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Abstract: Recent increases in gas-fired power generation have engendered increased interdependen-
cies between natural gas and power transmission systems. These interdependencies have amplified
existing vulnerabilities in gas and power grids, where disruptions can require the curtailment of load
in one or both systems. Although typically operated independently, coordination of these systems
during severe disruptions can allow for targeted delivery to lifeline services, including gas delivery
for residential heating and power delivery for critical facilities. To address the challenge of estimating
maximum joint network capacities under such disruptions, we consider the task of determining
feasible steady-state operating points for severely damaged systems while ensuring the maximal
delivery of gas and power loads simultaneously, represented mathematically as the nonconvex joint
Maximal Load Delivery (MLD) problem. To increase its tractability, we present a mixed-integer
convex relaxation of the MLD problem. Then, to demonstrate the relaxation’s effectiveness in deter-
mining bounds on network capacities, exact and relaxed MLD formulations are compared across
various multi-contingency scenarios on nine joint networks ranging in size from 25 to 1191 nodes.
The relaxation-based methodology is observed to accurately and efficiently estimate the impacts of
severe joint network disruptions, often converging to the relaxed MLD problem’s globally optimal
solution within ten seconds.

Keywords: contingency; gas; network; optimization; power; restoration

1. Introduction

Between 2022 and 2050, global electric power generation capacity is projected to
increase from 28.2 million gigawatt hours (GWh) to 42.3 million GWh. Of this, natural
gas-fired generation is projected to increase from 6.7 to 8.3 million GWh [1]. These projec-
tions suggest the continued sensitivity of power systems to upstream disruptions in gas
pipelines. At a high level, Figure 1 illustrates the gas-fired generation interdependencies
that link natural gas pipelines and power transmission networks. Additionally, Figure 2
illustrates interstate and intrastate natural gas pipelines in the contiguous United States [2],
exemplifying the reach of these pipelines and their potential grid interdependencies.

One notable example of this interdependency is the February 2021 Texas power crisis,
where the Electric Reliability Council of Texas suffered a loss of nearly 52.3 GW (48.6%) of its
generation capacity. Around half of this loss was associated with a lack of gas-fired power
generation [3]. Other examples include the 2014 polar vortex, where curtailments in gas
delivery resulted in nearly 25% of generation outages throughout the Pennsylvania-New
Jersey-Maryland Interconnection [4]. Disruptions in the gas grid can additionally inhibit
the transport of fuel required for residential heating. This highlights an important tradeoff
between gas delivery and power delivery during network disruptions. Understanding
these interdependencies is critical for the resilience of gas and power delivery systems.
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Figure 1. Illustration of a highly simplified natural gas pipeline network, power transmission network,
and a gas-fired generation interdependency that links the two networks together.

Figure 2. Interstate and intrastate natural gas pipelines in the contiguous United States [2].

In Figure 3, we illustrate a simplified natural gas pipeline system and the potential
effects of disruptions on downstream consumers. Here, fuel from various sources on the
left is transported through the pipeline system to ultimately reach three types of consumers:
(i) a gas-fired generator, (ii) an industrial consumer, and (iii) a distribution system that
transports fuel for residential heating. Hypothetical disruptions appear in the form of
(i) a natural hazard that disrupts extraction from a natural gas well and (ii) a man-made
disruption on a pipeline that serves the industrial consumer. These disruptions nonlinearly
affect the delivery of fuel to gas-fired generators in the power system and residential
heating units.

The contingency response measures considered in this paper are illustrated in Figure 4.
Given a severe disruption, (i) gas and/or power load deliveries decrease as gas and/or
power network elements are impaired and effects begin to cascade, while existing linepack
in operational pipelines begins to deplete. By (ii), cascading effects have subsided, and
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a new stable operating point is realized. After (ii), load can gradually be restored via
operational methods until (iii) network repairs begin. These restorative actions are per-
formed until (iv) all gas and power loads can be delivered. Repairs continue until (v) all
gas and power network components are operational. This paper focuses on estimating
the transport capacity of a joint gas–power system between events of types (ii) and (iv),
i.e., maximizing gas and power load delivery in the surviving gas–power system. In
this paper, this task is formalized as the steady-state joint Maximal Load Delivery (MLD)
problem. The problem is informally stated as follows: Given severely damaged gas and
power networks, in which multiple components have become nonoperational, maximize
the amounts of prioritized gas and active power loads that can be served simultaneously
in the damaged joint network, subject to steady-state natural gas and alternating current
(AC) power network physics. The nonconvex physics and discrete nature of operations in
the joint network (e.g., the opening and closing of valves in the gas network) render this
a challenging mixed-integer nonlinear program (MINLP). For the purpose of providing
real-time situational awareness during disruptive events, this MINLP is unsuitable due
to its intractability. Thus, to increase analytical tractability, we develop a mixed-integer
convex programming (MICP) relaxation of the MLD. The MICP is found to be an effective
means for bounding maximum total deliverable gas and power loads.

Figure 3. Illustration of a hypothetical simplified natural gas pipeline system experiencing a natural
hazard and man-made disruption, both of which ultimately inhibit the delivery of fuel to consumers.

This paper expands upon existing MLD methods for independent gas [5] and power
networks [6], as well as approaches from joint network modeling [7], to formulate and
solve the gas–power MLD problem. The contributions of this work are as follows:

• The first formulation of the joint gas–power MLD problem;
• An efficient and accurate MICP relaxation of the MLD problem;
• Proof-of-concept analyses of MLD gas–power tradeoffs.

The remainder of this paper proceeds as follows. Section 2 reviews gas, power, and
joint steady-state optimization models that appear in the literature and then formulates the
requirements for AC power and gas pipeline operational feasibility as an MINLP; Section 3
formulates the MLD problem as an MINLP and then proposes an MICP relaxation; Section 4
benchmarks the MINLP and MICP formulations across multiple joint gas–power networks
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of various sizes and then provides proofs of concept for joint multi-contingency analysis
using the MLD method; and Section 5 concludes this paper.

(i) (ii) (iii) (iv) (v)
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Figure 4. Illustration of gas and power network responses to a hypothetical disruption. The shaded
region comprises points in the disruption and restoration timeline that are studied in this paper using
an optimization-based assessment of damaged network capacities.

2. Background for Network Modeling

The past decade has seen remarkable theoretical and algorithmic advances in the
independent fields of power and natural gas network optimization. A survey of relaxations
and approximations used in power system optimization was presented in [8]. The study
of power most related to this paper can be found in [6], where the AC MLD problem
was introduced and various relaxations were proposed to increase its tractability. The
MLD problem was also used in [9], where it was applied within a bilevel optimization
for balancing wildfire risk and power outages. Finally, an implementation of the power
MLD problem was given in [10], in which software was provided via the POWERMODEL-
SRESTORATION package.

