenerate a CO2-rich absorbent [14].

In parallel, the utilization of renewable solar energy has also emerged as a sustainable
solution to reduce the reliance on thermal energy from the power plant during the CO2
regeneration stage to avoid a significant reduction in power generation efficiency. Cor-
respondingly, numerous studies have been carried out to investigate the technical and
economic feasibility of such integration methods [15,16]. To overcome the major draw-
back of the intermittent supply of renewable solar energy, the solar-assisted regeneration
system is generally coupled with a thermal energy storage (TES) system [17]. The idea of
integrating solar thermal concentrators into the CO2 capture process from the flue gas of a
300 MWe power plant for solvent regeneration was firstly proposed in New South Wales,
Australia [18]. Liu et al. [19] evaluated the influences of the types of solar thermal collectors
involved in ammonia-based solar-assisted post-combustion carbon capture (PCC) in three
typical locations in China. They concluded that the vacuum tube collector (VTC) was more
attractive than the parabolic trough collector in the studied cases, and calculated the critical
collector prices to achieve lower levelized costs of electricity (LCOE) and the cost of CO2 re-
moved (COR) than those of the traditional PCC system. More recently, Khalilpour et al. [20]
presented a novel solvent regeneration system by replacing the complex desorber column
with a parabolic trough pipe to the eliminate steam generation process, which reduced the
capital expenditure by approximately 15–30% and increased the operation flexibility of
the power plant with the PCC process. The life cycle impact assessment for solar thermal
integration in post-combustion carbon capture showed that the levelized global warming
potential per unit of electricity production for the 100% solar-powered PCC is the lowest in
comparison with conventional PCC and solar-assisted PCC at a solar fraction of 23%. Thus,
it has a global warming reduction of 38.1% for the 330 MWe and 18.1% for the 660 MWe
power plant, respectively [21]. Obviously, the integration of solar thermal energy offers a
promising pathway towards achieving more environmentally friendly and economically
feasible carbon capture solutions.

As previously mentioned, membrane gas absorption technology and solar-assisted
absorbent regeneration are two promising approaches to reduce the associated energy
penalty and even achieve sustainability of the CO2 post-combustion capture process. By
integrating these two technologies, there is potential to achieve more CO2 elimination
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with lower energy requirements, thereby addressing the challenges of climate change and
reducing the environmental impact of carbon emissions. However, up to now, there has
been no literature reported on the technical feasibility and application potential of integrat-
ing membrane gas absorption technology and the solar-assisted regeneration method for
post-combustion carbon capture. Correspondingly, it is the interest of the present study
to design a novel system to capture CO2 by membrane gas absorption with the assistance
of solar thermal energy for solvent regeneration, named the solar-assisted hollow fiber
membrane contactor (SOL-HFMC) system. The reference power plant that absorbs and
desorbs CO2 in hollow fiber membrane contactors by 100% extracted steam is called the
STE-HFMC power plant. Three locations in China with different solar radiation conditions
have been selected as the study cases to investigate the technical potential of the proposed
SOL-HFMC system. Furthermore, the total capital requirement (TCR), levelized cost of
electricity and cost of CO2 removed are calculated to explore the economic performance
of the proposed SOL-HFMC system. Finally, sensitivity analysis is carried out to assess
the impact of changes in key parameters on the performance and cost-effectiveness of the
proposed system to provide guidance for practical industrial applications.

2. System Description

The schematic drawing of the solar-assisted CO2 capture system using hollow fiber
membrane contactors in a coal fired power plant is shown in Figure 1. The SOL-HFMC
power plant is composed of three main parts: a coal fired power plant, a solar thermal
energy collection and storage system, and a membrane contactor-based CO2 absorption-
desorption system.
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Figure 1. Schematic drawing of the proposed SOL-HFMC power plant.

2.1. Membrane Contactor-Based CO2 Absorption–Desorption System

In this paper, the 580 MWe power plant is selected according to The NETL Baseline
Studies for Fossil Energy Plants [22]. In total, 20 wt% monoethanolamine (MEA) is used
as the absorbent due to its advantages of high absorption capacity, low volatility and
regeneration energy, easy availability and cost effectiveness [23]. Specific to the membrane
material, the polypropylene (PP) membrane is selected in this study due to its high void
volume, wide commercial size, cost effectiveness, high chemical stability, and thermal
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stability [24]. The flue gas emitted from the power plant first passes through a heat
exchanger chilled by air to reduce the gas temperature, and is further pretreated with
desulfurization and dust removal processes before entering the hollow fiber membrane
contactor. The main composition of the purified flue gas is mainly N2 and CO2.

