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Abstract: This paper presents a new approach for the online estimation of stator and rotor resistance
of induction motors for speed sensorless vector-controlled drives, using feed-forward artificial neural
networks with advanced adaptive learning rates. For the rotor resistance estimation, a neural network
model based on rotor speed and stator currents is developed. The rotor flux linkages acquired from
the voltage model are compared with the neural network model. The feed-forward neural network
employs an adaptive learning rate as the function of the obtained error during training for quick
convergence with minimal estimation error. A two-layered neural network model based on the stator
voltage and current equations is developed for the stator resistance estimation. The d-q axes stator
currents obtained from the developed model are compared with the acquired d-q axes stator currents.
For the fast convergence with minimal estimation error, an adaptive learning rate as the function of
error is adopted during training. Furthermore, the neural network estimates the induction motor’s
speed. The simulation and experimental results justify that the developed algorithms track variation
in the resistances quickly and precisely along with the speed as compared with the conventional
constant learning rate algorithm, leading to reliable operation of the drive.

Keywords: artificial neural network; speed sensorless vector-controlled drives; adaptive learning
rate; stator resistance; rotor resistance

1. Introduction

Induction motors are extensively used motors in industrial environments due to their
enormous advantages over similar categories of motors. Due to the vast advantages of
excellent performance, rigorousness, and minimal maintenance, induction motors are the
best alternative for DC motors. The speedy development in semiconductor and control
technologies resulted in replacing DC motors with induction motors for similar applications
in most industries. With the advancement in power electronics, the majority of speed
control-related issues have been resolved. Nearly half of the energy generated in the world
is consumed by electrical drives. Improvement in the energy efficiency of the drive systems
is of great concern, where a minute improvement in energy efficiency reduces power loss
and fuel burn [1]. Inverter-fed induction motors are extensively used for speed control
where the stability of the drive is of more significant concern and is to be addressed together
with the solutions to reduce energy consumption [2–5].
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The scalar and vector control strategies are generally employed for the speed control of
Induction Motor Drives (IMD); even though they are easy to implement, scalar-controlled
drives suffer from inherent coupling effects and sluggish response, and are extremely
prone to system instability. Despite the involvement of a complex control strategy, vector
control or field orientation control has a wide range of advantages; a few are better dynamic
response, higher efficiency over a wide range of speed, exploiting full torque capability at
low speeds, and decoupled control of flux and torque [6]. With regard to field orientation
control, accurate estimation of machine parameters is essential to achieving an excellent
dynamic response as the slip relation is essential for the implementation of an indirect
field-oriented scheme, which is a feed-forward technique, parameter sensitive especially to
rotor resistance. The determination of rotor speed depends on the rotor flux estimation. The
influence of rotor resistance on the estimation of rotor flux, which is the essential control
parameter, is extremely significant [7]. For the speed estimation employing an induction
motor model, accurate estimation of the motor parameters is essential. To achieve minimal
speed estimation error and to eliminate the unstable operation of the drive, online stator
resistance estimation is needed. With the rotor heating, rotor resistance can rise to 100%.
It is highly undesirable to obtain rotor resistance value with the temperature sensor or
thermal model [8].

Several rotor and stator resistance estimation algorithms are available in the literature.
The most popular approaches are based on Extended Kalman Filters (EKFs) [9–13], the
Model Reference Adaptive System (MRAS) [14–16], Sliding Mode Control [17–19], Luen-
berger Observer [20–22], and artificial intelligence-based techniques such as artificial neural
networks [23,24] fuzzy—neural networks, etc. [25,26]. In recent days, several modifications
have been proposed to the traditional methods with different combinations as available
in the recent literature. The MRAS approach for the estimation of machine parameters
is popular as the other traditional approaches are computationally intensive, with noise
influence and complexity in practical realization.

Several MRAS-based techniques are available for the control of sensorless vector-
controlled IMD, which are primarily based on the error minimization of the signals as
Rotor flux error-based MRAS [27,28], Back-EMF error-based MRAS [29,30], Reactive power
error-based MRAS [31–33], Stator current error-based MRAS [34,35], X-MRAS [36,37],
and High-Frequency Injection Method (HFIM) based MRAS [38–40]. The conventional
MRAS approach uses an integral or proportional-integral controller. Since the modern
high-speed DSPs have made the implementation of computationally intensive tools such
as Artificial Neural Network (ANN), fuzzy logic, etc. simple, modern advanced MRAS
techniques incorporate ANN and fuzzy logic. The literature is available on the review of
the performance of various MRAS-based techniques [41,42].