As with power, the growing utilization of gas networks has led to a variety of opti-
mization studies. A summary of works related to the optimization-based assessment of
gas network capacities was provided in [11]. Steady-state models and approximations of
gas network components amenable to optimization applications were provided in [12]. A
growing body of literature has been motivated by proposed projects to blend hydrogen
produced by excess renewables into existing pipelines. Simulation and optimization mod-
eling studies [13–15], as well as reviews of technical and regulatory challenges [16,17], have
investigated the feasibility of such projects. However, the study of gas most related to
this paper can be found in [5], in which the steady-state gas MLD problem and an MICP
relaxation were developed.

An even more recent body of literature has examined the optimal coordination of gas
and power infrastructures. A review of joint gas and power planning was given in [18].
Other studies have focused on market coordination and energy pricing problems [19,20].
Many studies have assumed the networks to be fully coordinated, examining the optimal
scheduling of generator dispatching and gas compressor operations [21]. Recent studies
have expanded upon these earlier joint “optimal gas–power flow” problems, developing
specialized formulations and algorithms for related applications [22–24].
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Compared to prior studies like Jiang et al. [23], our work differs in a few impor-
tant aspects. For example, Jiang et al. [23] focused on a single-objective problem that
minimizes the economic cost of operating the joint system, whereas we devise a multi-
objective problem that maximizes the simultaneous delivery of gas and power. Furthermore,
Jiang et al. [23] posed a time-discretized scheduling problem and developed a specialized
algorithm, whereas we consider a single-period problem and develop new convex relax-
ations to render it more tractable. Lastly, Jiang et al. [23] assessed their methods on one
small joint network, whereas we design nine joint networks of various sizes to evaluate
our methods.

Most importantly, the applications of studies like Jiang et al. [23] and our work are
fundamentally different. The goal of Jiang et al. [23] was the economic scheduling of a joint
system under nominal conditions, but our work aims to estimate joint network capacities
under severe disruptions. The latter requires modeling considerations that are different
from those of the former, such as the use of additional continuous and discrete variables
to ensure feasibility with respect to physical constraints, as well as multiple objectives to
model the tradeoff between maximizing natural gas delivery and power delivery.

A smaller number of studies have considered joint problems related to restoration, e.g.,
the scheduling of general large-scale interdependent infrastructures in [25]. The remaining
subsections build upon previous studies to define the requirements for modeling the
steady-state operations of a damaged joint gas–power network.

2.1. Power Transmission Network Modeling
2.1.1. Notations for Sets

A power network is represented by an arbitrarily directed graph (N , E ∪ ER), where
N is the set of buses, E is the set of forward-directed branches (or lines), and ER is the set of
branches in their reverse orientation. The sets of generators (producers), loads (consumers),
and shunts are denoted by G, L, and H, respectively, which are attached to existing buses
i ∈ N . The subsets of these components attached to i ∈ N are denoted by Gi, Li, and Hi.
Next, we define the decision variables and constraints required to model a damaged AC
power network’s steady-state operations.

2.1.2. Power Network Modeling Requirements

The MINLP formulation for AC power network feasibility, as defined for AC MLD
analysis, is presented in Constraints (1a)–(1i) and detailed in [6]. Here, Constraints (1a)
and (1b) model Ohm’s law for lines, where Sij ∈ C denotes the variable power along each
line; Yij ∈ C and Yc

ij ∈ C are constants denoting the line admittance and line charging;
Vi ∈ C denotes the variable voltage at bus i ∈ N ; and Tij ∈ C denotes constant transformer
properties. Constraint (1c) models power balance from Kirchhoff’s current law for each bus,
where Sg

k ∈ C denotes the variable power supplied by generator k ∈ G; Sd
k ∈ C denotes the

maximum power that can be delivered at load k ∈ L; and Ys
k denotes the admittance of bus

shunt k ∈ H. Note that zd
k , k ∈ L allows each load to vary between zero and its predefined

maximum, and zs
k allows for continuous shedding of fixed bus shunts from the network.

These modeling modifications ensure that power balance constraints will be satisfied in
damaged power networks.
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Sij =
(

Yij + Yc
ij

)∗ |Vi|2
|Tij|2

− Y∗
ij

ViV∗
j

Tij
, ∀(i, j) ∈ E (1a)

Sji =
(

Yij + Yc
ji

)∗
|Vj|2 − Y∗

ij
V∗

i Vj

T∗
ij

, ∀(i, j) ∈ E (1b)

∑
k∈Gi

Sg
k − ∑

k∈Li

zd
k Sd

k − ∑
k∈Hi

zs
kYs

k |Vi|2 = ∑
(i,j)∈Ei∪ER

i

Sij, ∀i ∈ N (1c)

|Sij| ≤ Sij, Sij ∈ C, ∀(i, j) ∈ E ∪ ER (1d)
θ∆

ij ≤ ∠
(

ViV∗
j

)
≤ θ

∆
ij , ∀(i, j) ∈ E (1e)

zv
i Vi ≤ |Vi| ≤ zv

i Vi, Vi ∈ C, ∀i ∈ N (1f)
zg

i Sg
i ≤ Sg

i ≤ zg
i Sg

i , Sg
i ∈ C, ∀i ∈ G (1g)

zv
i ∈ {0, 1}, ∀i ∈ N , zg

i ∈ {0, 1}, ∀i ∈ G (1h)
zd

i ∈ [0, 1], ∀i ∈ L, zs
i ∈ [0, 1], ∀i ∈ H. (1i)

Constraints (1d)–(1i) impose engineering limits. Constraint (1d) bounds the apparent
power flow on each line, representing thermal limits. Constraint (1e) ensures that each

voltage phase angle difference is limited by predefined lower and upper bounds, θ∆
ij and θ

∆
ij ,

respectively. Constraint (1f) bounds the voltage magnitude at each bus, where Vi and Vi
denote lower and upper bounds, respectively. Here, zv

i ∈ {0, 1} is a variable allowing each
bus to become de-energized when isolated from load or generation. Similarly, Constraint
(1g) bounds the power generation, where Sg

i and Sg
i denote lower and upper bounds,

respectively, and zg
i ∈ {0, 1} allows for each generator to become uncommitted when

required to satisfy Constraints (1a) and (1b).
Much of the justification for this model is provided in [6]. As in that study, in our work,

we estimate the maximum amount of deliverable load after a damage scenario has occurred.
Because we are interested only in the longer-horizon steady-state transport capacity, we
forgo modeling transient dynamics that may occur immediately after event (i) in Figure 4.
Additionally, to limit the scope of this study, we forgo time-discretized dynamic restoration
or economic scheduling of the damaged system. Nonetheless, the presented model could
serve as a valuable building block for future multiperiod restoration problems.

