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Abstract: This article develops two metaheuristics optimization techniques, Grey Wolf Optimizer
(GWO) and Harris Hawks Optimization (HHO), to handle multi-objective optimal power flow
(MOOPF) issues. Multi Objective GWO (MOGWO) and Multi Objective HHO (MOHHO) are the
names of the developed techniques. By combining these optimization techniques with Pareto
techniques, the non-dominated solution set can be obtained. These developed approaches are
characterized by simplicity and have few control parameters. Fuel cost, emissions, real power losses,
and voltage deviation were the four objective functions considered. The theories used to determine
the best compromise solution and organize the Pareto front options are the fuzzy membership
equation and the crowding distance approach, respectively. To validate and evaluate the performance
of the presented techniques, two standard IEEE bus systems—30-bus and 57-bus power systems—
were proposed. Bi, Tri, and Quad objective functions with 21 case studies are the types of objective
functions and the scenarios that were applied in this paper. As compared to the results of the most
recent optimization techniques documented in the literature, the comparative analysis results for the
proposed methodologies demonstrated the superiority and robustness of MOGWO and MOHHO.

Keywords: Multi-Objective Grey Wolf Optimizer (MOGWO); Multi-Objective Harris Hawks
Optimization (MOHHO); fuel cost (FC); emission (E); active power losses (APL); voltage deviation (VD)

1. Introduction

The main goal of power flow (PF) is to analyze the power system to obtain the voltage
of all buses, losses at transmission lines, and the reactive power that has been injected on
lines that satisfy the operation conditions. The optimization problem of optimal power flow
(OPF) is large-scale, mixed-integer, extremely constrained, nonlinear, and nonconvex [1].
Therefore, OPF is researched to optimize a specific objective while keeping to equality and
inequality constraints. Four objective functions were considered: fuel cost (FC), emission
(E), active power losses (APL), and voltage deviation (VD). The variables that can be
adjusted to attain optimal objective functions include tap changer settings on transformers,
real power output of generation units, voltage magnitude at PV bus, and reactive power
injected by compensation sources. The formulation of the OPF problem was introduced
by Dommel and Tinney [2]. Gauss Seidel (GS) [3], Newton Raphson (NR) [4], and fast
decoupled (FD) [5] are the most popular numerical methods that have been proposed to
solve PF equations.

There are two types of optimization algorithm that have been applied to solve OPF
problems: traditional and metaheuristic optimization techniques. In traditional techniques,
several methods have been performed to solve OPF problems, such as ε-constraint meth-
ods [6], linear and nonlinear programming [7], interior point method [8], and quadratic
programming [9]. The drawbacks of these methods are multiple local minimum points,
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requirement of heavy computational cost, and slowness in convergence. Recently, meta-
heuristic optimization techniques were widely applied to solve large-scale problems in
fields such as computer science, engineering, and business. The main aim of these opti-
mization methods is to solve global optimization problems. Lately, many research papers
have been published on applications of meta-heuristic optimization methods such as the
salp swarm algorithm (SSA) [10], the black widow optimization (BWO) [11], the manta
ray foraging optimization (MRFO) [12], Henry gas solubility optimization (HGSO) [13],
etc. In power systems, metaheuristic optimization algorithms were proposed to solve OPF
problems such as Modified Artificial Bee Colony (MABC) [14], Spatio-temporal distribution
(STD) [15], differential evolution (DE) [16], enhanced Particle Swarm optimization (EPSO)
and Ant Lion optimization (ALO) [17], improved differential evolution (IDE) [18,19], Harris
Hawks Optimization (HHO) [20,21], and Grey Wolf Optimizer (GWO) [22]. The previous
methods dealt with the problems of single-objective optimal power flow (SOOPF).