In the CO2 absorption process, the flue gas and the absorbent flow in counter-current
directions on the shell side and tube side of the hydrophobic PP membrane contactor,
respectively. Driven by concentration gradients, the CO2 in the flue gas diffuses through
the micropores of the membrane wall to the gas–liquid interface and is absorbed into
the liquid phase by MEA solution. Meanwhile, the hydrophobic PP membrane material
prevents the MEA solution from entering the gas phase, thereby achieving the separation of
CO2 from flue gas. Unlike a traditional gas separation membrane based on pore size sieving,
and dissolution–diffusion separation mechanisms, the microporous hollow fiber membrane
material used in membrane gas absorption technology does not provide selectivity for the
gas to be separated. It serves only as the interface between the gas and liquid phases, with
selectivity provided by the liquid phase MEA solution, achieving gas separation through a
diffusion–absorption mechanism. The exhaust gas, after eliminating CO2, is mainly N2 to
be emitted directly into the atmosphere.

The rich absorbent containing the absorbed CO2 is brought to the heat exchanger and
then pumped into other hollow fiber membrane contactors for further desorption. The
rich absorbent flows in the lumen side and counter-currently contacts the sweeping steam
supplied from the bottom. The regenerated lean absorbent is pumped from the bottom
of the desorption unit and circulated back to the absorption membrane contactors for the
continuous absorption cycle. The CO2 extracted from the top of the desorption unit is
condensed in a condenser to remove the water vapor, and the released CO2 can be captured
for storage or further utilization. To guarantee the long-time operation stability of the PP
membrane and minimize the regeneration energy consumption of the rich absorbent, the
regeneration process is maintained at a temperature of 80 ◦C and a pressure of 30 kPa [25].

2.2. Solar Thermal Energy Collection and Storage System

As shown in Figure 1, the thermal energy required for regenerating the CO2-rich
absorbent is primarily provided by solar thermal energy, and supplemented by the steam
extracted from the turbine in case of insufficient solar radiation. In this study, the desorption
temperature of the CO2-rich absorbent is set at 80 ◦C, and thus, the low-temperature range
of the solar thermal collectors with a range of 50–150 ◦C is applied. Under the condition of
meeting desorption temperature requirements, the solar radiation is collected by vacuum
tube collectors due to its advantages of lower cost and easier maintenance in comparison
with other types of solar thermal collectors [26]. The vacuum tube collector absorbs sunlight
through its surface and heats the working fluid inside the collector. The heated working
fluid achieves thermal energy transfer to condenser water to generate low-pressure steam
through the heat exchanger, and then pumped back to the vacuum tube collector for process
recycling. Thermal oil is used as the working fluid in the collector to prevent the solar
collector from operating under high pressure. To eliminate the intermittence and instability
features of solar energy, a TES system is also designed according to the principle given by
Mokhtar et al. [18] to achieve the stable and efficient operation of solar thermal utilization
systems. Erythritol is selected as the phase change material (PCM) for thermal management
because of its excellent superior phase–transition properties.

3. Methodology and Study Case
3.1. Net Efficiency and Carbon Emission of Coal-Fired Power Plants

It is assumed that the studied power plant works continuously for 24 h every day with
an idle month for maintenance in August. The parameters of the hollow fiber membrane
contactor are identical to those of the reference [12]. The detailed parameters of the power
plant without and with CCS are shown in Table 1.
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Table 1. Performance parameters of the power plant.

Technical Parameters Value References

Baseline power plant without CCS

Auxiliary load (MWe) 30 [22]
Net output power (MWe) 550 [22]
Coal consumption (kg/h) 185,759 [22]

CO2 emission (t/h) 441 [22]
CO2 concentration of flue gas (% mol) 13.53 [22]

STE-HFMC power plant

Number of HFMC 200 [12]
HFMC diameter (m) 2.8 [12]

HFMC effective height (m) 4.0 [12]
HFMC total height (m) 4.2 [12]

Chemical absorbent MEA
Absorbent mass fraction (wt %) 20

Regeneration energy consumption (MJth/kg CO2) 1.25 [25]
CO2 capture rate (%) 90

Gas velocity (m/s)
Purity of desorbed CO2 (%)

1.0
98 [12]

Absorption temperature (K) 300
Regeneration temperature (K) 353

Liquid velocity (m/s) 0.07 [12]
Blower and pump power (MWe) 5 [12]

Vacuum pump power (MWe) 26 [12]
Compression power (MWe) 38 [12]

Capacity reduction due to steam extraction (MWe) 24
Power output after CO2 capture (MWe) 457

Due to the steam extracted from the steam turbine for CO2-rich absorbent regeneration,
the integration of the CO2 capture unit with a coal-fired power plant results in the work loss
of the steam turbine and net efficiency reduction of the power plant. The corresponding
work loss per unit mass of the desorbed CO2 of the steam turbine Wlost (MJe/kgCO2) can
be calculated by the following equation:

Wlost = Qth × α = Qth ×
(

1 − Tabs
Treg + ∆T

)
(1)

where Qth is the thermal energy required per unit mass of CO2 desorption, MJth/kgCO2; α
is the steam equivalent coefficient, MJe/MJth; Tabs is the absorption temperature (K), taking
300 K in this study; Treg is the CO2-rich absorbent regeneration temperature (K), taking
353 K in this study; Ttur is the temperature of the steam extracted from the steam turbine
(K), and is assumed to be 363 K in this study; and △T is the temperature difference between
the extracted steam and CO2-rich absorbent regeneration temperature, K.