As ANNs are capable of approximating nonlinear functions with a great degree of
accuracy, their application for identifying and controlling nonlinear dynamic systems is
increased. The replacement of the adaptive model of conventional RF-MARS by neural
networks in speed estimation of IMD reduces the computational efforts and is also immune
to the effect of stator and rotor resistance variation on the system. A great improvement
in the performance of the speed estimator is achieved, particularly at low speeds, both
with open-loop and closed-loop conditions [43,44]. The online rotor and stator resistance
estimation approaches are proposed, where a fixed learning rate is adopted during the
estimation approach [45,46]. The selection of an inappropriate learning rate leads to output
errors with slow convergence of the error during network training.

The online artificial neural network-based MRAS-based stator and rotor resistance
estimator employing varying learning rates throughout the training as a function of ob-
tained error during training is proposed. The adjustable learning rate based on the error
function reduces the estimation time and improves the induction motor drive’s control
quality. Both the stator and rotor resistance estimators, shown in Figure 1, make use of
two state estimate variable models: one delivers the induction motor’s real output states,
while the subsequent one provides corresponding neural network model states. The error
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obtained between the output states of the two models is back propagated by adjusting the
weights of the neural network model until the error between the output states of the two
models reaches the acceptable minimum value. The weights obtained at the end of the
training are used to estimate the resistance values. The standard two-layer feed-forward
neural network model and two-layer recurrent feed-forward neural network model are
employed for the rotor and stator resistance estimations, respectively. The effectiveness of
the developed rotor and stator estimators for the online estimation is justified by the simu-
lation studies performed on the stator reference frame model of an induction motor using
MATLAB-SIMULINK and presented. The motor parameters of a 3.7 kW induction motor
are determined by performing the no-load and blocked rotor tests and developing the
equivalent circuit. The performance of the developed algorithms for the online estimation
of stator and rotor resistances, along with speed estimation, are tested experimentally on a
3.7 kW squirrel cage induction motor drive operated with rotor flux orientation controller.
The experimental results demonstrate the capability of the proposed algorithm to estimate
resistances along with speed precisely.
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Figure 1. An ANN-based Model Reference Adaptive System for identifying parameters [7].

2. Artificial Neural Network-Based Rotor Resistance Estimator

The ANN-based MRAS structure for the rotor resistance estimation is presented in
Figure 2.
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The rotor flux vectors are estimated by two separate observers depicted as the voltage
model and current model of the induction motor. The d- and q-axes rotor flux equations are
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derived by assessing the stator side of the equivalent circuit developed from the stationary
reference frame model as in Equation (1), referred to as the voltage model equation [47,48].[ dψs

dr
dt

dψs
qr

dx

]
=

Lr

Lm

{[
vs

ds
vs

qs

]
− Rs

[
is
ds

is
qs

]
− σLs

[
d
dt is

ds
d
dt is

qs

]}
(1)

where σ = 1 − L2
m

Ls Lr
is the leakage factor of the machine.

By assessing the rotor side of the equivalent circuit, the d-q axes rotor flux equations,
also known as current or neural network model equation, is obtained, represented in
Equation (2).

−−−−→
d
dt

ψs,im
r =

[
− 1

Tr
I + ωr J

]−−→
ψs,im

r +
Lm

Tr

−→
is
dq (2)

where Tr =
Lr
Rr

is the rotor time constant,

I =

[
1 0

0 1

]
; J =

[
0 −1

1 0

]
;
−→
is
dq =

[
is
ds

is
qs

]
;
−−→
ψs,im

r =

[
ψs,im

dr

ψs,im
qr

]
;
−−−→
ψs,vm

r =

[
ψs,vm

dr

ψs,vm
qr

]

The sample data model of Equation (2) is represented by Equation (3) as

−−−−−→
ψs,nm

r (k) = (W1 I + W2 J)
−−−−−−−−→
ψs,nm

r (k − 1) + W3
−→
is
dq (3)

where W1 = 1 − Ts
Tr

; W2 = ωrTs and W3 = Lm
Tr

Ts.
Ts is sampling time.
Equation (3) can be represented as

−−−→
ψs,nm

r = W1X1 + W2X2 + W3X3 (4)

where X1 =

[
ψs,nm

dr (k − 1)
ψs,nm

qr (k − 1)

]
; X2 =

[
−ψs,nm

qr (k − 1)
ψs,nm

dr (k − 1)

]
; X3 =

[
is
ds(k − 1)

is
qs(k − 1)

]
.