In multi-objective optimization, many metaheuristic optimization methods have been
applied to solve MOOPF problems to provide a well-distributed Pareto solution set and
offer a wide range of these solutions to decision-makers. For example, DE has been
improved to solve SOOPF and integrated with Pareto concept optimization (PCO) to solve
MOOPF, named MOIDEA [23]. SMA has been proposed to solve SOOPF, and this algorithm
has been developed to solve MOOPF with the considered case study of ISGHV [24,25].
Refs. [26,27] solves single and multi-objective OPF problems by combining the HGS with
PCO using FMF and CD strategies to extract BCS and arrange the non-dominated solutions
(NDSs). An improved decomposition-based method to solve MOOPF problems [23].
Bee colony algorithms (BCA) have been improved to solve multi-objective dynamic OPF
problems based on PCO [28]. The authors in [29] employed AMTPG-Jaya to solve MOOPF
problems. HSA was applied to solve MOOPF problems [30]. TLBO was combined with
a quasi-opposition approach to enhance the quality and convergence characteristics of
solutions [31]. MOIICA was applied to solve MOOPF problems in the IEEE 30-bus [32].
In [33], M2OBA was proposed to solve MOOPF by considering fuel cost (FC), active
power loss (APL), and emission (E) in the IEEE 30-bus test system. In [34], MOEA-based
decomposition (MOEA/D) was proposed to handle MOOPF. The objective functions (OFs)
that were proposed are FC, VD, E, and APL, with seven cases studied on the IEEE 30 bus
test system. Huy et al. [35] introduced MOSGA to solve MOOPF problems on IEEE 30-bus
and 57-bus systems by considering three objective functions, which are FC, E, and APL.
Yuan et al. [36] proposed ISPEA2 to solve MOOPF problems on IEEE 30-bus and 57-bus
systems with two objective functions, FC and E. Three power system—IEEE 30-bus, IEEE
118-bus, and Indian Utility System 62-bus—were proposed to solve OPF problem using
LISA Strategy-II algorithm with combined traditional thermal power generators, solar
power coupled, and stochastic wind [37].

The aim is to use hybridization of algorithms to achieve a balance between the explo-
ration and exploitation phases of the research in the whole area. Many articles hybridize the
GWO with other algorithms. For example, Meng et al. [38] hybridized a hybrid algorithm
based on crisscross search and the Grey Wolf Optimizer (CS-GWO) to solve OPF problems
in the IEEE 30-bus system and the IEEE 118-bus system. In [39], Grey Wolf Optimizer
and cuckoo search (GWOCS) were presented. Qin et al. [40] presented a new hybrid op-
timization method called HDGWO. Also, several articles have proposed hybridizing the
HHO with other algorithms. Birogul [41] combined Harris Hawks Optimization (HHO)
with differential evolution (DE) to solve OPF problems on an IEEE 30-bus test system.
Dhawale et al. [42] presented a chaotic with Harris Hawks Optimization (CHHO) for
solving engineering optimization problems.

In this article, OPF was applied to two IEEE standards, the IEEE 30-bus test system
and the IEEE 57-bus test system, to achieve optimal objective functions while satisfying the
constraints. Two metaheuristic optimization algorithms, Grey Wolf Optimizer (GWO) [43]
and Harris Hawks Optimization (HHO) [44], were developed into multi-objective opti-
mization methods to solve MOOPF problems. Pareto optimization [45] was integrated
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with the proposed algorithms (GWO and HHO) to establish the developed approaches
(MOGWO and MOHHO). Fuzzy membership function (FMF) and crowding distance (CD)
strategies [46] are the theories used to extract BCS and reduce and arrange the NDSs from
Pareto front solutions.

This paper’s main novelty represents the use of new metaheuristic optimization
techniques created by integrating analyzed algorithms (GWO and HHO) with Pareto
concept optimization and using the characteristics of fuzzy membership function and
crowding distance to generate a set of non-dominated solutions and draw the Pareto front
that illustrates a good distribution. Therefore, creating new optimization techniques is vital,
considering the massive expansion of electrical power systems. In addition, the increase
in the number of OFs that can be solved simultaneously will lead to more complex and
computational efforts to achieve the optimal Pareto front. These reasons lead to a need to
explore new meta-heuristics optimization techniques capable of solving MOOPF problems
and providing a set of non-dominated solutions and therefore good distribution of the
Pareto front in power systems. This study is dedicated to overcoming challenges on original
algorithms (GWO and HHO) by solving the multiple objective OPF problems.

In this work, the authors proved the ability of the developed approaches, MOGWO
and MOHHO, to solve MOOPF problems. First, the control variables must be set to achieve
the best multiple objective functions (FC, E, APL, and VD) simultaneously and find the
optimal NDSs. Then, the authors used FNF to find BCS from NDS set. Finally, the CD is the
strategy that was applied to select the best solutions in optimal NDSs. This strategy shows
the distribution of optimal NDSs around an NDS. The developed approaches featured the
ability for convergence speed, exploration, and exploitation. The main contributions can be
summed up as follows:

1. The authors used two popular meta-heuristic optimization techniques, GWO and
HHO, to address MOOPF problems and achieve technical, environmental, and eco-
nomic benefits of power systems.

2. The method used to identify non-dominated Pareto front solutions is called Pareto
concept optimization (PCO).

3. FMF is used to extract BCS, and the CD mechanism is used to choose the best solutions
from all non-dominated Pareto front solutions.