When a solar thermal energy collection and storage system is applied for absorbent
regeneration, solar thermal energy can be used to replace partial steam extracted from
the power plant, which can reduce the work loss of steam turbines and improve the net
electricity generation of the power plant. The net output capacity of the plant integrated
with the SOL-HFMC system can be expressed by the following equation:

PSOL−HFMC = PSTE−HFMC + Psolar (2)

where PSOL-HFMC is the net output capacity of the SOL-HFMC power plant, MWe; PSTE-HFMC
is the net output capacity of the STE-HFMC power plant, MWe; Psolar is the incremented
net output capacity due to the existence of the solar thermal energy collection and storage
system, MWe.
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Thus, the net efficiency of the SOL-HFMC power plant can be improved compared
with that of the STE-HFMC power plant, which can be calculated by the following equation:

ηSOL−HFMC =
PSOL−HFMC

m f uel × LHV
(3)

where mfuel is the fuel mass consumption flow, kg/h; LHV is the low heating value of the
fuel, kJ/kg fuel.

Carbon emission intensity (CEI, kgCO2/MWh) typically refers to the amount of CO2
emitted to the atmosphere per unit of electricity generated, which can be used to evaluate
the design of the SOL-HFMC system from the perspective of greenhouse gas emission. CEI
is calculated by Equation (4) as follows:

CEI =
CO2,out

Electricityout
(4)

where CO2,out is the CO2 emitted from the power plant with different CO2 capture systems,
kg; and Electricityout is the net output electricity of the power plant with different CO2
capture systems, MWh.

3.2. Area of Solar Thermal Collectors

To maximize the utilization of solar energy, the vacuum tube collector is installed
facing south and its tilt angle is approximately equivalent to the location latitude [27]. The
solar irradiation intensity varies with the climatic weather conditions. When the vacuum
tube collectors are designed based on the highest monthly collected solar thermal energy
divided by monthly sunshine hours throughout the year, the thermal energy harvested
by the solar collectors during other months with lower solar irradiation is less than the
regeneration energy demand during sunshine time. Under this condition, all harvest
thermal energy is utilized to meet the regeneration energy demand of CO2-rich absorbent
during sunshine time, and the TES system is deactivated because there is no residual heat
for further storage. In this study, for the SOL-HFMC system without TES, the collector
area corresponding to the highest value of monthly collected solar thermal energy divided
by monthly sunshine hours is defined as Critical Area 1. On the other hand, the vacuum
tube collectors can also be designed based on the lowest value of the monthly collected
solar thermal energy divided by monthly sunshine hours. In this case, the thermal energy
harvested by the solar collectors during other months with higher solar irradiation is more
than the regeneration energy demand during sunshine time, and surplus thermal energy
is wasted. The corresponding collector area in this case is defined as Critical Area 2 in
this study.

The thermal energy harvested by vacuum tube collectors Q (kWh) can be calculated
by the following equation:

Q = G × S × ηsolar (5)

where G is the global horizontal radiation, kWh/m2; S is the area of vacuum tube collectors,
m2; and ηsolar is the efficiency of vacuum tube collectors, which can be calculated by
Equation (6) as follows:

ηsolar = α0 − α1 ×
(Tc − Ta)

G
− α2 ×

(Tc − Ta)
2

G
(6)

where Tc is the temperature of the working fluid in the collector, K; Ta is the ambient
temperature, K; and α0, α1, α2 are the optical efficiency parameters of the vacuum tube
collector, taking α0 = 0.71, α1 = 0.5 W/m2/K, α2 = 0.0035 W/m2/K2, respectively [28].

Solar load fraction (SF) refers to the proportion of heat provided by solar energy to the
total energy consumption required for the regeneration of the CO2-rich absorbent, which is
used to specifically quantify the extent to which solar energy contributes to meeting overall
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regeneration energy demands. A higher SF indicates greater reliance on renewable energy
sources and reduced dependence on the steam extracted from the steam turbines of power
plants for CO2 regeneration. Mathematically, the SF for CO2-rich absorbent regeneration
can be expressed as follows:

SF =
Qsolar

Qt
(7)

where Qsolar is the energy provided by the solar resource, kWh; and Qt is the total energy
required for CO2 regeneration, kWh.

3.3. Economic Evaluation Indicators

Undoubtedly, the integration of solar thermal collection and a storage system will
increase the investment costs of the CO2 post-combustion capture system. The economic
parameters of the of studied SOL-HFMC power plant are listed in Table 2.

Table 2. Economic parameters of the studied system.