2.2. Natural Gas Transmission Network Modeling
2.2.1. Notations for Sets

A gas pipeline network is modeled using a directed graph (J ,A), where J is the set
of nodes (i.e., junctions) and A is the set of components that connect two nodes. The sets
of receipts (producers) and deliveries (consumers) are denoted by R and D, respectively.
These components are considered to be attached to junctions i ∈ J . The subset of receipts
attached to i ∈ J is denoted by Ri, and the subset of deliveries is denoted by Di. The
sets of horizontal and short pipes are denoted by P ⊂ A and S ⊂ A, respectively; the
set of resistors is denoted by T ⊂ A; the sets of valves and pressure-reducing regulators
are denoted by V ⊂ A and W ⊂ A, respectively; and the set of compressors is denoted
by C ⊂ A. Additionally, the set of node-connecting components incident to i ∈ J , where
i is the tail (respectively, head) of the arc, is denoted by δ+i := {(i, j) ∈ A} (respectively,
δ−i := {(j, i) ∈ A}). Next, we define the decision variables and constraints required to model
the engineering limits and physics of a damaged gas network’s steady-state operations.

2.2.2. Gas Network Modeling Requirements

The MINLP formulation for gas network feasibility, as defined for MLD analysis, is
presented in Constraints (2a)–(2v) and detailed in [5]. Constraint (2a) models nodal physics,
i.e., mass conservation at junctions i ∈ J . Here, fij ∈ R denotes the variable mass flow
along each node-connecting component, sk ∈ R+ denotes the variable supply at receipt
k ∈ R, and dk ∈ R+ denotes the variable demand at delivery k ∈ D.
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Constraints (2b)–(2u) model the physics of the node-connecting components.
Constraint (2b) models the pressure–flow relationship for steady-state flow in a gas pipeline
for each horizontal pipe, (i, j) ∈ P . Here, pi ∈ R+ denotes the variable pressure at junction
i ∈ J , and wij ∈ R+ denotes the constant mass flow resistance of the pipe. This constraint is
the most frequent source of nonconvex nonlinearity in modeling the gas pipeline network.

Constraint (2c) models short pipes in the network, which provide resistanceless mass
transport between two junctions. Constraint (2d) models resistors in the network, which
act as surrogate components capable of modeling pressure losses elsewhere from pipes.
Here, pressure loss is modeled according to the Darcy–Weisbach equation, where τij ∈ R+

is the resistance, which is a function of the resistor’s drag factor and (possibly artificial)
diameter. Like Constraint (2b), this constraint is nonconvex nonlinear.

Constraints (2e)–(2g) model controllable valves in the network. Here, the operating
status of each valve, (i, j) ∈ V , is modeled using a discrete variable, zij ∈ {0, 1}, where
zij = 1 indicates an open valve and zij = 0 indicates a closed valve. Constraint (2e) prohibits
flow across each valve when zij = 0. Constraints (2f) and (2g) ensure that when a valve is
open, the pressures at connecting junctions are equal. These constraints also disjunctively
model the decoupling of junction pressures when the valve is closed.

∑
(i,j)∈δ+i

fij − ∑
(j,i)∈δ−i

f ji = ∑
k∈Ri

sk − ∑
k∈Di

dk, ∀i ∈ J (2a)

p2
i − p2

j = wij fij| fij|, ∀(i, j) ∈ P (2b)
pi − pj = 0, ∀(i, j) ∈ S (2c)
pi − pj = τij fij| fij|, ∀(i, j) ∈ T (2d)
f

ij
zij ≤ fij ≤ f ijzij, zij ∈ {0, 1}, ∀(i, j) ∈ V (2e)

pi ≤ pj + (1 − zij)pi, ∀(i, j) ∈ V (2f)
pj ≤ pi + (1 − zij)pj, ∀(i, j) ∈ V (2g)
f

ij
zij ≤ fij ≤ f ijzij, zij ∈ {0, 1}, ∀(i, j) ∈ W (2h)

fij(pi − pj) ≥ 0, ∀(i, j) ∈ W (2i)
αij pi ≤ pj + (1 − zij)αij pi, ∀(i, j) ∈ W (2j)
pj ≤ αij pi + (1 − zij)pj, ∀(i, j) ∈ W (2k)
αij pi ≤ pj ≤ αij pi, ∀(i, j) ∈ C : f

ij
≥ 0 (2l)

αij pi ≤ pj ≤ αij pi, ∀(i, j) ∈ C : f
ij
< 0 ∧ αij = 1 (2m)

fij(pi − pj) ≤ 0, ∀(i, j) ∈ C : f
ij
< 0 ∧ αij = 1 (2n)

yij ∈ {0, 1}, ∀(i, j) ∈ C : f
ij
< 0 ∧ αij ̸= 1 (2o)

pj ≤ αij pi + (1 − yij)pj, ∀(i, j) ∈ C : f
ij
< 0 ∧ αij ̸= 1 (2p)

αij pi ≤ pj + (1 − yij)pi, ∀(i, j) ∈ C : f
ij
< 0 ∧ αij ̸= 1 (2q)

pi − pj ≤ yij pi, ∀(i, j) ∈ C : f
ij
< 0 ∧ αij ̸= 1 (2r)

pj − pi ≤ yij pj, ∀(i, j) ∈ C : f
ij
< 0 ∧ αij ̸= 1 (2s)

f
ij
≤ fij ≤ f ij, ∀(i, j) ∈ A (2t)

0 ≤ p
i
≤ pi ≤ pi, ∀i ∈ N (2u)

0 ≤ sk ≤ sk, ∀k ∈ R, 0 ≤ dk ≤ dk, ∀k ∈ D. (2v)

Constraints (2h)–(2k) model regulators (i.e., pressure-reducing valves) in the net-
work. Similar to valves, the status of each regulator is modeled using a discrete variable,
zij ∈ {0, 1}, where zij = 1 and zij = 0 indicate active and inactive statuses, respectively.
Constraint (2h) prohibits mass flow across each regulator when zij = 0. Constraint (2i)
ensures that mass flow across each regulator is in the same direction as the loss in pressure.
Constraints (2j) and (2k) model the remaining pressure relationships. Here, each regulator
has a corresponding scaling factor, αij. This factor models the relationship between junction
pressures when the regulator is active, i.e., αij pi = pj. The factor is further limited by the
bounds αij = 0 ≤ αij ≤ αij = 1. Constraints (2j) and (2k) require that when a regulator is
active, pressures are defined according to the scaling relationship. Otherwise, the pressures
at the junctions connected by the regulator are decoupled from one another.
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Constraints (2l)–(2s) model compressors in the network. Each compressor (i, j) ∈ C
models an increase in pressure at junction j ∈ J by a variable scalar αij. Without loss of gen-
erality, bidirectional compression is not considered, although each compressor may allow
for uncompressed flow in the opposite direction. These different behaviors of compressors
are modeled by employing three different sets of constraints. The first is Constraint (2l)
for compressors that prohibit reverse flow, where αij and αij are minimum and maximum
pressure ratios. The second set includes Constraints (2m) and (2n) for compressors where
reverse flow is allowed and αij = 1. Note that here, if fij < 0, then pi = pj. Finally,
Constraints (2o)–(2s) model compressors where uncompressed reverse flow is allowed and
αij ̸= 1. In this case, the behavior of each compressor is disjunctive in its flow direction. To
model this disjunction, discrete variables yij ∈ {0, 1} are introduced in Constraint (2o) to
model the direction of flow through each compressor. Here, yij = 1 indicates that flow is
transported from i to j, and yij = 0 indicates flow from j to i. Constraints (2p)–(2s) model
the pressures and pressure differences between junctions per the specified flow direction
and compression ratio bounds.

