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Abstract: A reasonable allocation of production schedules and savings in overall electricity costs are
crucial for large manufacturing conglomerates. In this study, we develop an optimization model of
off-site industrial production scheduling to address the problems of high electricity costs due to the
irrational allocation of production schedules on the demand side of China’s power supply, and the
difficulty in promoting industrial and commercial distributed photovoltaic (PV) projects in China.
The model makes full use of the conditions of different PV resources and variations in electricity
prices in different places to optimize the scheduling of industrial production in various locations. The
model is embedded with two sub-models, i.e., an electricity price prediction model and a distributed
photovoltaic power cost model to complete the model parameters, in which the electricity price
prediction model utilizes a Long Short-Term Memory (LSTM) neural network. Then, the particle
swarm optimization algorithm is used to solve the optimization model. Finally, the production
data of two off-site pharmaceutical factories belonging to the same large group of enterprises are
substituted into the model for example analysis, and it is concluded that the optimization model can
significantly reduce the electricity consumption costs of the enterprises by about 7.9%. This verifies
the effectiveness of the optimization model established in this paper in reducing the cost of electricity
consumption on the demand side.

Keywords: optimized scheduling; distributed photovoltaic; LSTM neural network; particle swarm
optimization algorithm; master–slave game; electricity market

1. Introduction

Since September 2020, when China formally put forward its “dual-carbon” strategy,
China’s National Development and Reform Commission (NDRC), National Energy Admin-
istration (NEA), and other Chinese ministries and commissions have continued to release
favorable policies in respect of the distributed PV industry. This shows that distributed
PV systems will play an important role in China’s realization of the “dual-carbon” strat-
egy [1–3]. Among them, industrial and commercial distributed PV systems are developing
extremely rapidly and have huge potential due to high market demand, minimal technical
difficulties, etc. [4–6]. However, at present, China’s industrial and commercial distributed
PV systems are encountering difficulties in respect of promotion [7,8]. Our research team
found that, with the continuous construction and development of China’s power spot
market, the market’s main body of transactions continues to expand, and industrial and
commercial users are increasingly willing to participate in power spot market transactions.
The power spot market trading price is often lower than that of distributed PV investment
companies, and industrial and commercial users reach an agreement on the price of elec-
tricity [9,10]. In such a market environment, as well as at all levels of government across
China, industrial and commercial distributed PV subsidies are frequently cancelled, and
the difficulties associated with industrial and commercial distributed PV investment have
greatly increased. Therefore, there is an urgent need for a new power supply model in
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the field of commercial and industrial distributed PV systems, which can minimize the
off-site electricity costs of commercial and industrial users while guaranteeing the returns
of distributed PV investors. This paper carries out research on the above issues.

A large amount of the literature has been reviewed before the beginning of the study.
And it found that most scholars have conducted significant research on the traditional
master–slave game relationship, with distributed PV investment companies as the leader
and industrial and commercial users as the followers.

Paper [11] comprehensively investigated the state-of-the-art optimization methods
for hybrid energy systems of photovoltaics, diesel turbine generators, and energy storage
systems, and laid the foundation for solving the intricate and complex real-world problems
related to the operation of distributed energy systems. Paper [12] proposed a joint opti-
mization and operation mechanism of the distributed PV power generation market and the
carbon market based on cross-chain trading technology from the perspective of the electric
power market; Paper [13] put forward a novel trading energy-based operation framework,
which helps to ensure the economic operation of aggregators and users in a distributed PV
distribution system; Paper [14] comprehensively reviewed the development and impact
of distributed PV in the electricity market, and discussed in detail the related market
models and bidding strategies; Paper [15] proposed a novel distributed energy system
integrating CHP, PV power generation, and ground-source heat pumps, and develops a
new distributed energy system based on a hybrid of differential evolution and a particle
swarm optimization algorithm and a hierarchical analysis method to develop a seasonal
operation strategy; Paper [16] proposed a multi-stage and multi-period distributed energy
optimization method based on deepening the market integration of distributed energy
resources in the form of aggregation; Paper [17] established a bi-level planning model for
distributed PV energy storage systems in distribution networks, taking into account the
uncertainty of distributed PV power output and the demand response behavior of users in
the context of the coordinated operation of China’s power market and carbon market; and
Paper [18] conducted an analytical study of PV user demand response modeling and tariff
mechanism from the perspective that the PV user demand response can improve the PV
extinction rate.