Economic Parameters Value References

Service lifespan of the project (years) 30
Discount rate (%) 7 [29]

Power plant total equipment cost (M$) 444.7 [22]
Membrane contactor cost (M$) 76.2 [12]

Heat Exchanger (M$) 8.3 [12]
Pumps, blowers, coolers (M$) 10.7 [12]

Compression unit (M$) 50.1 [12]
Fuel cost (M$/year) 58.2 [22]

MEA replenishment (kg/t CO2) 1.5 [30]
MEA cost ($/kg) 2.5 [12]

Vacuum tube collector price (USD/m2) 130 [19]
Energy storage material density (kJ/kg) 339.8 [19]

Energy storage material price ($/kg) 3.5 [19]

TCR, LCOE and COR are calculated to investigate the economic performance of the
proposed SOL-HFMC power plant. TCR for the studied SOL-HFMC system is the sum
of TCR for the coal-fired power plant without CCS, the HFMC capture unit, and the solar
energy collection and storage system. TCR for the vacuum tube collectors and thermal
storage system can be estimated using the parameters listed in Table 2. TCR for the power
plant without CCS and the HFMC capture unit are estimated according to the methodology
proposed in references [12,30–32], with detailed information presented in Table 3. Due
to the new technology with limited data, higher project contingencies are applied for the
HFMC capture unit in comparison with those for the power plant without CCS. It can be
calculated that TCR for the power plant without a CCS system and a HFMC capture unit is
1491.9 M$ and 626.2 M$, respectively.

Levelized cost of electricity, is an indicator which is frequently applied to assess the
cost-effectiveness of integrating CCS technology into the power generation process, which
can be calculated by the following equation:

LCOE =
(TCR)·(FCF) + FOM

Electricityout
+ VOM + Fuel (8)

FCF =
r(1 + r)t

(1 + r)t − 1
(9)

where TCR is the total capital requirement, $; FCF represents the fixed-change factor,
fraction/year, which can be calculated by Equation (9); FOM represents the fixed O&M
costs, accounting for 3.5% of the TCR [30], $/year; VOM is the sum of the MEA cost and
fuel consumption cost, $/MWh; Fuel is the fuel cost, $/MWh; Electricityout is the annual net
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electricity generation of the power plant, MWh/year; r is the discount rate, %; and t is the
service lifespan of the power plant, year.

Table 3. TCR Calculation method.

Capital Cost Items Quantification

Process equipment cost 444.7 M$ for power plant without CCS [22]
145.3 M$ for HFMC capture unit [12]

Supporting facilities cost 10% of process equipment cost
Direct and indirect labor cost 50% of process equipment cost

Bare Erected Cost (BEC) The sum of the above items

Engineering services cost 18% of BEC

Process contingencies 5% of BEC for power plant without CCS
40% of BEC for HFMC capture unit

Project contingencies 15% of all above

Total Plant Cost (TPC) BEC + Engineering services + Contingencies

Owner’s costs 15% of TPC
Total Overnight cost (TOC) TPC + Owner’s costs

Total Capital Requirement 1.289 × TOC

The cost of CO2 removed represents the additional cost incurred by implementing
CCS technology to reduce carbon emissions compared to the baseline power plant without
CCS (baseline PP), which can be used to evaluate the economic feasibility of adopting CCS
technology. COR can be expressed by the following equation:

COR =
LCOEcap − LCOEbase

CEIbase − CEIcap
(10)

where LCOEcap is the LCOE of a power plant with CCS, $/MWh; LCOEbase is the LCOE of
a power plant without CCS, $/MWh; CEIbase is the carbon emission intensity of a power
plant without CCS, t/MWh; and CEIcap is the carbon emission intensity of a power plant
with CCS, t/MWh.

3.4. Study Case

The thermal collection capacity of a specified vacuum tube collector highly depends on
the solar radiation incident on the collector surface. To assess the technical feasibility and
economic benefits of the proposed system, three locations with different solar irradiation
intensities are considered in the present study, namely Lhasa (29.6◦ N, 91.1◦ E), Xining
(36.7◦ N, 101.7◦ E) and Jinan (36.5◦ N, 116.8◦ E). The distribution of total solar radiation on
the horizontal surface in China, as well as the detailed locations of the three studied cases,
is presented in Figure 2.

The main meteorological parameters of the three studied cities were acquired from ME-
TEONORM Global Meteorological Database [33]. The monthly global horizontal radiation
and monthly average sunshine hours of the three studied cities are given in Figure 3. The an-
nual global horizontal radiation in Lhasa, Xining and Jinan is 1988 kWh/m2, 1578 kWh/m2,
and 1340 kWh/m2, respectively. In Lhasa, the highest monthly global radiation is in June
at 227 kWh/m2, and the lowest is in February at 115 kWh/m2. In Xining and Jinan, the
highest radiation values are in May at 181 kWh/m2 and 165 kWh/m2, respectively, while
the lowest values are in December at 74 kWh/m2 and 56 kWh/m2. Additionally, in terms of
sunshine duration, the cities of Lhasa, Xining, and Jinan have the longest monthly sunshine
durations of 280 h, 261 h, and 246 h, respectively. The annual average ambient temperatures
in Lhasa, Xining, and Jinan are 9.5 ◦C, 6.4 ◦C, and 14.9 ◦C, respectively.
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Figure 3. Main meteorological parameters of the three cities. 
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4. Results and Discussion
4.1. Technical Feasibility Evaluation