The remaining Constraints (2t)–(2v) define variable bounds. Constraint (2t) specifies
mass flow bounds, Constraint (2u) specifies pressure bounds, and Constraint (2v) specifies
receipt and delivery bounds. Note that Constraint (2v) differs from the typical assumption
of fixed supply and demand. These modifications ensure mass conservation is satisfied in
damaged networks.

Finally, we remark that, unlike power systems where physical phenomena evolve
on time scales of seconds or less, it can require minutes to hours for the effects of a
disruption to propagate through a natural gas system. This suggests that a transient model
of gas flow is required to appropriately model maximum load delivery in natural gas
systems. However, we emphasize that the MLD described in this paper determines the
best-case, sustainable capacity of a damaged joint network, and, as is common in many
pipeline planning applications, is computable from steady injections and withdrawals [26].
Additional justification for this modeling choice, as well as a derivation of the steady-state
equations from transient partial differential equations, appears in Section 2.1 of [5].

Nonetheless, generalization to the transient regime would be useful for applications
requiring greater spatiotemporal accuracy. The modeling of transient flow through natural
gas pipelines is well established and has recently been considered in optimal control con-
texts [27,28]. Because transient models are computationally intensive even in a simulation
setting, reduced-order models have been developed [29] and applied within optimal control
contexts [30]. In [31], a framework for integrated gas and power uncertainty management
was introduced that stressed the importance of modeling transient intraday dynamics,
showing promise on a robust scheduling problem. Extending our methods to the transient
regime would likely require (i) reframing the MLD in a multiperiod setting, leveraging
these recent advances, and (ii) developing new convex reduced-order models of the gas
dynamics to ensure our methods scale to large networks. We leave these extensions to
future work.

2.3. Interdependency Modeling

As in [19,32], gas and power systems are interconnected via heat rate curve models
for gas-fired power generators, i.e.,

∑
i:(i,j)∈K

h1
i ℜ(S

g
i )

2 + h2
i ℜ(S

g
i ) + h3

i zg
i = dj, ∀j ∈ DG. (3)

Each constraint links the real power generated at possibly multiple generators with a single
gas delivery. Here, h1,2,3

i are coefficients of the heat rate curve for i ∈ G, and K is the set
of linkages between gas-fired generators in G and their corresponding gas delivery points
in DG ⊂ D. Furthermore, h1

i ≥ 0 for all (i, j) ∈ K, and thus the left-hand side is always a
convex function. However, note that Constraint (3) is nonlinear nonconvex when h1

i ̸= 0.
Finally, the presence of h3

i zg
i ensures that when zi = 0, the intercept of the heat rate curve,
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and thus both the generation and gas required for generation, will be zero when a generator
is uncommitted from the dispatch scenario.

A diagrammatic illustration of the joint network model is illustrated in Figure 5. Here,
gas and power systems are linked by the single interdependency K1, which relates the deliv-
ery D2 to the generator G1. Contributions to the gas and power delivery objectives, which
are later described in Section 3.1, are represented by green and red nodes, respectively.

Natural Gas System Electric Power System

J1

J2 J3

D2

N1 N2

N3 N4R1

D1 G1 G2

L1
L2

P2

E1 E2

E3

K1

P1

Figure 5. Diagrammatic representation of a small, hypothetical joint gas–power network. Here, D1

contributes to the objective term ηG(·), and L1 and L2 contribute to ηP(·). Contributions to the gas
and power delivery objectives are represented by green and red nodes, respectively. The linkage
between gas and power systems occurs at the interdependency K1 = (D2,G1).

2.4. Challenges

Although independent gas and power MLD models were explored in [5,6], respec-
tively, the joint MLD problem that includes Constraints (1a)–(1i), (2a)–(2v), and (3) is more
challenging. Most importantly, the nonlinearities that appear in gas and power network
constraints arise primarily from different sources: Constraints (1a)–(1i) include nonlinear
equations with bilinear variable products, whereas Constraints (2a)–(2v) include more
manageable quadratic nonlinear equations. These modeling differences suggest potentially
incompatible numerical methods and solving technologies.

3. Maximal Load Delivery Formulations

This section derives the joint gas–power MLD formulations used throughout the
remainder of this paper. First, Section 3.1 defines the competing objectives of the joint MLD
problem. Section 3.2 poses lexicographic and weighted MLD formulations that prioritize
the gas–power delivery tradeoff in different ways. Section 3.3 derives MICP relaxations of
the MINLP MLD formulations. Finally, Section 3.4 summarizes the naming conventions
used for these MLD formulations, which are empirically compared in Section 4.

3.1. Objectives of the Maximum Load Delivery Problem

The objective of the MLD problem is to maximize the amount of nongeneration gas
and active power load delivered simultaneously under a multi-contingency scenario. Note
that the maximization of nongeneration gas, specifically, allows the model to decouple
the practical objectives of the gas system (e.g., the delivery of fuel for residential heating)
from practical objectives of the power system. However, because the delivery of the
nongeneration gas load can inhibit the amount of active power generation and thus the
total active power delivered, there exists an important tradeoff between these two objectives.
For notational ease, we first write the two objective functions as
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ηG(d) :=

(
∑

i∈D′
βidi

)(
∑

i∈D′
βidi

)−1

(4a)

ηP(zd) :=

(
∑
i∈L

βizd
i |ℜ(Sd

i )|
)(

∑
i∈L

βi|ℜ(Sd
i )|
)−1

. (4b)

Equation (4a) denotes the normalized sum of all prioritized nongeneration gas demands,
where D′ := D \ {j : (i, j) ∈ K} (i.e., the set of all nongeneration gas deliveries), and
βi ∈ R+ is a predefined restoration priority for delivery i ∈ D′. Similarly, Equation (4b)
denotes the normalized sum of all prioritized active power loads. Note that for all of the
experiments considered in this study, for simplicity, we set βi = 1 for all i ∈ D′ ∪ L.