In this study, we used the above literature as the research background to establish
a new type of master–slave game relationship, with industrial and commercial users as
leaders and distributed PV investment companies as followers. Under the circumstance
of guaranteeing the investment interests of distributed PV companies, it is possible to
minimize the cost of electricity for industrial and commercial users and improve the suc-
cess rate of distributed PV contracting as much as possible. Since commercial power
consumption cannot be deployed off-site, this paper only discusses the optimization of
off-site industrial power consumption. For large manufacturing group enterprises using
assembly line operation, electricity consumption is proportional to the production plan,
i.e., the production plan deployment can be reflected in the respective electricity con-
sumption of off-site factories. Due to the light resources, natural conditions, and market
mechanism, the cost of photovoltaic power generation is not the same everywhere. The
production deployment of heterogeneous industrial parks can make good use of the differ-
ent costs of photovoltaic power generation in different places to optimize the production
deployment, and thus save the cost of electricity. In the case of logistics, deployment costs
are not taken into account, since low electricity cost areas produce more products and high
electricity cost areas as far as possible reduce production. However, from a practical point
of view, because of the volatility of electricity prices, distributed photovoltaic power gener-
ation is unstable and other factors, belonging to the same enterprise’s off-site factories, are
difficult to make effective optimal deployment decisions. This study addresses this issue.

In this paper, a mathematical model applicable to the optimization of the enterprise’s
off-site industrial production scheduling is first established. Secondly, because of the miss-
ing parameters of the model in practical application, an electricity price prediction model
and a distributed PV levelized kWh cost model are established, in which the electricity
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price prediction model employs an LSTM neural network. Finally, the particle swarm
optimization algorithm is used to solve the model.

To verify the relevance and effectiveness of the model in solving the problem of off-
site production scheduling on the demand side of electricity, two off-site pharmaceutical
factories were researched. These are located in Kunming, Yunnan Province, China, and
Binzhou, Shandong Province, China, and belong to the same large-scale pharmaceutical
enterprise. The research was conducted via field visits and telephone interviews, through
which we obtained the relevant research data. Finally, the research data’s results, based
on the model solution, show that the enterprise off-site industrial production scheduling
optimization model can effectively reduce an enterprise’s electricity costs.

This research makes two main contributions: (1) the construction of a new master–
slave game relationship, with industrial and commercial users as leaders and distributed
PV investment companies as followers; and (2) the construction of an optimal scheduling
model that can reduce the cost of off-site electricity consumption of enterprises. The
above two points will provide ideas for the future promotion of industrial and commercial
distributed PV construction in China.

The next part of this paper will describe the research in detail. Section 2 introduces the
industrial production optimization scheduling model, Section 3 introduces the electricity
price prediction model, and Section 4 introduces the distributed photovoltaic kWh cost
model. Section 5 presents the actual operation simulation of the setup example system to
verify the validity of the proposed model in this paper.

2. Industrial Production Optimization Scheduling Model

Aiming at the problem of the high cost of electricity consumption of off-site factories
belonging to the same enterprise, this study proposes an optimization model of off-site
industrial production scheduling for the enterprise. The model can make good use of
different PV resources, different electricity prices, and other conditions to reduce the total
cost of electricity for enterprises’ off-site factories, and increase the contracting rate of
distributed PV investment.