Figure 4 shows the monthly thermal energy collected by per unit area of vacuum
tube collectors in three studied locations. To maximize the utilization of solar energy, the
vacuum tube collectors are all installed towards the south, and the optimal tilt angles are
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set approximately equivalent to the location latitude, which is 30◦, 37◦, and 36◦ for Lhasa,
Xining, and Jinan, respectively. It can be observed that the maximum solar thermal energy
can be obtained in Lhasa city due to the highest solar irradiation and the longest sunshine
durations, followed by Xining City and Jinan City.
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The TES system can be integrated with solar collectors to buffer the intermittency
and fluctuation of solar energy resources for absorbent regeneration. The TES capacity
depends on the area of the vacuum tube collectors. Figure 5 illustrates the relationship
between thermal storage capacity and the solar load fraction. The symbol “W” in this study
indicates the system with TES, and the symbol “W/O” indicates the system without TES.
The required thermal storage capacity increases with an increase in the solar load fraction.
Specifically, the relationship is almost linear when the SF ranges are within 20–63%, 27–79%,
and 28–82% for Jinan, Xining, and Lhasa, respectively. Within the above specified ranges,
the thermal storage capacity increases relatively slowly with the increase in SF for all
three studied cases. However, the required thermal storage capacity increases dramatically
when the SF further increases beyond 63%, 79%, and 82% for Jinan, Xining, and Lhasa,
respectively. Comprehensively considering the cost of PCM material and the benefits of
an SF increase, the upper limit of thermal storage capacity is set at 15 Full Load Hours
(FLHs), which indicates that the TES system can support CO2-rich absorbent regeneration
energy demand for up to 15 h. The minimum and maximum area of the vacuum tube
collectors required to meet the thermal storage capacity of 15FLH are defined as Critical
Area 3 and Critical Area 4, respectively. The values of the Critical Area shown in Figure 6
are summarized in Table 4.

Figure 6 presents the calculation result of SF variations with the change in the solar
collector area. For the SOL-HFMC system without TES system, the SF increases rapidly
with an increase in the solar collector area. When the solar collector area is increased
beyond Critical Area 1, the SF still increases with the increase in the solar collector area, but
the increase rate of SF gradually decreases. When the solar collector area reaches Critical
Area 2, SF reaches its maximum value of 28.19%, 30.26%, and 34.84% for Jinan, Xining, and
Lhasa cities, respectively. SF is stabilized at its maximum value even if the solar collector
area is further increased beyond Critical Area 2. The reason is that the thermal energy
supplied by solar collectors under Critical Area 2 is excessive for solvent regeneration
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during any sunshine hours, and surplus thermal energy is wasted due to the absence of a
TES system.
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As shown in Figure 6, for the SOL-HFMC system equipped with TES system, SF is
almost linear with the collector area, which significantly increases with the increase in the
solar collector area. When the solar collector area reaches Critical Area 3, the growth rate
of SF is slowed down. When the solar collector area reaches Critical Area 4, the SF of the
three studied locations is stabilized at the maximum value of 90.7%, 92.76%, and 97.34%
for Jinan, Xining, and Lhasa, respectively. Under the same solar collector area, regardless of
whether equipped with a TES system, SF in Lhasa is the highest, followed by Xining, while
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the SF value in Jinan is the lowest. This is because the Lhasa region has the richest solar
energy resources, and the solar collectors in the same area can collect more solar irradiation
to provide energy for solvent regeneration.

Table 4. Value of Critical Area in three studied locations.

Critical
Area 1

Critical
Area 2

Critical
Area 3

Critical
Area 4

Jinan Collector area (km2) 0.29 0.86 0.96 3.06
SF (%) 19.65 57.00 63.45 90.69

Xining Collector area (km2) 0.33 0.44 0.94 1.52
SF (%) 27.34 36.58 78.59 92.76

Lhasa
Collector area (km2) 0.22 0.34 0.65 1.02

SF (%) 28.24 42.22 81.63 97.34

In comparison with the STE-HFMC power plant, the work loss of the steam turbine
is reduced and the output capacity of the SOL-HFMC power plant is increased with the
assistance of solar thermal energy for absorbent regeneration. Under the maximum SF, the
differences in output capacity and net efficiency between the power plant with and without
the assistance of solar energy are illustrated in Figure 7. It can be observed that the output
capacity and net efficiency of the power plant both decreased significantly by 17% and
39% for the STE-HFMC system in comparison with the baseline power plant, respectively.
Compared to the STE-HFMC power plant, the output capacity and net efficiency of the
SOL-HFMC power plant increased significantly, regardless of whether the TES system was
applied or not. The most significant improvement was observed in Lhasa, followed by
Xining and Jinan. Furthermore, the performance of the SOL-HFMC power plant equipped
with the TES system was superior to that of the SOL-HFMC power plant without the TES
system, with net efficiency increased by 2.00%, 2.04%, and 2.13% in Jinan, Xining, and
Lhasa, respectively. The reason can be attributed to the fact that the TES system provides
more energy for solvent regeneration and more steam can be used for power generation.
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Figure 7. Output capacity and net efficiency of the power plant with different configurations. (a) 
Output capacity. (b) Net efficiency of the power plant. 