The tradeoff between nongeneration gas and active power load naturally lends the
MLD problem to the broader category of multi-objective optimization. A thorough sur-
vey of multi-objective optimization methods in engineering was presented in [33], which
described a number of techniques for specifying preferences among multiple objective
functions. These include weighted sum, lexicographic, and bounded objective optimiza-
tion methods. In Section 3.2, we define lexicographic and weighted sum variants of the
MLD problem.

3.2. Lexicographic and Weighted MLD Formulations

To explore the gas–power tradeoff, we introduce three MLD models that prioritize gas
and power delivery in different ways. The first is a lexicographic formulation that maxi-
mizes the amount of nongeneration gas load delivered first. This situation is representative
of common contractual requirements for gas grid operators. Here, the MLD is written as
the mathematical program

maximize ηP(zd)

subject to ηG(d) ≥ ηG(d∗)

Constraints (1a)–(1i), (2a)–(2v), (3),

(5)

where ηG(d∗) is the optimal objective when maximizing gas delivery alone. The second
MLD is a similar formulation that maximizes the amount of active power load delivered
first. This mathematical program is written as

maximize ηG(d)

subject to ηP(zd) ≥ ηP(zd∗)

Constraints (1a)–(1i), (2a)–(2v), (3).

(6)

The last model is a single-level formulation that parametrically weights the normalized
sums of nongeneration gas and active power delivery, i.e.,

maximize ληG(d) + (1 − λ)ηP(zd)

subject to Constraints (1a)–(1i), (2a)–(2v), (3),
(7)

where 0 < λ < 1 is a weighting parameter that models the objective tradeoff.
Note that (5), (6), and (7) are mixed-integer nonlinear nonconvex programs. The

nonconvexities arise from three sources: (i) discrete operations of controllable components
(e.g., zg

i for generator commitment); (ii) bilinear products that appear in gas and power
network physics (e.g., ViV∗

j in Ohm’s law); and (iii) nonlinear equations that model physical
relations (e.g., pressure-flow equations for pipes). In the following sections, we employ a
number of relaxations to render these problems more tractable.
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3.3. Relaxation of Bilinear Products and Nonlinear Equations
3.3.1. Convexification of Power Physics

The primary sources of nonconvexity in Constraints (1a)–(1i) are bilinear products that
appear in Constraints (1a)–(1c) (e.g., ViV∗

j ). A wealth of literature has developed relaxations
for similar terms. For a comprehensive review, we refer the reader to [8]. In this paper,
we develop a model using a second-order cone (SOC) relaxation of the AC power flow
equations, first presented in [34] and used for power MLD analysis in [6].

The primary insight of the SOC formulation is that variable products (|Vi|2 and ViV∗
j )

can be lifted into a higher-dimensional variable space (Wii and Wij, respectively). This
renders terms involving these products linear, and the relaxation in the new W-space is
ultimately strengthened via

|Wij|2 ≤ WiiWjj, ∀(i, j) ∈ E . (8)

This is a convex SOC constraint, which lends the formulation its name.

3.3.2. Convexification of Gas Physics

Many nonconvexities in Constraints (2a)–(2v) appear in the form of nonlinear equa-
tions (e.g., Constraint (2b)) and bilinear variable products (e.g., Constraint (2i)). To resolve
both, direction variables yij ∈ {0, 1} are introduced for each node-connecting component
(i, j) ∈ A. We also introduce variables πi ∈ R+ to denote squared pressures p2

i for i ∈ J .
This first enables a partial linearization of the pressure-flow equations, i.e.,

p2
i − p2

j = πi − πj = wij fij| fij|, ∀(i, j) ∈ P . (9)

Then, variables ℓij for (i, j) ∈ P are introduced to model the difference in squared pressures
across each pipe. The introduction of y, π, and ℓ, as well as convexly relaxing the equality
in Constraint (9), gives rise to the relaxation

πj − πi ≤ ℓij ≤ πi − πj, ∀(i, j) ∈ P (10a)

ℓij ≤ πj − πi + (2yij)(πi − π j), ∀(i, j) ∈ P (10b)

ℓij ≤ πi − πj + (2yij − 2)(πi − π j), ∀(i, j) ∈ P (10c)

wij f 2
ij ≤ ℓij, ∀(i, j) ∈ P . (10d)

Note that Constraint (10d) defines the primary physical relaxations. This constraint states
that pressure-flow equations need not be satisfied with equality.

Convexification of the remaining nonlinear nonconvex terms in Constraints (2a)–(2v)
is accomplished in a similar manner to the above. Here, for brevity, we omit the derivation
of the full mixed-integer convex relaxation used throughout the remainder of this study.
However, for a complete derivation and description of the relaxed mixed-integer convex
model, we refer the reader to [5].

3.3.3. Convexification of Gas-Fired Generation

Constraint (3) is linear when h1
i = 0 but nonconvex when h1

i > 0. In the latter case,
Constraint (3) can be convexly relaxed by transforming the equality into an inequality, i.e.,

∑
i:(i,j)∈K′

h1
i ℜ(S

g
i )

2 + h2
i ℜ(S

g
i ) + h3

i zg
i ≤ dj, ∀j ∈ DG, (11)

where K′ := {(i, j) ∈ K : h1
i ̸= 0}. We remark that for the experiments considered in this

paper, all h1
i are zero, and the relaxation is not required.
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3.4. Summary of Formulations

The remainder of this paper compares two MLD formulations of (5), (6), and (7), which
model physics differently:

1. (5), (6), (7): Exact MINLP formulations of power and gas constraints.
2. (5)-R, (6)-R, (7)-R: Power and gas constraints use SOC and MICP relaxations.

These formulations provide different tradeoffs between model accuracy and com-
putational performance. An evaluation of both allows us to quantify the effects of the
relaxations, as well as guide our subsequent MLD analyses.

4. Computational Evaluation

In the following, Section 4.1 describes the networks, computational resources, and
parameters used throughout the experiments; Section 4.2 compares the efficacy of exact
and relaxed MLD formulations across randomized N−k multi-contingency scenarios;
Section 4.3 evaluates the runtime performance of formulations over the same experimental
sets; Section 4.4 provides a proof-of-concept MLD analysis, illustrating the tradeoffs when
lexicographically maximizing gas and power load delivery; and Section 4.5 provides a
proof-of-concept Pareto analysis of load delivery on a single joint network.

4.1. Benchmark Datasets and Experimental Setup

The computational experiments in this paper consider gas and power networks of
various sizes that have appeared in the literature or have been derived by subject matter
experts. These networks are summarized in Table 1. The networks in this table are named
according to the number of junctions in the natural gas network (e.g., NG11) and the number
of buses in the electric power network (e.g., EP14). The references from which the gas,
power, and/or joint network properties were derived appear in the second column of
this table. The numbers of gas and power system components of the joint networks
vary substantially and are specified in the third column on in Table 1. For networks that
reference [35], heavily loaded variants of the corresponding electric power network datasets
are used.