2.1. Tripartite Electricity Trading Model

A three-party power trading model is first developed for a single-site factory; this is
proposed on the basis of the traditional distributed PV contract energy management model
(EMC). This distributed PV operation model consists of a factory providing a roof for free
and a third party investing in the construction of a PV power plant; the third party is the
asset owner but also needs to share the revenue with the factory. The third party, i.e., the
distributed PV investor, signs an agreement with the factory that, under the premise of
guaranteeing a return on the distributed PV investment, the factory purchases the agreed
power from the distributed PV investor at an agreed tariff on a daily basis as the basic time
unit. Essentially, the factory is the leader and the distributed PV investor is the follower,
and the two constitute a master–slave game relationship [19].

The advantage of this operation model is that usually the customer-side tariff is
significantly higher than the residual feed-in tariff, the distributed PV investor can sell
electricity to the factory for higher profit, and the factory can save electricity costs by using
the investor’s PV power generation. This mode of operation increases the willingness
of factories to provide distributed PV installation sites compared to the traditional EMC
mode, as the factories will be more flexible in the way they use electricity under this mode
of operation.

As shown in Figure 1, the plant can purchase agreed power from the distributed
photovoltaic company at an agreed tariff and can purchase power from the power day-
ahead trading market, and the distributed photovoltaic company’s remaining power is fed
into the grid at the coal-fired benchmark price.
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2.2. Enterprise Off-Site Industrial Production Optimization Scheduling Model

For the case of joint production of multiple factories in different places, the above
model is no longer applicable, so this study proposes an enterprise off-site industrial pro-
duction optimization scheduling model (see Figure 2). The daily production schedules of
the off-site factories distributed in each province of China are decided by the enterprise
headquarters, i.e., the enterprise headquarters run the off-site industrial production op-
timization scheduling model to derive the daily electricity consumption and the agreed
amount of electricity of the factories in each place. Finally, the factories in each province
purchase the difference between the daily power consumption and the agreed power,
i.e., the daily power purchased from the grid, from the provincial power trading center.
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A mathematical model is developed with respect to the model structure in Figure 2,
where the objective of optimal scheduling is to minimize the total cost of electricity (i.e., the
cost of electricity to the enterprise) for all factories in the off-site location while producing
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the same number of products, and the objective function of the model is thus listed. (See
Appendix A for a description of the relevant symbols.)

min f = ∑n
i Wai (1)

The daily power consumption of each plant can be expressed by the following equation.
The daily source of electrical energy for the plant consists of two parts: the first part is grid
power and the second part is distributed PV power. Therefore, Equation (2) can be written
as follows

Wai = Pci × Ebi + Pai × Eci (2)

The constraints of the model are discussed next. The first is that the total number of
goods produced by all factories needs to satisfy the total number of goods in the production
plan. Second, due to the limited capacity of each factory, there is an upper limit on the
number of commodities it can produce per day. Finally, the deployment of commodity
production directly affects the agreed electricity quantity, which in turn affects the revenue
of the distributed PV company. Therefore, the production deployment needs to ensure the
return on investment of the distributed PV company.

It is assumed that the industrial assembly line of each factory is almost the same, so
in the case of producing the same kind of commodities, the electricity required per unit
quantity of commodities can be regarded as being the same. Therefore, the production
deployment of the commodity can be expressed indirectly using the power consumption
of the factory.

In summary, the following constraints can be listed

s.t.


∑n

i Eai = Ea

Eai ≤ W0i

Wbi ≥ Wci

(3)

Wbi = Pci × Ebi + Pbi × Edi (4)

Wci = Wc0i × Eei (5)