4. With 21 case studies, two standard power systems—the IEEE 30-bus and the IEEE
57-bus—were used for multiple objective functions, including Bi, Triple, Quad, and
Quinta.

5. The developed approaches, MOGWO and MOHHO, provided the best compromise
solutions. These solutions were compared with other recent optimization techniques
documented in the literature.

This paper is arranged as follows: The mathematical model of MOOPF is introduced
in Section 2. Section 3 describes the multi-objective of the developed approaches. The
numerical results, simulation, and discussion of developed approaches are demonstrated
in Section 4. The last section of this article is the conclusion.

2. The Mathematical Formula of OPF Problem

The main goal of solving MOOPF problems is to find the optimal objective functions
(OFs) by setting control variables that satisfy the operational constraints (state variables).
This goal in multiple OFs is achieved by finding non-dominated solutions and selecting
the best compromise solution (BCS) for multiple OFs. The control variables include the
parameters that are controlled by operators, such as the active power of generators, the
voltage magnitude at the PV bus, the tap changer setting, and reactive compensator sources.
The state variables involve the parameters that must not be violated, such as active power at
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the slack bus, reactive power at the PV bus, voltage magnitude at the PQ bus, and apparent
power at transmission lines. The mathematical model of MOOPF is as follows:

Optimize F(a, b) = F1(a, b), F2(a, b), . . . , FNobj(a, b)
subjected to G(a, b) = 0

H(a, b) ≤ 0
(1)

where F represent OFs will be minimized, G and H are the equality and inequality con-
straints, respectively, a is the state variables (dependent variables), and b is the control
variables (independent variables).

2.1. The State Variables

The set of variables known as “state variables” describes any unique state of the
system. The mathematical model of state variables a is as follows:

a =
[

Pg1 ,
∣∣Vl1

∣∣, · · · ,
∣∣∣VLnpq

∣∣∣, Qg1 , · · · , Qgnpv , Sl1 , · · · , Slnl

]
(2)

where Pg1 is the active power output of the swing generator; Vl is the magnitude of voltage
at PQ buses; Qg is the reactive power output of PV bus (generators bus); and Sl is the MVA
loading at transmission line; npv, npq, and nl are the numbers of PV bus, PQ bus, and
transmission lines, respectively.

2.2. The Control Variables

The formula of control variables u can be expressed as follows:

b =
[

Pg2 , · · · , Pgpv ,
∣∣Vg1

∣∣, · · · ,
∣∣∣Vgpv

∣∣∣, T1, · · · , Tnt, Qc1 , · · · , Qcnc ] (3)

VG is the voltage magnitude at PV buses (generators bus). T is the tap changer of
transformers. Qc is the source VAR compensator (MVAr). nt denotes capacitor shunt and
nc is the numbers of tap setting regulating.

2.3. The Constraints

There are two constraints in the OPF problem, equality and inequality constraints.

2.3.1. Equality Constraints

These constraints refer to the physical structure of the system (power balance equations):

Pgi − Pdi − |Vi|
nb
∑

j=1

∣∣Vj
∣∣(gij cos(θij) + bij sin(θij)

)
= 0 ∀i ∈ n

Qgi + Qci − Qdi − |Vi|
NB
∑

j=1

∣∣Vj
∣∣(gij sin(θij) + bij cos(θij)

)
= 0 ∀i ∈ n

(4)

nB is the number of buses, PD and QD are the real and reactive power output of load
demand, respectively. gij and bij are the conductance and susceptance, respectively. θij is
the difference in voltage angles.

2.3.2. Inequality Constraints

The operating limit of the equipment is the inequality constraint. The inequality con-
straints involve generators, transformers, shunt compensators, and security. The expression
formula for these constraints is as follows:

• Generator:
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Pgi
min ≤ Pgi ≤ Pgi

max i = 1, 2, . . . , ng

Qgi
min ≤ Qgi ≤ Qgi

max i = 1, 2, . . . , ng

Vgi
min ≤ Vgi ≤ Vgi

max i = 1, 2, . . . , ng

(5)

• Transformer:

Tj
min ≤ Tj ≤ Tj

max j = 1, 2, . . . , NT (6)

• Shunt capacitor:

Qci
min ≤ Qci ≤ Qci

max i = 1, 2, . . . , nC (7)

• Security:

Vli
min ≤ Vli ≤ Vli

max i = 1, 2, . . . , nl
Sli ≤ Sli

max i = 1, 2, . . . , nnl
(8)

2.4. Objective Functions (OFs)

In this paper, four objective functions (OFs) were minimized: fuel cost (FC), active
power losses (APL), emission (E), and voltage deviation (VD).