Figure 7. Output capacity and net efficiency of the power plant with different configurations.
(a) Output capacity. (b) Net efficiency of the power plant.

Figure 8 presents the influence of the solar collector area on carbon emission intensity.
The CEI value of the STE-HFMC power plant is 96.50 kg CO2/MWh. For the SOL-HFMC
power plant without the TES system, the CEI decreases rapidly with an increase in the
solar collector area. The reduction rate is slowed down when the solar collector area is
higher than Critical Area 1. When the solar collector area reaches Critical Area 2, the SF
values for Jinan, Xining, and Lhasa are 28.19%, 30.26%, and 34.84%, with the corresponding
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CEI values stabilized at its minimum value of 95.10 kg CO2/MWh, 95.00 kg CO2/MWh,
and 94.78 kg CO2/MWh, respectively. Under Critical Area 2, the thermal energy provided
by solar collectors reaches its maximum value and no more extracted steam can be saved
to generate more electricity in the power plant. For the SOL-HFMC power plant with
the TES system, the CEI also decreases rapidly before the solar collector area reaches
Critical Area 3. Then, CEI decreases slowly and is stabilized under Critical Area 4 at
its minimum value of 92.14 kg CO2/MWh, 92.05 kg CO2/MWh, and 91.84 CO2/MWh,
with the corresponding SF values of 90.7%, 92.76%, and 97.34% for Jinan, Xining, and
Lhasa, respectively. For the same system under the same solar collector area, the CEI is the
highest in Jinan, followed by Xining and Lhasa, because CEI strongly depends on the solar
irradiation of the studied location.
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4.2. Economic Performance Evaluation

It is obvious that the SF of the SOL-HFMC power plant with the TES system is
relatively higher than that without the TES system, leading to the enhancement of the
output capacity of the power plant. However, the introduction of the TES system also
increases investment costs, mainly due to the cost of the phase change material. Figure 9
presents the dependence of the TES system cost on SF and the solar collector area under
the condition of a maximum thermal storage capacity of 15FLH. As shown in the figure,
the TES system is deactivated and has no cost when the SF is lower than the SF value
corresponding to Critical Area 1, which is 19.65%, 27.34%, and 28.24% for Jinan, Xining, and
Lhasa, respectively. Then, the TES system is activated when the SF is higher than the point
corresponding to Critical Area 1 to utilize the solar energy resources to their maximum
extent, with the TES system cost linearly increasing with the SF increase. When the solar
collector area reaches Critical Area 3, the TES system capacity is 15FLH and the TES cost
achieves its height. At the given value of SF, the TES system cost in Jinan City is the highest,
followed by Xining and Lhasa.

The total capital requirements of the SOL-HFMC power plant are increased due to the
existence of a solar thermal energy collection and storage system. The LOCE and COR of
the SOL-HFMC power plant with the TES system are further calculated, with the results
shown in Figure 10. When the area of the solar collectors is zero, the LCOE and COR values
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of the SOL-HFMC power plant with or without the TES system are the same as those of the
STE-HFMC power plant, which are 91.59 $/MWh and 32.61 $/tCO2, respectively.

Energies 2024, 17, x FOR PEER REVIEW 14 of 21 
 

 

0 20 40 60 80 100

0

15

30

45

60

75

90

Critical area 1

TE
S 

sy
ste

m
 c

os
t (

M
$)

SF (%)

 Jinan-W
 Xining-W
 Lhasa-W

Critical area 3

(a)

 
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0

10

20

30

40

50

60

70

80

90
(b)

Solar collector area (km²)

TE
S 

sy
ste

m
 c

os
t (

M
$)

 Jinan-W
 Xining-W
 Lhasa-W

Critical area 1

Critical area 3

 

Figure 9. Dependence of TES system cost on SF and solar collector area. (a) SF. (b) Solar collector 
area. 

The total capital requirements of the SOL-HFMC power plant are increased due to 
the existence of a solar thermal energy collection and storage system. The LOCE and COR 
of the SOL-HFMC power plant with the TES system are further calculated, with the results 
shown in Figure 10. When the area of the solar collectors is zero, the LCOE and COR val-
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Figure 9. Dependence of TES system cost on SF and solar collector area. (a) SF. (b) Solar collector area.

For the SOL-HFMC power plant without the TES system, the LCOE and COR values in
Jinan and Xining cities both increase with the increase in the solar collector area. However,
in Lhasa, the LCOE and COR values show a difference tendency, with a decrease and then
an increase with the increase in the solar collector area. This can be attributed to the fact
that more steam is used for electricity generation due to higher solar irradiation intensity
and longer sunshine hours in Lhasa; thus, steam saved per unit area of the solar collector
has better economic benefits than the cost increase with the introduction of solar collectors
before the area reaches Critical Area 1.