2.3. Particle Swarm Optimization Algorithm Solution

In summary, the optimization model to be solved is a quadratic programming model,
and this study uses a particle swarm modern optimization algorithm for solving. The
structure of the particle swarm optimization algorithm is shown in Figure 3.
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The algorithm simulates the collaboration and information sharing between individu-
als in a population by continuously adjusting the direction of movement of the individuals
in the expectation of finding an optimal solution to the problem. At the beginning of the
algorithm, particles are randomly distributed in the search space according to some initial-
ization strategy. Then, each particle updates its velocity and position based on its current
position and velocity as well as the information of other particles in the neighborhood. This
updating process includes two important parts: individual experience and social experi-
ence. Individual experience is the ability of a particle to adjust its velocity and position
based on the optimal solutions it has found in its history. Social experience is the particle’s
ability to adjust its speed and position by observing the optimal solutions of other particles
in its neighborhood. These two types of experience allow particles to retain both individual
optimal solutions in the search space and to search globally through group collaboration.
In each iteration, the particle evaluates the current solution based on the updated velocity
and position and compares it to the optimal solutions found historically. If a better solution
is found, the historical optimal solution is updated. The algorithm proceeds iteratively
until a stopping condition is met, such as reaching the maximum number of iterations or
finding a solution that satisfies the accuracy requirement.

The particle swarm optimization algorithm has better global search ability and con-
vergence speed, and has been proved by the related literature [20–26] to be suitable
for solving various types of optimization problems such as continuous, discrete, and
multimodal problems.

In the actual production operation, the enterprise headquarters in the implementation
of the production plan the day before the comprehensive consideration of the constraints
(plant capacity, distributed PV power generation, production plan, etc.), the particle swarm
optimization algorithm is run to solve the optimization model and the results will be
fed back to the factories around the factories, factories around the respective provinces
of the power trading centers, and distributed PV investors reported to purchase power.
As most of the provinces in China’s power market adopt the day-ahead trading method,
this trading method requires the power generator to report the power and tariff the day
before the power consumption, while the power purchaser only reports the power, i.e., the
purchaser is unable to determine the day-ahead trading tariff. Therefore, it is difficult for the
enterprise headquarters to determine the next day’s electricity trading price and distributed
PV levelized cost of electricity, resulting in a lack of parameters for this optimization model
to be solved efficiently. The electricity price prediction model and distributed PV levelized
cost of electricity model will be discussed in Sections 3 and 4. The electricity price prediction
model is used to calculate the Pci, and the distributed PV levelized cost of electricity model
is used to calculate the Wci based on the equations in Section 2.2.

3. Electricity Price Prediction Model Based on an LSTM Neural Network

At present, China’s electricity market is far less free for market transactions than the
electricity markets in the United States, the United Kingdom, and other Western countries
due to the constraints of the planned economy. Only a few provinces under the jurisdiction
of the State Grid Corporation (SGC) and the Southern Power Grid Corporation (SPGC) have
piloted the spot market, and most provinces have adopted the medium- and long-term
trading system, supplemented by the day-ahead trading market [27–30]. Compared with
the spot market, the trading price in the day-ahead trading market is more stable, which
is more in line with the power trading mode required by the optimal scheduling model
of industrial production described in this paper. Therefore, the model established in this
paper is an electricity price prediction model in the context of the day-ahead trading mode
of the electricity market.

Second, in such a trading context, two factories located in different provinces need to
report their grid power purchases one day before the transaction. According to the formula
in Section 2.2, since the plant’s daily electricity consumption is a fixed value, the amount of
power purchased from the grid is determined by the agreed amount of power. The trading
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price in the electricity market on the day of the transaction will directly affect the agreed
amount of electricity reported by the plant to the distributed PV company. Therefore, an
accurate prediction of the trading price in the power market is crucial for off-site industrial
production scheduling.