Based on Equation (4), a two-layer neural network is developed, presented in Figure 3.
X1, X2, and X3 represent the inputs to the network, and W1, W2, and W3 represent the
network weights. Since W2 is independent of the rotor resistance term, during the training
of the network, weights W1 and W3 are required to be updated.
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The square function of the rotor flux error between the reference model and the neural
network model is

Er =
1
2
∈2

r (k) =
1
2

{
−−−→
ψs,vm

r −
−−−→
ψs,nm

r

}2

(5)

During training, weights W1 and W3 are updated to obtain the minimum square
function as

W1(k) = W1(k − 1) + η1 ∆W1(k) (6)

W3(k) = W3(k − 1) + η3 ∆W3(k) (7)

Using the generalized delta rule, the weight adjustment factors ∆W1(k) and ∆W3(k)
are evaluated as

∆W1(k) = − ∂Er

∂W1
=

[
−−−→
ψs,vm

r (k)−
−−−→
ψs,nm

r (k)

]T−−−→
ψs,nm

r (k − 1) (8)

∆W3(k) = − ∂Er

∂W3
=

[
−−−→
ψs,vm

r (k)−
−−−→
ψs,nm

r (k)

]T−→
is
dq (k − 1) (9)

With experience gained from the repeated training of the network, learning rates η1
and η2 are selected to obtain a minimum error.

The adaptive learning rate algorithm is developed, where the adaptive learning rate
substitutes the constant learning rate throughout the training, for quick convergence and
reduced estimate error. During each training iteration, weights are updated based on the
modified learning rate to reduce the error Er. The learning rate is updated during training
determined by the product of weight adjustment factors at k and (k − 1) iteration given by
φi(k) = ∆Wi(k) × ∆Wi(k − 1).

By using the bipolar sigmoid function as given in Equation (10), the learning rate for
the kth iteration during learning is computed.

f (φi(k)) = αi
1 − e−s∗φi(k)

1 + e−s∗φi(k)
(10)

where s is the steepness parameter, which may vary between −1 and +1; αi is the posi-
tive constant.

Considering the learning rate of (k − 1) iteration, the updated learning rate for the kth
iteration is obtained from

ηi(k) = ηi(k − 1) ∗ [1 + f (φi(k))] (11)

With the updated learning rate as obtained from Equation (11), the weights W1 and
W3 updated are as per Equations (6) and (7).

At the end of the training, rotor resistance Rr-est is estimated by considering either W1
or W3 as per Equations (12) or (13) as

Rr−est =
LrW3

LmTs
(12)

Rr−est =
Lr(1 − W1)

Ts
(13)

The d and q axes rotor fluxes estimated from the voltage model depend on the stator
resistance Rs as given in Equation (1). To minimize the error in rotor resistance estimation,
an online stator resistance estimator is developed and is presented in Section 3.
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3. Artificial Neural Network-Based Stator Resistance Estimator

The equations corresponding to voltage and current models used in rotor resistance
estimation [7], represented as Equations (1) and (2), are used to obtain the d and q axes
currents of the induction motor as

d
dt

is
ds =

Lm

σLsLrTr
ψs

dr +
Lm

σLsLr
ωrψs

qr −
L2

m
σLsLrTr

is
ds +

1
σLs

vs
ds −

1
σLs

Rsis
ds (14)

d
dt

is
qs =

Lm

σLsLrTr
ψs

qr −
Lm

σLsLr
ωrψs

dr −
L2

m
σLsLrTr

is
qs +

1
σLs

vs
qs −

1
σLs

Rsis
qs (15)

Equations (14) and (15) are expressed in discrete form as

is∗
ds(k) = W4is

ds(k − 1) + W5ψs
dr(k − 1) + W6 ψs

qr(k − 1) + W7vs
ds(k − 1) (16)

is∗
qs (k) = W4is

qs(k − 1) + W5ψs
qr(k − 1)− W6 ψs

dr(k − 1) + W7vs
qs(k − 1) (17)

where W4 =
[
1 −

(
Ts

σLs

)
Rs −

(
L2

m
LrTr

)(
Ts

σLs

)]
; W5 =

(
Lm

LrTr

)(
Ts

σLs

)
; W6 =

(
Lm
Lr

)(
Ts

σLs

)
ωr;

W7 = Ts
σLs

.
A two-layer recurrent neural network, as shown in Figure 4, is developed from

Equations (16) and (17) for the stator current estimation. The * indicates the estimated
values in neural network model.
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The weights W5, W6, and W7 are obtained from machine parameters, sampling interval
Ts, and rotor speed ωr. During the network training, only W4 is adjusted, as other weights
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are independent of stator resistance. The standard back-propagation algorithm is adopted
for the training of the neural network.

The square function of the stator current error between the reference model and the
neural network model is

Es =
1
2

→
∈2

s (k) =
1
2
{is(k)− i∗s (k)}

2 (18)

To obtain the minimal error square function Es, Weight W4 is updated during training as

W4(k) = W4(k − 1) + η4 ∆W4(k) (19)

Based on the repeated training performed on the network, with trial and error, the
initial learning rate η4 is selected. The weight adjustment factor ∆W4(k) is obtained as

∆W4(k) = − ∂Es

∂W4
=

[
−−−→
is(k) −

−−−→
i∗s (k)

]T

∗
−−−−−→
i∗s (k − 1) (20)

The constant learning rate is replaced by an adaptive learning rate based on the bipolar
sigmoid function. The learning rate is updated during the training as