For the SOL-HFMC power plant with the TES system, the LCOE and COR values of the
three studied locations are identical to the SOL-HFMC power plant without the TES system
when the collector area varies within the range from 0 to Critical Area 1. Within the range
from Critical Area 1 to Critical Area 3, the LCOE and COR values increase rapidly with the
increase in the collector area, no matter what location is studied. When the collector area
further exceeds Critical Area 3, the growth rate of LCOE and COR is reduced. At a given
collector area, the LCOE and COR values of the SOL-HFMC power plant equipped with the
TES system gradually become lower than those of the plant without the TES system because
the TES system cost reaches its maximum value and no longer increases with the increasing
collector area. Therefore, when the solar collector area is higher than Critical Area 3, the
STE-HFMC power plant shall be equipped with a TES system from an economic perspective.
The LCOE, COR and TES cost of SOL-HFMC system is summarized in Table 5.

Table 5. LCOE, COR, and TES cost of SOL-HFMC system.

LCOE ($/MWh) COR ($/t CO2) TES System Cost (M$)

Critical Area 1 Critical Area 3 Critical Area 1 Critical Area 3 Critical Area 1 Critical Area 3

Jinan-W 91.86 94.78 32.95 36.97 0 76.65
Jinan-W/O 91.86 94.13 32.95 36.14 0 76.65
Xining-W 91.63 94.02 32.61 35.87 0 76.65

Xining-W/O 91.63 93.97 32.61 35.91 0 76.65
Lhasa-W 91.17 92.73 31.95 34.04 0 76.65

Lhasa-W/O 91.17 92.58 31.95 33.93 0 76.65
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5. Sensitivity Analysis
5.1. Sensitivity Study on Membrane Prices

The cost of the polypropylene membrane material accounts for 64% of the total cost
of hollow fiber membrane contactors [12]. Therefore, the membrane price is a critical
parameter evaluating the economic performance of the SOL-HFMC power plant. Figure 11
shows the variation of the LCOE and COR values with changes in the membrane prices.
The LCOE and COR values corresponding to Critical Area 2 of the vacuum tube collector
in a solar-assisted ammonia-based power plant in Xi’an City calculated by Liu et al. [19]
are also expressed in Figure 11 as the comparison point. It can be found that the values
of LCOE and COR linearly increase when the membrane price varies within the range of
0.01–0.05 $/m for all three studied locations.
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For the SOL-HFMC power plant without the TES system, when the membrane price is
set at 0.01 $/m, the LCOE is reduced by 2.9%, 4.7%, and 5.3%, and COR is reduced by 36.1%,
40%, and 42.2% compared with the reference point in Lhasa, Xining, and Jinan, respectively.
From the perspective of LCOE, the LCOE value is better than the value of the comparison
point when the membrane price is lower than 0.014 $/m, 0.017 $/m, and 0.018 $/m for
Jinan, Xining, and Lhasa cities, respectively. From the perspective of COR, the COR value
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is lower than the value of the comparison point when the membrane price is lower than
0.032 $/m, 0.034 $/m, and 0.036 $/m for Jinan, Xining, and Lhasa cities, respectively.

For the SOL-HFMC power plant with the TES system, when the membrane price
is set at 0.01 $/m, the LCOE is reduced by 1.5%, 3.9%, and 4.4%, and COR is reduced
by 33.7%, 39.4%, and 40.7% compared with the comparison point in Lhasa, Xining and
Jinan, respectively. From the perspective of LCOE, the LCOE value is superior to the value
of the comparison point when the membrane price is lower than 0.012 $/m, 0.015 $/m,
and 0.016 $/m for Jinan, Xining, and Lhasa cities, respectively. From the perspective of
COR, the COR value is lower than the value of the comparison point when the membrane
price is lower than 0.030 $/m, 0.033 $/m, and 0.034 $/m for Jinan, Xining, and Lhasa
cities, respectively.

Table 6 gives a preliminary comparison of the proposed SOL-HFMC system with other
solar-assisted post-combustion CO2 capture systems in terms of CEI, LCOE, and COR.
It can be evidently observed that the novel system proposed in this study shows better
performance from an economic perspective.

Table 6. Comparison with other solar-assisted post-combustion CO2 capture systems.

Reference Capture System CEI (kg CO2/MWh) LCOE ($/MWh) COR ($/t CO2)

Present Membrane gas absorption 91.84–95.52 91.17–102.65 31.95–48.20
[19] Chemical absorption - 95–105 47–65
[34] Chemical absorption 70–114 46–117
[35] Chemical absorption 103.5 216 -
[36] Chemical absorption - 117 62