Table 1. Summary of joint network datasets used in this study.

Network References |J | |P| |S| |T | |V| |W| |C| |N | |E| |G| |L| |H| |K|
NG11-EP14 [35,36] 11 8 0 0 1 0 2 14 20 5 11 1 1
NG25-EP14 [35,37,38] 25 24 0 0 0 0 6 14 20 5 11 1 2
NG25-EP30 [35,36] 25 19 1 1 0 2 3 30 41 6 21 2 1
NG40-EP39 [35,36] 40 39 0 0 0 0 6 39 46 10 21 0 4
NG146-EP36 [32] 146 93 0 0 0 42 29 36 121 91 35 2 34
NG134-EP162 [35,36] 134 86 45 0 0 1 1 162 284 12 113 34 5
NG135-EP179 [35,36] 135 141 0 0 0 0 29 179 263 29 104 40 12
NG247-EP240 [39] 247 254 0 0 0 0 12 240 448 143 139 0 6
NG603-EP588 [35,36] 603 278 269 8 26 44 5 588 686 167 379 68 12

Joint gas–power network properties are summarized in the last column of Table 1.
Here, NG25-EP14 uses the linking and heat rate properties of the joint network instance
developed by [38], and NG146-EP36 uses the properties of the instance developed by [32].
Linkages within the NG247-EP240 network were derived from open data, and heat rate
curves were estimated in a manner similar to [32]. The remaining networks combine
instances from GASLIB and PGLIB-OPF to create new joint networks of various sizes.
The purpose of these new instances is twofold: (i) to explore the tractability of joint MLD
instances as network sizes grow and (ii) to explore the tradeoffs involved in maximizing
gas versus power delivery. Note that these networks use synthetically generated link-
ages between GASLIB and PGLIB-OPF instances, and these linkages are not necessarily
reflective of real-world datasets. They are, however, instances where gas and power inter-
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dependencies are consequential, which, in turn, allows for a meaningful exploration of the
MLD method.

All of the MLD formulations considered in this paper were implemented in the JULIA

programming language using the mathematical modeling layer JUMP, version 0.21 [40];
version 0.9 of GASMODELS (https://github.com/lanl-ansi/GasModels.jl accessed on 21
April 2024), a package for steady-state and transient natural gas network optimization;
version 0.6 of POWERMODELSRESTORATION, a package that implements the steady-state
power MLD model [10]; and version 0.4 of GASPOWERMODELS (https://github.com/
lanl-ansi/GasPowerModels.jl, accessed on 21 April 2024), a package for joint steady-state
gas–power network optimization. Our multi-infrastructure software modeling approach
using INFRASTRUCTUREMODELS is detailed in [7], which also includes MLD examples
from this work. For the exact nonconvex nonlinear representation of Constraints (1a)–(1i)
in Problems (5), (6), and (7), the polar form of the AC power flow equations introduced
in [41] was used. For the exact representation of Constraints (2a)–(2v), the mixed-integer
nonlinear nonconvex formulation described in [5] was used.

Each optimization experiment was prescribed a wall-clock time limit of one hour on
a node containing two Intel Xeon E5-2695 v4 processors, each with 18 cores at 2.10 GHz
and 125 GB of memory. For solutions of (7), version 0.7 of the open-source JUNIPER

MINLP solver was used [42]. Within JUNIPER, IPOPT 3.12 was leveraged as the nonlinear
programming solver [43], using a feasibility tolerance of 10−6 and the underlying linear
system solver MA57 [44]. Note that JUNIPER does not provide global optimality guarantees
for (7), and feasible solutions obtained from the solver thus serve only as lower bounds
on the true amount of maximum deliverable load. For solutions of (5)-R, (6)-R, and (7)-R,
GUROBI 9.1 was used with its default parameterization. Here, since each problem is a
mixed-integer convex program, globally optimal solutions to the problem are obtained.
However, since each problem is a relaxation, a globally optimal solution corresponds only
to an upper bound on the objective of (5), (6), or (7).

4.2. Multi-Contingency Damage Scenarios

This section examines the robustness and accuracy of the exact and relaxed weighted
MLD formulations, (7) and (7)-R, respectively, with λ = 0.5. Specifically, it studies these
properties across large sets of randomized multi-contingency or N−k scenarios, where k
indicates the number of components simultaneously removed from the joint gas–power
network. These scenarios are intended to capture the effects of severe multimodal network
outages across joint systems. In each scenario, a random selection of 15% node-connecting
components was assumed to be damaged (i.e., k ≈ 0.15N). Through a parameter sensitivity
study, we observed that this proportion of outages appeared to generate challenging MLD
scenarios while providing interesting gas and power delivery tradeoffs among the coupled
networks. For each network, one thousand such scenarios were generated.

Table 2 compares statistics of solver termination statuses across all N−k scenarios
for each network and formulation. Here, “Conv.” corresponds to the percentage of cases
where the solver converged, “Lim.” to cases where the solver time or other solver limit
was reached, and “Inf.” to cases that were (possibly incorrectly) classified as infeasible
by the solver. Although both formulations were typically capable of converging for cases
containing tens of nodes, for larger networks, (7)-R clearly outperformed (7), solving nearly
all N−k instances. The results are especially dramatic for the three largest networks, where
only one of three thousand (7) cases converged but all (7)-R cases converged.

Note that three (7)-R cases were classified as infeasible due to numerical difficulties. It
is likely that (i) using a different MICP solver, (ii) using a newer version of GUROBI, or (iii)
adjusting the GUROBI solver parameters (e.g., setting NumericFocus=3), as recommended
in the solver output, would resolve these alleged infeasibilities. We also remark that many
more (7) cases were classified as infeasible due to the MINLP formulation and solver’s
greater tendency to converge to locally infeasible points.

https://github.com/lanl-ansi/GasModels.jl
https://github.com/lanl-ansi/GasPowerModels.jl
https://github.com/lanl-ansi/GasPowerModels.jl
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Table 2. Comparison of solver termination statuses across multi-contingency scenarios.

(7) % Cases (7)-R % Cases

Network Conv. Lim. Inf. Conv. Lim. Inf.