η4(k) = η4(k − 1) ∗ [1 + f (φi(k))] (21)

where φi(k) = ∆W4(k) × ∆W4(k − 1).
The function f (φi(k)) is determined by adopting the activation function as explained

for the rotor resistance estimation in Section 2.
Considering the adjustment weight W4 obtained at the end of the training, the stator

resistance is estimated as

Rs−est =

{
1 − W4 −

Ts

σLs

L2
mRr

L2
r

}
σLs

Ts
(22)

The stator resistance is thus estimated by the ANN-based MRAS estimator, as shown
in Figure 5.
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The speed of the sensorless drive is estimated as shown in [8] given below as

ωr−est = ωr−est(k − 1) +
ηsp

Ts


[
ψs,vm

qr (k)− ψs,im
qr (k)

]
ψs,im

dr (k − 1)

−
[
ψs,vm

dr (k)− ψs,im
dr (k)

]
ψs,im

qr (k − 1)

 (23)

where ηsp is the learning rate for rotor speed estimation, and Ts is the sampling time.

4. Results and Discussion

The machine parameters of the induction motor with 3.7 kW are determined in the
laboratory by performing the no-load and blocked rotor tests. With the obtained parameters,
the performance of the proposed algorithm for online stator and rotor resistance is evaluated
by the simulation and with the hardware setup, as presented in the following sections,
followed by a discussion of the results.

4.1. Tests for Identification of Machine Parameters

The resistance of stator windings is evaluated by the volt-amp test. The no-load, locked
rotor tests are performed to determine equivalent circuit parameters. The experiments are
performed using the machine specified by the nameplate information provided in Table 1.
Figure 6 illustrates the experimental setup employed in the laboratory for the determination
of machine characteristics.

Table 1. Induction motor information.

Power (HP) 3.7 kW
Current (Amps) 7.5

Terminal voltage (Volts) 415
Frequency (Hz) 50

Poles 4
No-load speed (RPM) 1498

Stator connection Delta
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4.1.1. Stator Winding Resistance Estimation

The low voltage DC is applied to one of the phase windings of three-phase winding,
as shown in Figure 7. Calculating DC resistance requires taking the data from both an
ammeter and voltmeter. The AC resistance was computed by multiplying a constant value
of 1.25 to the previously determined DC resistance. Table 2 displays the results of the DC
resistance measurement findings. Temperature variation is neglected in the estimation of
stator resistance.

Energies 2024, 17, x FOR PEER REVIEW 9 of 33 
 

 

The low voltage DC is applied to one of the phase windings of three-phase winding, 
as shown in Figure 7. Calculating DC resistance requires taking the data from both an 
ammeter and voltmeter. The AC resistance was computed by multiplying a constant value 
of 1.25 to the previously determined DC resistance. Table 2 displays the results of the DC 
resistance measurement findings. Temperature variation is neglected in the estimation of 
stator resistance. 

 
Figure 7. Estimation of stator winding DC resistance. 

Table 2. Experimental observations on stator winding resistance estimation. 

Sl No Applied Voltage 
(volt) 

Current 
(amp) 

DC Resistance 
(ohm) 

Average dc Resistance 
(ohm) 

Stator ac Resistance 
(ohm) 

1 6.82 1.5 4.55   
2 9.34 2 4.67 4.57 5.71 
3 11.21 2.5 4.484   

4.1.2. No-Load Test 
The voltages at rated value and frequency are applied during the no-load test or light-

load test. The circuit arrangement for the no-load test is shown in Figure 8. The input 
current, power input, and applied voltages are noted. As the input power factor is less 
than 0.5, low power factor watt meters are used, and one of the wattmeter shows a 
negative reading. Total power input corresponds to stator copper and iron losses without 
any applied load. No-load power factor, core loss resistance, magnetizing current, and 
inductances are determined from the measurements obtained. The observations obtained 
during no-load tests are presented in Table 3. 

Table 3. Observations of No-Load Test. 

Voltage Vas 
(volt) Ia (amp) Ib  

(amp) 
Ic 

(amp) 
No-Load Current 

Io (amp) 
W1 

(watts) 
W2 

(watts) 
Power Input Poc 

(watts) Speed (rpm) 

415 4.15 4.1 4.1 4.12 −672 1080 408 1498 

Figure 7. Estimation of stator winding DC resistance.

Table 2. Experimental observations on stator winding resistance estimation.

Sl No. Applied Voltage
(volt)

Current
(amp)

DC Resistance
(ohm)

Average dc Resistance
(ohm)

Stator ac
Resistance (ohm)

1 6.82 1.5 4.55
2 9.34 2 4.67 4.57 5.71
3 11.21 2.5 4.484

4.1.2. No-Load Test

The voltages at rated value and frequency are applied during the no-load test or
light-load test. The circuit arrangement for the no-load test is shown in Figure 8. The
input current, power input, and applied voltages are noted. As the input power factor is
less than 0.5, low power factor watt meters are used, and one of the wattmeter shows a
negative reading. Total power input corresponds to stator copper and iron losses without
any applied load. No-load power factor, core loss resistance, magnetizing current, and
inductances are determined from the measurements obtained. The observations obtained
during no-load tests are presented in Table 3.