The forecasting of trading prices in electricity markets is essentially a one-dimensional
time series forecasting problem [31–33]. There are many methods used to solve the time
series forecasting problem, including the traditional Autoregressive Integrated Moving
Average (ARIMA) model and the Seasonal and Trend Decomposition (STL) model, but these
traditional time series forecasting models are only suitable for smooth seasonal and linear
forecasting tasks. For more stochastic and volatile power market price forecasting tasks,
the traditional time forecasting models are not able to perform well, and the use of neural
networks in machine learning is required. Currently, the neural networks applicable to time
series prediction problems are Recurrent Neural Network (RNN), Long Short-Term Memory
Network (LSTM), Gated Recurrent Unit (GRU), and Transformer and Convolutional Neural
Network (CNN) [34,35]. However, the relevant literature [36] illustrates that Transformer
and CNN perform poorly in solving time series prediction problems with a small sample
size. Further, since the current electricity day-ahead trading market in most provinces of
China has been established for too short a period of time, mostly within three years, the
sample size of data in respect of the electricity price is too small. Such a data situation will
cause the Transformer model and CNN, which need large-scale data support, to perform
poorly in the time series prediction problem described in this paper, so this study adopts
an improved LSTM neural network structure based on RNN [37–39].

The LSTM neural network’s structure is shown in Figure 4; it is different from the tra-
ditional LSTM neural network in that the neural network employs the ReLU function. This
helps to alleviate the problem of gradient vanishing during information transfer for long
sequences, and reduces the redundancy of parameters, improves the generalization ability
of the model, and helps the neural network to learn more complex feature representations.
In the actual model training, a sequence input layer with a dimension of 40 was set up,
followed by an LSTM layer with 20 hidden units, and finally a fully connected layer and a
regression output layer.
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4. Distributed Photovoltaic kWh Cost Model

To evaluate and predict the economic operation of distributed photovoltaic (PV) power
generation projects, we used the Net Present Value (NPV) method to calculate the average
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unit cost of power generation over the entire project cycle [40]. The formula is as follows
(See Appendix B for a description of the relevant symbols.)

PPV =
CPV
GPV

(6)

4.1. Total Cost of the Distributed PV Project

Specifically, the following formula was used to calculate the discounted cost of dis-
tributed PV projects

Cpv = C0 + ∑n
i=0

(OPEX + I)× C0 + Cn

(1 + r)n (7)

The relevant parameter settings for the formula are shown in Appendix C.

4.2. Total Power Generation over the Project Cycle

Meteorological conditions are critical to distributed PV power generation. Factors
such as light duration and temperature will directly affect the power generation efficiency
of PV panels. In this study, we utilized the built-in metenorm meteorological database in the
PVsyst 7.4.0 software to set up the meteorological sites of the pharmaceutical factory as a
reference for meteorological data.

The module mounting type has an important impact on the annual power generation
of a PV, and in this paper we will use the module mounting type with seasonally adjustable
orientation, and a preset tilt angle of 20 degrees in summer and 50 degrees in winter. The
PV array characteristics include, PV modules, inverter selection, operating conditions
(temperature), module area, and other major factors that determine the efficiency of the PV
array in the array construction planning stage, which has been taken into account in the
initial investment costs. This paper will be common in the market 300 Wp photovoltaic
modules, and a 30 kWac inverter was used as a preset condition.

In this paper, in respect of predicting the total life cycle power generation, the losses
are discussed in several parts such as heat loss, line loss, module quality LID mismatch
loss, fouling loss, and IAM loss with aging. Heat loss concerns the field heat loss coefficient,
the preset stand type is open, and annual heat loss reaches 3.00%. Line losses for DC loop
arrays are defaulted to 1.5%. Total module power loss is preset to 2.8%. LID deterioration
due to light irradiation is preset to 2%, and voltage mismatch loss is 0.15%. The annual
fouling loss factor is preset to 3%. Among them, the total annual attenuation coefficient of
individual PV modules is 3.8%, and the efficiency decrement is carried out year by year
through Monte Carlo calculations. The above data are set according to the recognized
simulation values of distributed PV industry given by PVsyst software.

The GPV was obtained by summing the annual total power generation forecasts of
25 years output year by year through PVsyst software, respectively.