NG11-EP14 100.00 0.00 0.00 100.00 0.00 0.00
NG25-EP14 99.90 0.00 0.10 100.00 0.00 0.00
NG25-EP30 98.80 0.10 1.10 99.70 0.00 0.30
NG40-EP39 99.00 0.50 0.50 100.00 0.00 0.00
NG146-EP36 1.00 83.70 15.30 100.00 0.00 0.00
NG134-EP162 26.70 25.70 47.60 100.00 0.00 0.00
NG135-EP179 0.10 95.20 4.70 100.00 0.00 0.00
NG247-EP240 0.00 97.90 2.10 100.00 0.00 0.00
NG603-EP588 0.00 70.30 29.70 100.00 0.00 0.00

While Table 2 demonstrated the numerical reliability of exact and relaxed MLD for-
mulations, Table 3 compares the solution quality of the relaxed formulations with feasible
lower bounds obtained from (7). Here, “# Compared” corresponds to the number of cases
used in each comparison, “Mean Obj.” is the mean objective value obtained by (7) over
all compared instances, “Mean” is the mean relative gap between objective values of (7)
and (7)-R, and “Median” is the median relative gap between objective values. In each such
measurement, the relative gap is computed as

Relative Gap :=
(

η̃ − η

η

)
100%, (12)

where η̃ is the objective value obtained when solving (7)-R (an upper bound) and η is the
objective value when solving (7) (a lower bound).

Table 3. Comparison of solution quality across multi-contingency scenarios.

(7) Solutions (7)-R Gap (%)

Network # Compared Mean Obj. Mean Median

NG11-EP14 1000 0.61 0.61 0.03
NG25-EP14 999 0.68 1.45 0.17
NG25-EP30 983 0.45 27.22 0.09
NG40-EP39 990 0.65 0.45 0.01
NG146-EP36 10 0.75 4.00 1.01
NG134-EP162 267 0.53 52.63 1.35
NG135-EP179 1 0.59 0.33 0.33
NG247-EP240 0 – – –
NG603-EP588 0 – – –

We note that for NG25-EP30, five instances were excluded from the comparison: the
three infeasible (7)-R instances and two instances that implied a negative relative gap.
Proceeding with the analysis, the mean objective values for all sets of feasible solutions
indicate that between around 50% and 75% of gas and power loads were delivered across
all multi-contingency scenarios. Furthermore, the mean relative gap between the feasible
solutions obtained by (7) and the upper bounds obtained by (7)-R was sometimes large,
with the largest being 52.63% across all NG134-EP162 damage scenarios.

These extreme gaps have only two sources from which they can arise. First, a feasible
solution obtained by JUNIPER for a (7) instance is not guaranteed to be near the globally
optimal solution. That is, the optimal (7) objective value is potentially much larger than
what JUNIPER reported at termination. Second, since (7)-R is a relaxation, it upper-bounds
the globally optimal objective value of (7). The median column in Table 3 reports measures
of centrality without the outliers that likely arose from the first source of discrepancy.
Through these measurements, it can be observed that (7)-R often provided reliable and
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tight bounds on the optimal objective of (7), with relative gaps most often ranging from
nearly zero to less than 1.35%. This indicates that the relaxation is capable of providing
tight upper bounds on maximum capacities of damaged networks.

4.3. Computational Performance

This section compares the performance of (7) and (7)-R using the instances described
in Section 4.2. The performance profiles for these cases are depicted in Figure 6 and
divided into three categories: (S) networks containing tens of nodes; (M) networks con-
taining hundreds of nodes; and (L) networks containing more than a thousand nodes (i.e.,
NG603-EP588). Across all categories, it is shown that the (7)-R formulation was able to solve
substantially more problems compared to (7) in significantly shorter amounts of time. For
joint networks with tens of nodes, both formulations were able to solve many instances
within the one-hour time limit. For networks with hundreds of nodes, (7)-R was capable of
solving most instances within ten seconds, whereas (7) required hundreds or thousands
of seconds to solve only a small proportion. For networks with thousands of nodes, (7)-R
solved all instances within ten seconds, whereas (7) did not solve any. The efficiency of
(7)-R compared to (7) highlights its applicability to (i) real-time multi-contingency analysis
and (ii) analyses that would require distributions of many multi-contingency scenarios.
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Figure 6. Performance profiles comparing the efficiency of (7) and (7)-R across the N−k instances
described in Section 4.2. Here, the performance profiles are partitioned into three categories: (S)
networks containing tens of nodes; (M) networks containing hundreds of nodes; and (L) networks
containing more than a thousand nodes.

4.4. Proof-of-Concept Maximum Load Delivery Analysis

While Sections 4.2 and 4.3 studied the computational and accuracy tradeoffs between
(7) and (7)-R, this section provides a proof-of-concept MLD analysis using the (5)-R and
(6)-R formulations across the same set of N−k damage scenarios. Figures 7 and 8 display
18 histograms that evaluate the proportions of gas and power loads delivered across the
solved damage scenarios for the nine joint networks using the two problem specifications.
Here, the green bars correspond to the histogram frequencies obtained from analyzing
results of (5)-R solutions (i.e., gas prioritization), and the red bars correspond to (6)-R solu-
tions (i.e., power prioritization). The brown, overlapping bars correspond to frequencies
that appear in both the (6)-R and (5)-R histograms. These results indicate qualitative differ-
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ences in the hypothetical robustness of each joint network. They also display the extreme
tradeoffs between prioritizing gas versus power delivery in the presence of severe outages.
Finally, they indicate the sensitivity of each gas or power network to the interdependencies
that link them. These histograms serve as basic proofs of concept for real-world MLD
analyses.

Figure 7 displays histograms of maximum gas load delivered in the presence of severe
N−k outages. First, note that these histograms display a variety of load distributions across
the cases and networks considered. Some networks, e.g., NG25-EP30, NG247-EP240, and
NG603-EP588, suggest gas grids that are highly sensitive to the outages considered, with
large proportions of damaged networks often incapable of delivering more than 50% of gas
load. Other networks, e.g., NG40-EP39, NG146-EP36, and NG135-EP179, show less severe
but still substantial sensitivities to these outages. The remaining networks display gas
network sensitivities somewhere between these extremes.
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Figure 7. Histograms comparing the proportion of gas delivered across solved N−k scenarios for
(5)-R and (6)-R. The x-axis indicates the proportion of load delivered, and the y-axis indicates the
percentage of cases that deliver load within an interval.
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Figure 8. Histograms comparing the proportion of active power delivered across the solved N−k
scenarios, using the same experimental and analytical settings as in Figure 7.
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The overlapping histograms also display the tradeoffs encountered when prioritiz-
ing gas versus power delivery. In the three joint networks NG25-EP14, NG134-EP162, and
NG603-EP588, gas and power interdependencies are mostly inconsequential, and prioritiz-
ing either gas or power barely affects the maximum gas capacity. This is likely a result of
excess generation capacity in the corresponding power networks. Other networks, e.g.,
NG40-EP39, NG146-EP36, and NG135-EP179, show more interesting tradeoffs, where prior-
itizing either gas or power results in substantial changes in the overall maximum load
distributions. The remaining networks show less interesting tradeoffs, although NG11-EP14
displays large tradeoffs, likely due to the drastic effects that even minor outages can have
on the relatively small network.