Table 3. Observations of No-Load Test.

Voltage Vas
(volt)

Ia
(amp)

Ib
(amp)

Ic
(amp)

No-Load Current
Io (amp)

W1
(watts)

W2
(watts)

Power Input Poc
(watts)

Speed
(rpm)

415 4.15 4.1 4.1 4.12 −672 1080 408 1498
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4.1.3. Locked Rotor or Short Circuit Test

With locking the rotor to prevent rotation, applied voltage to the stator is increased
until rated current flows to the stator. With the voltage, current, and power input read-
ings obtained, rotor resistance and leakage inductance are calculated by developing the
equivalent circuit. The results that were obtained from the examination are shown in
Table 4.

Table 4. Locked rotor test observations.

SC Voltage Vsc
(volt)

SC
Current Isc

(Amp)
W1 (watts) W2 (watts) SC Power Input

Psc (watts)

82 7.5 −11 510 499

4.1.4. Locked Rotor or Short Circuit Test

The exact equivalent circuit (IEEE) model of an induction motor was built based on
the findings made during the blocked rotor and no-load tests, as illustrated in Figure 9.
Table 5 presents an estimation of the values for the machine parameters based on the results
of the tests performed on the induction motor using the equivalent circuit model [49,50].
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Table 5. Induction motor parameters obtained from DC test, no-load, and blocked rotor tests.

Rs (ohm) Rr (ohm) Ls = (Lls + Lm)
(Henry)

Lr = (Llr + Lm)
(Henry) Lm (Henry)

5.7 4.11 0.5634 0.5634 0.5379
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4.2. Modeling Analysis

The block diagram of the induction motor drive with integrated online rotor and
stator resistance estimator with speed estimation is shown in Figure 10. The induction
motor drive is operated with a rotor flux orientation controller. A multi-level low-pass
filter is used for the estimation of voltage model fluxes from the measured stator voltages
and currents [51,52]. The induction motor parameters are obtained from no-load and
blocked rotor tests performed in the laboratory as presented in Section 4.1. Induction
motor parameter details used in the simulation study are summarized in Table 6. Sim-
ulations are performed individually on the rotor resistance estimator, stator resistance
estimator, and on an integrated system as shown in Figure 10. The performance of the
developed algorithms is evaluated by simulation using MATLAB/Simulink software
(R2023b, MathWorks, Natick, MA, USA).
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Figure 10. Block diagram of rotor-flux-oriented indirect vector-controlled induction motor drive with
online rotor and stator resistance estimation.

The stator resistance, rotor resistance, and speed are estimated as presented in the
following steps:

• With the sampled terminal voltages and currents and by using the developed neural
network model as presented in Section 3, stator resistance is estimated online.

• Using the obtained stator resistance, rotor fluxes are estimated. Using the neural
network model as presented in Section 2, rotor resistance is determined.

• The speed is evaluated by using the obtained stator resistance, rotor resistance, and
rotor fluxes as presented in Section 3.

The results of the simulation are presented in the following sections.



Energies 2024, 17, 2150 12 of 30

Table 6. Induction motor parameter details.

Parameters Values

Rated power 3.7 kW
Rated frequency 50 Hz

Rated voltage 415 V
Rated current 7.5 A

Number of poles 4
Type of stator connection Delta

No-load speed 1498 rpm
Rotor resistance 4.11 Ohm
Stator resistance 5.7 Ohm

Rotor inductance (Lr) 0.5634 H
Stator inductance (Ls) 0.5634 H

Magnetizing inductance (Lm) 0.5379 H
Moment of inertia (Jr) 0.01542 kg-m2

4.2.1. Simulation Results of the Performance of the Rotor Resistance Estimator
and Analysis

The initial actual resistance values of rotor and stator windings were obtained from the
various laboratory tests and are shown in Table 5. To evaluate the ability of the proposed
algorithm to track the variation in the rotor resistance, the simulations were performed with
the wide range of actual rotor and stator resistance values under the various conditions such
as fixed stator resistance and speed, fixed stator resistance and varying speed, and varying
stator resistance and speed. Simulations are performed by considering the actual rotor
resistance values of 10, 15, 20, 25, 40, 50, 75, 90, and 100 percent step rises from its initial
value under the condition of fixed stator resistance and speed. Also, arbitrarily stepped
rises in rotor and stator resistance values are considered to evaluate the performance of the
algorithm with both variable speed and stator resistance.