5. Case Analysis

To validate the off-site industrial production optimization scheduling model estab-
lished in this study, as well as the corresponding sub-models and algorithms, we conducted
fieldwork and research on two factories located in Kunming, Yunnan Province, China, and
Binzhou, Shandong Province, China, and obtained relevant data. The Kunming factory
in Yunnan Province and the Binzhou factory in Shandong Province mainly produce I.V.
preparations, which are produced via automated assembly lines operating 24 h a day.
The two factories belong to the same group of companies, whose parent company is a
leading pharmaceutical company in China. The electricity consumption of the two pharma-
ceutical factories is not affected by seasons, climate, and other objective factors, and the
electricity consumption is determined only by the production plan. From the perspective
of policies of the two provinces, the power trading policies and distributed PV policies
of the two provinces are basically the same. From the perspective of PV resources, the
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two provinces have excellent light conditions and are currently popular provinces for PV
investment in China. Combining the above conditions, the computational example is an
ideal arithmetical example for the model in this paper.

5.1. Description of the Case System

To reflect the optimal scheduling characteristics of this paper’s model for heteroge-
neous industrial production, we retrieved the electricity consumption data of the phar-
maceutical factories in the two locations for the whole year of 2023 (see Figure 5). The
electricity consumption of the pharmaceutical factories in the two locations was summed
up to obtain the total electricity consumption data. The optimal scheduling model for
heterogeneous industrial production reallocated the total electricity consumption in 2023,
which laterally reflected the allocation of the production plan. Therefore, the time horizon
of this algorithmic system was 365 days in 2023, and the geographic scope was Kunming,
Yunnan, China, and Binzhou, Shandong, China. The related geographic information is
shown in Table 1.
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Table 1. Related geographic information.

Location Longitude and Latitude Altitude

Kunming, Yunnan 25.0◦ N, 102.9◦ E 1891 m
Binzhou, Shandong 37.3◦ N, 118.1◦ E 11 m

This study researched the energy and electricity tariff policies of Yunnan and Shandong
provinces and obtained information on the parameters of the relevant examples. Among
them, the distributed PV residual power feed-in price is set according to the local province’s
coal-fired benchmark price according to the relevant policy; the industrial electricity price
consists of the feed-in tariff, feed-in link line-loss cost, transmission and distribution tariff,
system operation cost, governmental funds and surcharges, etc., according to the relevant
policy; the agreed tariff is determined according to the average of the local industrial
electricity price; and the daily power generation of distributed PV is simulated by the PVsyst
software for the first year that electricity generation is derived. The overall parameter
settings are shown in Table 2.
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Table 2. Overall parameter settings.

Location Residual Power Feed-In
Price (RMB/kWh)

Agreed Tariff
(RMB/kWh)

Kunming, Yunnan 0.3358 0.48
Binzhou, Shandong 0.3949 0.56

5.2. Description of the Results of the Sub-Model Operations
5.2.1. Distributed Photovoltaic Power Generation

PVsyst software was used to simulate the distributed PV projects. The distributed PV
projects in the two locations use roof-mounted, fixed arrays and seasonal tilting systems,
which are installed on the largest scale under the premise of ensuring that the PV modules
are not shaded. The roof area of Kunming, Yunnan Province, is 20,868 square meters, with
an installed PV capacity of 3848 kW, while the roof area of Binzhou, Shandong Province, is
21,520 square meters, with an installed PV capacity of 3967 kW. The total project cycle is
25 years, and the annual power generation is shown in Figure 6. The first year’s electricity
generation is shown in Figure 7.
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5.2.2. Distributed Photovoltaic Power Generation Costs

According to Equation (7) in Section 4.1, the total cost of distributed PV power gen-
eration in the two locations was obtained by substituting the research data, as shown in
Table 3.

Table 3. Total cost of distributed PV power generation.