5.2. Sensitivity Study on Solar Collector Prices

To investigate the influence of the price variation of vacuum tube collectors on the
economic viability of the SOL-HFMC power plant, Figures 12 and 13 present the variations
in LCOE and COR values with changes in VTC and PCM prices. For comparison, the LCOE
and COR values of the STE-HFMC power plant are also drawn in Figures 12 and 13. It can
be found that the LCOE and COR values of the STE-HFMC power plant are fixed values
which are not influenced by the price variations of the vacuum tube collector because the
regeneration energy is supplied by the steam extracted from the steam turbine. When the
price of the vacuum tube collector varies in the range of 80–200 $/m2, the LCOE and COR
values of the SOL-HFMC power plant with or without the TES system linearly increase
with the increasing solar collector price for all three studied locations. At a given VTC
price, the LCOE and COR values of Lhasa are lower than those of Xining, and Jinan has
the highest LCOE and COR values. For the same studied location, the introduction of the
TES system increases the LCOE and COR values of the STE-HFMC power plant under the
same VTC price. To achieve better economic performance compared to the STE-HFMC
power plant, if the TES system is not applied, the critical VTC price is 50.1 $/m2 for Jinan,
104.7 $/m2 for Xining, and 155 $/m2 for Lhasa, respectively. When the TES system is
applied, the corresponding VTC prices shall be reduced to be lower than 25.7 $/m2 for
Jinan, 95.2 $/m2 for Xining, and 128.7 $/m2 for Lhasa, respectively. It can be concluded
that the critical price in a location with higher solar irradiation resources is higher than that
of a location with poorer solar resources. Thus, it is more attractive to apply the proposed
SOL-HFMC system in power plants with rich solar resources.
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5.3. Sensitivity Study on PCM Prices

If the TES system is integrated with the SOL-HFMC power plant, the PCM prices will
affect the LCOE and COR values. As shown in Figure 13, the LCOE and COR values linearly
increase with an increase in the PCM price for all three studied locations. Even though the
PCM price is reduced to 1.00 $/t, it cannot make the LCOE and COR values of Jinan and
Xining lower than the corresponding values of the STE-HFMC power plant. However, for
Lhasa city, the SOL-HFMC power plant is more competitive than the STE-HFMC power
plant when the PCM price is reduced to be lower than 3.53 $/t.

6. Conclusions

In the present paper, a novel hybridization system, which utilizes solar thermal energy
to assist with the CO2-rich absorbent regeneration process by membrane gas absorption
technology, has been proposed to capture CO2 from the flue gas of fossil fuel power
plants. Three locations with different weather conditions have been selected to evaluate the
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technical potential and economic feasibility of the proposed system. Based on the research
results, the following conclusions can be drawn:

(1) Specific to the SF of the SOL-HFMC power plant without a TES system, the SF reaches
its maximum value of 28.19%, 30.26%, and 34.84% when the solar collector area reaches
Critical Area 2 in Jinan, Xining, and Lhasa cities, respectively; if the TES system is
applied, the SF can reach its maximum value of 90.7%, 92.76%, and 97.34% for Jinan,
Xining, and Lhasa, respectively; in this study, the SF value could not reach 100% due
to the TES capacity limitation of 15 FLH;

(2) From the perspective of technical potential, the output capacity and net efficiency of
the SOL-HFMC power plant are both significantly improved in comparison with the
STE-HFMC power plant, regardless of whether the TES system is equipped or not; the
performance of the SOL-HFMC power plant equipped with the TES system is superior
to that of the SOL-HFMC power plant without the TES system, with the net efficiency
increased by 2.00%, 2.04%, and 2.13% in Jinan, Xining, and Lhasa, respectively;

(3) Specific to the CEI value, the minimum CEI value of the proposed SOL-HFMC power
plant with the TES system can be stabilized at 92.14 kg CO2/MWh, 92.05 kg CO2/MWh
and 91.84 CO2/MWh in Jinan, Xining, and Lhasa, respectively; for the SOL-HFMC
power plant without the TES system, the CEI value is decreased by 1.40 kg CO2/MWh,
1.50 kg CO2/MWh, and 1.73 kg CO2/MWh in Jinan, Xining, and Lhasa, respectively,
compared to 96.50 kg CO2/MWh in the STE-HFMC power plant;

(4) To achieve better economic performance compared to the STE-HFMC power plant, if
the TES system is not applied, the critical VTC price is 50.1 $/m2 for Jinan, 104.7 $/m2

for Xining, and 155.1$/m2 for Lhasa, respectively; when TES system is applied, the
corresponding VTC prices shall be reduced to be lower than 25.7 $/m2 for Jinan,
95.2 $/m2 for Xining, and 128.7 $/m2 for Lhasa, respectively; for Lhasa city with rich
solar resources, the SOL-HFMC power plant is more competitive than the STE-HFMC
power plant when the PCM price is lower than 3.53 $/t;

(5) The membrane price is also critical for the economic performance of the SOL-HFMC
power plant; in comparison with the reference point, for the SOL-HFMC power plant
with the TES system, the LCOE is reduced by 1.5%, 3.9%, and 4.4%, and COR is
reduced by 33.7%, 39.4%, and 40.7% at a given membrane price of 0.01 $/m in Lhasa,
Xining, and Jinan, respectively.

In order to comprehensively evaluate the SOL-HFMC system proposed in this study, a
more detailed comparative analysis with other solar-assisted post-combustion CO2 capture
systems, as well as the environmental impact evaluation by the life cycle assessment
method, shall be carried out in our future research.
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