The training of the neural network is performed in all the above conditions with the
parameters as presented in Table 7. These parameters are selected based on a trial-and-error
process by performing repeated training trials.

Table 7. Training parameters of neural network for rotor resistance.

Parameter Value

The initial learning rate for weight W1 2.4 × 10−4

The initial learning rate for weight W3 10 × 10−6

Steepness factor of bipolar sigmoid function s1 and s3 1
α1, α3 0.1

Sampling time Ts 2 ms

The simulation results (testing) are presented in Tables 8–10 and Figures 11–13. A
stepped increase in the actual rotor resistance, speed, and stator resistance is presented
for the simulation purpose to evaluate the performance which is not true under the actual
operating conditions. The percentage estimation error in rotor resistance in each case is
also shown.

The variation in learning rates, weight adjustment factors, resistance value, and con-
vergence of squared error during the training of the neural network is shown in Figure 14.
As the iteration progresses, the estimated error between the fluxes decreases, giving rise
to an increase in learning rates for the succeeding iterations, followed by a larger rate
of weight adjustment. This results in quicker convergence of the error to the acceptable
minimum value. Thus, the adaptive learning rate results in a quick estimation of the
resistance with minimal error. As the iteration progresses, the squared error decreases,
reaches the minimum value, then again increases, as shown in Figure 14c. The iteration is
stopped when the error converges to the minimum value.
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Table 8. Estimated rotor resistance with percentage error in estimation and number of iterations for
fixed stator resistance and speed.

Actual Rotor
Resistance

Wr = 307 Radian/Second Wr = 310 Radian/Second

Estimated
Resistance

Percentage
Error

Number of
Iterations

Estimated
Resistance

Percentage
Error

Number of
Iterations

4.11 4.11 0 1 4.11 0 1

4.521 4.54 −0.4242 6 4.568 −1.033 6

4.7265 4.761 −0.7391 8 4.59 3.36 6

4.932 4.954 −0.4538 10 4.982 −1.01 9

5.1375 4.995 2.765 10 5.141 −0.06854 10

5.754 5.631 2.14 14 5.736 0.3159 13

6.165 6.335 −2.754 9 6.188 −0.3811 15

6.576 6.642 −1.008 10 6.464 1.709 16

7.1925 7.154 0.5389 12 7.129 0.8871 18

7.809 7.826 −0.219 16 7.756 0.68 19

8.22 8.345 −1.525 17 8.194 0.3145 20

Table 9. Estimated rotor resistance with percentage error in estimation and number of iterations for
fixed stator resistance and varying speed.

Actual Rotor Resistance Speed Wr (rad/s) Estimated Rotor Resistance Percentage Error Number of Iterations

4.11 313 4.11 0 1

4.521 312 4.476 0.9889 5

4.7265 311 4.705 0.4627 7

4.932 310 4.958 −0.5192 9

5.137 309 5.072 1.283 10

5.754 308 5.661 1.62 14

6.165 308 6.08 1.385 16

Table 10. Estimated rotor resistance with percentage error in estimation and number of iterations for
varying stator resistance and speed.

Actual Rotor
Resistance

Actual Stator
Resistance Speed (rad/s) Estimated

Resistance Percentage Error Number of
Iterations

4.11 5.7 313 4.11 0 1
4.521 6.27 312 4.472 1.077 5
4.726 6.55 311 4.812 −1.817 8
4.932 6.84 310 4.95 −0.3642 9
5.137 7.125 309 5.165 −0.5305 11
5.754 7.98 308 5.537 3.78 14
6.165 8.55 308 6.06 1.705 17
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4.2.2. Simulation Results of Performance of Stator Resistance Estimator and Analysis

The performance of the proposed back-propagated recurrent neural network with a
bipolar sigmoid-based adaptive learning rate algorithm for tracking the variation in stator
resistance is evaluated for 10, 15, 20, 25, 40, 50, 75, 90, and 100 percent rises from its nominal
value under the various conditions as with fixed rotor resistance and speed, fixed rotor
resistance and variable speed, and variable speed and rotor resistance. The training of the
neural network is performed in all the above conditions with the parameters as presented
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in Table 11. These parameters are selected based on a trial-and-error process by performing
repeated training trials.

Table 11. Training parameters of neural network for stator resistance.

Parameter Value

The initial learning rate for weight W4 0.001
Steepness factor of bipolar sigmoid function s4 0.01

α4 4
Sampling time Ts 4 ms

The simulation results are presented in Tables 12–14 and Figures 15–17. A stepped in-
crease in the actual rotor resistance, speed, and stator resistance is presented for the simulation
purpose to evaluate the performance which is not true under the actual operating conditions.

Table 12. Estimated stator resistance with percentage error in estimation and number of iterations for
fixed rotor resistance and speed.