2.4.1. Fuel Cost (FC) [$/h]

It can be expressed in the formula of this objective function as follows [47]:

FC =
NG

∑
i=1

fi(PGi ) =
NG

∑
i=1

(
aiP2

Gi
+ biPGi + ci

)
[$/h] (9)

ai, bi, and ci denote the coefficients of fuel cost on generation units.

2.4.2. Active Power Losses (APLs) [MW]

APLs represent the second OFs in this work and can be described as follows [47]:

Floss =
Nnl

∑
k=1

Gi

(
V2

i + V2
j − 2ViVj cos δi,j

)
[MV] (10)

Gi is the transfer conductance.

2.4.3. Emission (E) [ton/h]

The third OF of this work is to minimize the emission of fossil fuels by thermal
generation units such as NOx and SO2. This objective function is stated as follows [18]:

Fem =
NG

∑
i=1

10−2
(

αi + βiPGi + γiP2
Gi

)
+ ζi exp

(
λiPGi

)
[ton/h] (11)

αi, βi, γi, ζi, and λi refer to the coefficients of emission.

2.4.4. Voltage Deviation (VD) [p.u.]

The criterion to evaluate the voltage quality, security, and service indexes of any
system is voltage deviation (VD). The main goal of this OF is to optimize VD of all PQ
buses to 1.0 [p.u.]. It can be described by the mathematical formula as follows [48]:

FVD =
NPQ

∑
i=1

|Vi − 1.0| [p.u.] (12)
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The equation above is related to SOOPF. In this paper, the developed approaches are
related to MOOPF. It can be expressed in MOOPF as follows:

Fm(a, b) =
nobj

∑
i=1

ωiFi(a, b) = ω1F1 + ω2F2 + . . . + ωmFm i = 1, 2, . . . , nobj (13)

F is individual OFs, nobj the number of OFs, and ω denotes the weight coefficient. The
sum of ω is equal to 1.

3. Multi-Objective Meta-Heuristic Optimization Techniques

The proposed algorithms (GWO and HHO) are population iterative methods inspired
by the cooperative behavior of gray wolves and Harris hawks. The proposed algorithms
are effective in solving nonlinear, non-convex, and complex optimization problems. These
algorithms are simple and do not need a lot of control parameters. It can be summarized
as follows:

3.1. Grey Wolf Optimizer (GWO)

The social behavior of the gray wolf is the inspiration for a new optimization technique
called GWO. As illustrated in Figure 1, Grey Wolf is classified into four groups according
to leadership: alpha (α), beta (β), delta (δ), and omega (ω). The fitness of alpha gray
represents the best fitness of all fitness. Beta (β) and delta (δ) will provide the second and
third level of fitness. The remainder of the fitness can be represented by omega. The main
procedures can be characterized as below:
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Figure 1. Hierarchy of grey wolf.

3.1.1. Encircling

It can describe the mechanism of encircle as follows:

V =
∣∣C · Wp(t)− W(t)

∣∣
W(t + 1) = Wp(t)− B · V
B = 2b · r1 − b, C = 2 · r2

(14)

W and Wp represent the location of a grey wolf and prey, respectively. V and X denote
the coefficient vectors. r1 and r2 are random vectors ranging from [0–1]. b is the linear
decrease between [2–0] over the iterations.

3.1.2. Hunting

The formula of this process can be expressed as follows:

Vα = |C1 · Wα − W|, Vβ =
∣∣C2 · Wβ − W

∣∣, Vδ = |C3 · Wδ − W|
W1 = Wα − B1 · Vα, W2 = Wβ − B2 · Vβ, W3 = Wδ − B3 · Vδ

W(t + 1) = W1+W2+W3
3

(15)
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3.1.3. Attacking

The attack process represents the last action of the GWO algorithm. This process
will be performed when the prey has stopped moving. The mathematical formula of this
process can be represented by gradually decreasing b from [2–0].

3.1.4. Searching

The above process includes the exploration of the GWO algorithm. The wolves begin
this process by searching for their prey based on where α, β, and δ wolves are located.
There will be an attack by the convergence. The prey hunt is determined by the value of
B. If the value of B is more than 1, it needs to look for another prey. The flowchart of the
GWO algorithm is illustrated in Figure 2.
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3.2. Harris Hawks Optimizer (HHO)

This optimization technique was based on population. HHO was proposed by
Heidari et al. [44]. The phases that are presented in this algorithm are exploration and
exploitation. It can be described as follows:

3.2.1. Exploration

The exploration phase can be described as follows:

Y(t + 1) =
{

Yrnd(t)− r1|Yrnd(t)− 2r2Y(t)|k ≥ 0.5
Yrab(t)− Ym(t)− r3(LB + r4(UB − LB))k < 0.5

Ym(t) = 1
Nh

Nh
∑

i=1
Yi(t)

(16)

where Y, Yrnd, Yrab, and Ym are the position vectors of hawks, random, rabbit, and average.
UB and LB denote the upper and lower bounds of variables. N is the number of hawks.