Kunming, Yunnan Binzhou, Shandong

Year Cost (RMB 10,000) Year Cost (RMB 10,000)

1 1522.72 1 1568.62
2 1599.73 2 1647.96
3 1670.72 3 1721.08
4 1736.14 4 1788.48
5 1796.44 5 1850.59
6 1852.01 6 1907.84
7 1903.23 7 1960.60
8 1950.44 8 2009.23
9 1993.95 9 2054.05
10 2034.05 10 2095.36
11 2071.01 11 2133.44
12 2105.07 12 2168.53
13 2136.46 13 2200.87
14 2165.40 14 2230.68
15 2192.07 15 2258.15
16 2216.65 16 2283.47
17 2239.30 17 2306.81
18 2260.18 18 2328.32
19 2279.42 19 2348.14
20 2297.16 20 2366.41
21 2313.51 21 2383.25
22 2328.57 22 2398.77
23 2342.46 23 2413.07
24 2355.26 24 2426.26
25 2367.05 25 2438.41

Combined with the total power generation of the 25-year project cycle simulated using
PVsyst software in Section 5.2.1, the unit power generation cost was obtained by dividing
the cost of the 25th year in Table 3 by the total power generation. The final calculation
results were 0.1741 RMB/kWh for Kunming in Yunnan Province and 0.1996 RMB/kWh for
Binzhou in Shandong Province.

5.2.3. Results of Tariff Forecasts

Electricity price data for the two provinces in 2023 were used separately to train neural
networks applicable to electricity trading in the provinces. A total of 70% of the data was
selected as the training set, and the remaining 30% of the data was used as the test set.
The model training was undertaken using CPU (AMD Ryzen 7-5800H 4.4 GHz), GPU
(NVIDIA GeForce RTX 3060 6 GB), RAM memory (16 GB), Windows Operating System,
and the MATLAB R2023b software environment. The maximum number of training
iterations was set to 4800, and the total number of learnable parameters reached 4900. It
took 51 s to complete the model training for Yunnan Province, and 36 s to complete the
model training for Shandong Province. The final standardized root-mean-squared error
for Yunnan Province was about 0.06. The final standardized root-mean-squared error for
Yunnan Province was about 0.05.
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The training and test set prediction results for Yunnan Province are shown in Figure 8,
and the training and test set prediction results for Shandong Province are shown in Figure 9.
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In order to better show the prediction ability of the LSTM neural network, we itera-
tively predicted the electricity prices of Yunnan and Shandong provinces in the next 40 days.
The prediction results are shown in Figure 10.
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5.3. Results

Combining the research data in Section 5.1 and the sub-model solution data in Section 5.2,
the optimized electricity cost for the two pharmaceutical factories in 2023 was calculated
using the integrated optimization model. In particular, to better test the effectiveness of the
LSTM algorithm in predicting the electricity price, the predicted electricity price for the
last 40 days in Section 4.2 was substituted for the day-ahead market traded electricity price
for the last 40 days in 2023(see Figure 11). The solution was then performed. The software
runtime environment for the solution was MATLAB and the solver used was the particle
swarm optimization algorithm toolbox. The optimized electricity consumption and agreed
electricity of the pharmaceutical factory in Yunnan Province are shown in Figure 12, and
the optimized electricity consumption and agreed electricity of the pharmaceutical factory
in Shandong Province are shown in Figure 13. Figures 12 and 13 represent the allocation
of the electricity consumption plan for pharmaceutical plants in 2023 after optimization
by the scheduling model in this paper. Since the electricity price in Yunnan Province is
generally lower than that in Shandong Province, the optimized model may allocate more
production tasks to the pharmaceutical factory in Yunnan Province. From the theoretical
analysis, the optimized simulation structure meets the theoretical expectation.
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The electricity cost before and after optimization for the whole year in the two provinces
is shown in Figure 14. The electricity tariff before optimization was calculated according
to the full use of distributed PV power generation by the pharmaceutical plant, and the
pharmaceutical plant will only purchase power from the grid when the distributed PV
power generation is not enough to meet the power consumption of the pharmaceutical
plant. It is easy to see from Figure 14 that there is a significant decrease in the total electricity
cost after optimization compared with the pre-optimization period. The total electricity
cost before optimization is RMB 3,874,600, and the total electricity cost after optimization is
RMB 3,590,800, which represents a decrease of about 7.9%.
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6. Conclusions

In summary, the off-site industrial production scheduling optimization model for
enterprises established in this paper can reduce the total electricity cost of enterprises in
the example data by 7.9%. This indicates that this model can significantly reduce the cost
of off-site electricity consumption on the demand side of electricity.