Actual Stator
Resistance

Wr = 307 rad/s Wr = 310 rad/s

Estimated
Resistance

Percentage
Error

Number of
Iterations

Estimated
Resistance

Percentage
Error

Number of
Iterations

5.7 5.7 0 1 5.7 0 1
6.27 6.325 −0.8841 5 6.154 1.857 6
6.55 6.519 0.4765 7 6.561 −0.1756 8
6.84 6.742 1.437 7 6.926 −1.25 10

7.125 6.994 1.838 8 6.99 1.901 10
7.98 7.932 0.6067 11 7.838 1.778 13
8.55 8.415 1.578 12 8.558 −0.091 15
9.12 8.955 1.807 13 9.091 0.3181 16

9.975 9.684 2.916 15 9.819 1.566 17
10.83 10.5 3.068 16 10.63 1.848 18
11.4 10.79 5.366 16 10.94 4.078 19

Table 13. Estimated stator resistance with percentage error in estimation and number of iterations for
fixed rotor resistance and varying speed.

Actual Stator
Resistance

Speed Wr
(rad/s)

Estimated Stator
Resistance Percentage Error Number of

Iterations

5.7 313 5.7 0 1
6.27 312 6.307 −0.5941 8
6.55 311 6.615 −0.9972 9
6.84 310 6.92 −1.166 10
7.125 309 7.085 0.566 11
7.98 308 7.956 0.3065 12

Table 14. Estimated stator resistance with percentage error in estimation and number of iterations for
varying rotor resistance and speed.

Actual Stator
Resistance

Actual Rotor
Resistance Speed Wr (rad/s) Estimated Stator

Resistance Percentage Error Number of
Iterations

5.7 4.11 313 5.7 0 1
6.27 4.727 312 6.306 −0.5775 6
6.55 5.138 311 6.616 −1.009 11
6.84 5.343 310 6.74 1.456 10

7.685 5.548 309 7.633 0.6825 14
8.55 6.165 308 8.18 4.21 14
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As the iteration progresses during the training, the learning rate increases due to the
decrease in error between the actual stator current and the estimated current from the
neural current model, leading to weight adjustments at a larger rate in the succeeding
iterations. Hence, quicker convergence of the error to an acceptable value is obtained, as
presented in Figure 18a. As the iteration progresses, squared error falls initially, converges
to minimum value, and then increases, as shown in Figure 18b.
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4.2.3. Speed Estimation with Integrated Online Rotor and Stator Resistance Estimation

The simulation results of the integrated system are shown in Figure 19. The online
rotor and stator resistance estimator tracks the variation in the rotor and stator resistance
precisely with minor errors. With online rotor and stator resistance estimation, actual drive
speed is measured accurately, which closely follows the set reference speed within the error
of 0.16%.
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4.3. Experimental Evaluation and Results

The proposed rotor and stator resistance, together with the speed estimation algorithm,
was verified on an induction motor drive with a rotor flux orientation scheme [49], as shown
in Figures 20 and 21. The DSpace DS1104 controller board residing in the PC is employed
for experimenting. The experiment is performed on a 3-phase induction motor with the
rating as detailed in Table 6. The induction motor is driven with an IGBT inverter operated
with a 5 kHz switching frequency. The induction motor is loaded through a rigidly coupled
DC motor of 3 kW for torque control with the help of a 4Q rectifier. The proposed stator
and rotor resistance estimation blocks are implemented with a sampling time of 2000 µs;
a sampling time of 200 µs is employed for current and flux controllers and a 2000 µs
sampling time for the speed estimator. For position and speed feedback, an encoder with
5000 pulses/cycles is used.
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Figure 20. Block diagram of the experimental setup.

The ability of the proposed rotor resistance estimator to track the actual rotor resistance
is evaluated by conducting the temperature rise test at an ambient temperature of 25 ◦C,
where the motor is loaded with 6.4 N-m and driven at 1480 rpm. The results obtained for
the estimated stator and rotor resistances collected from the experiment for nearly an hour
are presented in Figure 22. As the motor runs with the load, the temperature of the stator
and rotor winding rises, leading to a rise in resistance values. The d-axis rotor flux linkages
collected from the voltage model and neural network model at the end of the heat run test
are presented in Figure 23. The estimated d-axis rotor flux by the neural network model
precisely tracks that of the voltage model and current model within an error of 1.2%.
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The performance of the stator resistance estimator is evaluated by adding a resistance
of 2.8 ohms per phase in series with the stator windings of the induction motor. The
addition of 2.8 ohm raises the stator resistance value from 5.7 ohm to 8.5 ohm, as shown in
Figure 24. A torque of 6.4 Nm was applied with the motor running at 1480 rev/min. The
estimated stator resistance tracks the actual stator resistance precisely and converges closely
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to 8.46 ohm with an error of 0.48%, as shown in Figure 24 with the proposed adaptive
learning rate algorithm. With the conventional constant rate learning algorithm, an error
of 1.9% is obtained on stator resistance estimation. With the proposed adaptive learning
rate algorithm, the stator resistance estimation converges within 150 ms as compared to the
conventional constant learning rate algorithm of around 250 ms. A pulsation of 0.35% is
obtained in stator resistance estimation with the proposed algorithm as against 1.56% with
the conventional constant learning rate approach.
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Figure 24. Tracking the actual (a) stator and (b) rotor resistance in the experiment by the conventional
constant learning rate and adaptive learning rate algorithms.