Figure 8 displays histograms of maximum active power delivered in the presence of the
N−k outages considered. First, the four networks, NG25-EP30, NG134-EP162, NG247-EP240,
and NG603-EP588, appear robust to outages in the joint network and are often capable of
delivering more than 75% of the original power load. The remaining networks exhibit
greater variety in their maximum load distributions. While some networks, e.g., NG25-EP30,
NG134-EP162, and NG603-EP588, appear less reliant on gas-fired power generators, the
remaining networks exhibit more dramatic changes when prioritizing gas versus power
delivery. The most extreme example appears to be NG146-EP36, which is often capable of
delivering a large amount of power across all N−k cases when power is prioritized but
also often loses more than 25% of its total capacity when gas delivery is prioritized.

We remark that to solve (5)-R and (6)-R, inner- and outer-level problems of the lex-
icographic maximization are solved sequentially. For example, to solve (5)-R, (i) the
inner-level problem maximizing ηG(d) is solved, yielding a solution d∗, and then (ii) ηP(zd)
is maximized, subject to the relaxed forms of Constraints (1a)–(1i), (2a)–(2v), (3), and
ηG(d) ≥ ηG(d∗)− ϵ. The latter ensures that nongeneration gas load delivered in the outer
level is at least that of the inner level, minus some tolerance ϵ, taken in this study to be
10−7. A similar algorithm is used for (6)-R. We note that the general algorithm is not as
numerically reliable as (7)-R and does not solve 469 of the 18,000 N−k cases considered
in this subsection. This could potentially be alleviated with a larger ϵ, the use of multi-
objective modeling features natively available in some solver libraries (e.g., GUROBI), or the
modification of the solver parameters to promote greater numerical accuracy (e.g., setting
NumericFocus=3 in GUROBI).

4.5. Proof-of-Concept Pareto Analysis

Together, (5)-R, (6)-R, and (7)-R allow for a variety of prioritizations of gas versus
power load. As such, they serve as powerful tools for exploring the wide range of possible
MLD solutions based on the relative importance of gas versus power delivery. This can
provide gas and power grid managers with best-case capacity estimates depending on
the type of coordination between systems. In turn, this enables a better understanding
of the complex yet practically important tradeoffs encountered during the operation of
a damaged joint network. While Sections 4.2–4.4 focused on analyzing the performance
and qualitative aspects of MLD analyses across a large number of joint networks, this
section focuses on providing a proof-of-concept Pareto analysis of a single joint network,
NG146-EP36.

Figure 9 shows a linearly interpolated approximation of the convex hull of the Pareto
front for mean active power versus gas delivery across the same set of N−k scenarios from
the previous sections. Here, the upper-left and lower-right endpoints correspond to means
obtained from the (6)-R and (5)-R problem formulations, respectively. The interior points
correspond to means obtained from the (7)-R formulation, where the tradeoff parameter λ
was varied to determine interesting and distinct points on the Pareto front.

First, note that when prioritizing power delivery, on average, 96% of active power
is delivered but less than 45% of nongeneration gas is delivered. When gas delivery is
prioritized, 88% of power is delivered, while 50% of gas is delivered. Between these two
extremes, the amount of gas and power increases and decreases, respectively, with increases
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in λ. For λ ⪅ 0.5, active power decreases more slowly as a function of λ, and for λ ⪆ 0.5,
the rate of decrease appears larger. In this case, λ ≈ 0.5 happens to represent a value where
(7)-R begins to prefer maximization of gas delivery over power delivery. In practice, a
point near this value of λ could be one that maximizes simultaneous delivery while having
practically equal prioritizations.

44 45 46 47 48 49 50
85

90

95 λ ≈ 0
λ = 0.381

λ = 0.5

λ = 0.605

λ = 0.61

λ ≈ 1

Nongeneration gas load (%)

A
ct

iv
e

po
w

er
lo

ad
(%

)

Figure 9. Convex hull of the Pareto front for mean total active power load versus mean nongeneration
gas load delivered over one thousand NG146-EP36 N−k damage scenarios.

5. Conclusions

Gas-fired power generation amplifies interdependencies between natural gas and
power transmission systems. These interdependencies have engendered greater vulnera-
bilities in gas and power grids, where natural or man-made disruptions can require the
curtailment of load in one or both systems. To address the challenge of estimating maxi-
mum joint network capacities under these disruptions, this study considered the task of
determining feasible steady-state operating points for severely damaged joint networks
while ensuring the maximal delivery of gas and power loads simultaneously. Mathemat-
ically, this task was represented as the mixed-integer nonlinear nonconvex joint MLD
problem, which is difficult to solve directly.

Three variants of the MLD problem were formulated: one that prioritizes gas delivery,
one that prioritizes power delivery, and one that assumes a linear tradeoff between the two
objectives. To increase the tractability of these problems, a mixed-integer convex relaxation
of the joint network’s physical constraints was proposed. The relaxation was found to
be a fast and reliable method for determining bounds on the capacities of damaged joint
networks containing up to around a thousand nodes. Multiple proofs of concept show that
the efficacy of the relaxation-based MLD method makes it a potentially valuable tool for
complex real-world decision-support applications, including identifying critical network
components given a forecasted natural hazard or prioritizing restoration efforts to enable
the maximal delivery of load after a disruption has occurred.

Future work will focus on extending the MLD approaches developed in this paper.
First, additional gas and power relaxations should be considered to more accurately and
efficiently scale to joint networks containing many thousands of nodes. Preprocessing
routines, such as optimization-based bound tightening, may also aid in improving relax-
ations. Second, the current problem assumes full coordination between gas and power
systems when deciding operations that maximize load delivery. The modeling of bidding
mechanisms that drive both systems could provide more accurate capacity estimates. Addi-
tionally, although difficult to obtain and curate, the availability of real-world and historical
joint network data could prove useful for validating our general methodology. Capturing
transient dynamics in gas networks is sometimes crucial for understanding the effects of
network disruptions, which may be realized long after the disruption occurs. Future work
should consider these transient effects when modeling load delivery in the gas network.
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Finally, this study considers the effects of severe contingencies in a single-period
setting that assumes known supplies and demands. In practice, supply and demand may
change during peak usage periods due to variations in renewable generation or in response
to disruptions. Future studies could extend this work to include these temporal variations
and uncertainties. For example, one could consider supply and demand uncertainty, along
with damage uncertainty, in the joint distribution from which contingency scenarios are
sampled. Additionally, like Rhodes et al. [10] leveraged Coffrin et al. [6], our work could
be applied in a multiperiod context. This could be useful for capturing temporal changes
in supply, demand, and component outages while maximizing deliverable load. It could
also facilitate other applications, such as scheduling restoration actions.
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