This study has resulted in the following innovations:
(1) A new master–slave game relationship was proposed, with industrial and com-

mercial users as leaders and distributed PV companies as followers. (2) An enterprise
off-site industrial production optimization scheduling model was established, which can
significantly reduce the cost of electricity for enterprises. (3) The particle swarm opti-
mization algorithm and LSTM neural network were integrated into the large model with
excellent results.

Of course, the optimization model also has certain limitations:
(1) It simplifies the actual industrial production process and does not consider the

logistics scheduling cost between different locations. (2) The feed-in tariff for distributed PV
residual power is calculated according to the coal-fired benchmark price, and does not take
into account the pilot transaction of China’s green power market. (3) The environmental
protection benefits are not considered, and the carbon emission right trading benefits are
not calculated.

This model will provide theoretical support for the construction of integrated energy
systems in off-site industrial parks in the future, empowering the development of the
industry at the demand-side level of electricity.
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Appendix A

Appendix A shows the notation for the equations in Section 2.2.

Notation Explanation

Eai Daily electricity consumption of the ith plant
Ebi Daily agreed electricity of the ith plant
Eci Daily grid purchase of electricity for the ith plant
Edi Daily surplus electricity feed-in for the ith plant
Eei Distributed photovoltaic power generation per day
Pai Agreed tariffs
Pbi Feed-in tariff for surplus electricity
Pci Price of electricity for industrial use in the ith plant
Wai Daily cost of electricity consumed by the ith plant
Wbi Distributed PV daily revenue
Wci Minimum daily income from distributed PV with guaranteed ROI

Wc0i Minimum daily revenue per kWh for distributed PV with guaranteed ROI
W0i Maximum daily electricity consumption of the ith plant (maximum capacity)

Appendix B

Appendix B shows the notation for the equations in Section 4.

Notation Explanation

PPV Distributed PV kWh cost
CPV Total cost of the distributed PV project
GPV Total power generation over the project cycle
C0 Initial investment cost of the PV system

OPEX Annual operation and maintenance cost rate

I
Insurance premium rate (assumed to be a fixed percentage to simplify the
evaluation process)

Cn Representative of the annual interest expense due to the loan
r Discount rate
n Period of the investment

Appendix C

Appendix C shows the source of the data setting for this article.
r is the discount rate, which is taken to be 8.5% according to the provision of the

“Financial Benchmark Returns of Construction Projects” of the National Development and
Reform Commission of China.

Initial investment cost (C0) is the total cost to be paid at the beginning of the project,
the initial full investment in China’s commercial and industrial distributed PV systems
mainly consists of the purchase of PV modules, installation of electrical equipment, etc.
This cost is a one-time payment, which is not affected by time during the entire project
cycle, and therefore does not need to be discounted. The full investment cost of China’s
commercial and industrial distributed PV systems in 2022 is 3.74 RMB/W. The operation
and maintenance expense (OPEX) is taken to be 1% of the initial investment cost (C0), the
distributed PV long-term loan interest rate (Cn) is 6.5%, the insurance premium rate (I) is
taken to be 0.1% of the initial investment cost (C0), and the initial investment cost (C0) is
taken to be the base model of 20% of own funds and 80% of the bank loan. All of the above
data sources can be found at this website: https://www.in-en.com/.

The relevant data in Table 2 are from the National Development and Reform Commis-
sion of China.

https://www.in-en.com/
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