The tracking of the d-axis stator current by the neural network model during the
online estimation of the stator resistance is shown in Figure 25. The estimated current by
the neural network model closely follows the d-axis measured stator current owing to the
online training of the neural network.
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Figure 25. Measured stator d-axis current and obtained from neural network model during stator
resistance estimation.

The results obtained for stator resistance estimation from the experiment are compared
with the developed model by applying a step change in stator resistance of 2.8 ohms
without making any changes in Rr. The simulation is carried out simultaneously with the
conventional and the proposed adaptive learning rate algorithm. The results obtained from
the model simulation, as shown in Figure 26, show close agreement with the experimental
results shown in Figure 24. With the proposed adaptive learning rate algorithm, the
estimated resistance converges at 8.53 ohm with an error of −0.35%, whereas, with the
conventional constant learning rate algorithm, the estimated stator resistance converges at
8.624 ohms with an error in the estimation of −1.46%.
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Figure 26. Simulation results of tracking the stator resistance by the conventional and proposed
adaptive learning rate algorithms.

The experiments were performed to evaluate the performance of the proposed stator
and rotor estimator along with the speed sensorless operation. To evaluate the effect of
variation in the stator resistance on the speed estimation, a 2.8 ohm resistance per phase
is added to the stator windings. The addition of 2.8 ohm raises stator resistance from its
nominal value of 5.7 ohm to 8.5 ohm. The drive is operated with RFOC. When the stator
resistance estimator block is off, the speed drops to 1472 rpm, as shown in Figure 27. With
the stator resistance estimator block on, the estimated speed was closely matching with the
measured speed.
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4.4. Discussion

The results of the simulations and hardware, as presented in the preceding sections,
point out that

• As the number of iterations needed for the estimation of stator and rotor resistances
is reduced with the proposed algorithm, the quick estimation of stator and rotor
resistances is obtained as compared to the conventional constant learning rate ap-
proach. For the step change in the stator resistance, with the proposed approach,
estimated stator resistance converges with the minimum error of estimation within
150 ms as compared to 250 ms obtained from the conventional constant learning rate
approach [7].

• The proposed algorithm ensures the reduction in error of estimated resistances. For
the step change in stator resistance, with the proposed approach, the estimation error
is 0.48%, which is superior to the conventional constant learning rate approach of
around 2%.

• The proposed algorithm tracks the stator resistance smoothly with the pulsation in
estimated resistance within 0.35%, which is better than the constant learning rate or
other function-based learning rate approach [8].

• The smooth estimation of speed is obtained with the developed algorithm where
pulsation is within 0.4% which is much lower than that obtained by a conventional
constant learning rate algorithm [24].



Energies 2024, 17, 2150 27 of 30

5. Conclusions

This paper presents an advanced back-propagation neural network with error-function-
based adaptive learning rate algorithms for the online estimation of stator and rotor re-
sistances used in speed sensorless vector-controlled IMD. As compared with the constant
learning rate, the suggested back-propagation algorithm for the feed-forward network
performs superiorly with an adjustable learning rate defined by a bipolar sigmoid function.
The results of the simulation and hardware experiments justify the ability of the proposed
algorithm to track the variation in stator and rotor resistances quickly and precisely, leading
to the estimation of the speed close to the real speed. The proposed algorithm has the
potential to improve the control quality of the vector-controlled speed sensorless IMD.
Further, the developed algorithm could be used to evaluate the drive’s performance in
different operating states.
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List of Symbols

ψs,vm
dr Voltage model d-axis rotor flux linkages in the stator reference frame

ψs,vm
qr Voltage model q-axis rotor flux linkages in the stator reference frame

is
ds d-axis stator current in the stator reference frame

is
qs q-axis stator current in the stator reference frame

vs
ds d-axis stator voltage in the stator reference frame

vs
qs q-axis stator voltage in the stator reference frame

ψs,nm
dr Neural network model d-axis rotor flux linkages in the stator reference frame

ψs,nm
qr Neural network model q-axis rotor flux linkages in the stator reference frame

ψs,im
dr Induction motor current model d-axis rotor flux linkages in the stator reference frame

ψs,im
qr Induction motor current model q-axis rotor flux linkages in the stator reference frame

Rs Stator resistance
Rr Rotor resistance
Ls Stator self-inductance
Lr Rotor self-inductance
Lm Magnetizing inductance
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