3.2.2. Transformation

This process represents the transformation from exploration to exploitation. The
formula of this process can be described as follows:

E = 2E0

(
1 − t

max(T)

)
(17)

E0 and E are the initial state and escaping energy, T is the number of iterations.
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3.2.3. Exploitation

According to the probability of escaping and its energy for the prey, four different
scenarios were implemented. Attacks can be classified as either soft or hard besieges. The
hard besiege is implemented if (r < 0.5) then (|ε| < 0.5), while the soft besiege occurs when
(r ≥ 0.5) when (|ε| ≥ 0.5). The following are the stages of exploitation:

1. Soft besiege

The mathematical model of this phase can be expressed as follows:

Y(t + 1) = ∆Y(t)− e|JYrab(t)− Y(t)|
∆Y(t) = Yrab(t)− Y(t)
J = 2(1 − r5)

(18)

J is the power of jumping for a rabbit during escaping.

2. Hard besiege

The update on the prey position is as follows:

Y(t + 1) = Yrab(t)− E|∆Y(t)| (19)

3. Soft besiege with progressive rapid dives

A soft besiege will be executed by the hawks in preparation for increasingly rapid
dives. This process will be executed when |e| ≥ 0.5 and r < 0.5. This process can be
formulated as follows:

X = Yrab(t)− E|J∆Yrab(t)− Y(t)| (20)

Diving hawks are represented by the levy flight function (LF):

Z = X + S × LF(d) (21)

d is the dimension of the problem and S is a random vector by size, 1 × d. LF can be
expressed as follows:

LF(x) = 0.01 × ω × β

|ν|
1
σ

, β =

 Γ(1 + β)× sin
(

πβ
2

)
Γ
(

1+β
2

)
× β × 2(

β−1
2 )

 (22)

The update on the hawks position is as follows:

Y(t + 1) =
{

X i f F(X) < F(Y(t))
Z i f F(Z) < F(Y(t))

(23)

4. Hard besiege with progressive rapid dives:

The condition to achieve this phase is when|ε| < 0.5 and r < 0.5. This phase can be
described as follows:

X = Yrab(t)− E|J∆Yrab(t)− Ym(t)|
Z = X + S × LF(d)

Y(t + 1) =

{
X i f F(X) < F(Y(t))
Z i f F(Z) < F(Y(t))

(24)

Figure 3 illustrates the flowchart of HHO.
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3.3. Pareto Concept Optimization (PCO)
3.3.1. Pareto Concept (PC)

The most popular method to obtain non-dominated solutions (NDSs) is the Pareto
concept (PC). The equation used to prove the dominance of solution ×1 over solution ×2
is the following:

∀i ∈ {1, 2, . . . , n} : fi(x1) ≤ fi(x2)
∀j ∈ {1, 2, . . . , n} : f j(x1) ≤ f j(x2)

(25)

3.3.2. The Best Compromise Solution (BCS)

The calculation of BCS is the main objective for decision making. FMF is the technique
used to find BCS [49]. The steps of this technique can be summarized as follows:

- Determine the boundary of all objective functions (Fmin
i and Fmax

i ).
- Calculate the membership function ui for each objective as follows:

uk
i =


1 Fi ≤ Fmin

i
Fmax

i −Fi
Fmax

i −Fmin
i

Fmin
i < Fi < Fmax

i

0 Fi ≥ Fmax
i

(26)

where Fmin
i and Fmax

i is the min. and max. values of NDSs. This equation represents the
indicator for satisfaction for each OF to determine OFs in the range [1–0].

- To calculate the corresponding FMF of the non-dominated solutions (NDSs), it is
as follows:

uk =

Nobj

∑
i=1

uk
i

M
∑

k=1

Nobj

∑
i=1

uk
i

(27)
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where uk
i is to the FMF of each NDS. uk is BCS, M is the number of Pareto solutions. Finally,

the maximum membership function (uk) is the best compromise solution (BCS). Figure 4
represents the fuzzy membership function.
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3.3.3. Crowding Distance (CD)

The method used to choose the best solutions from among all the non-dominated
Pareto front solutions is called the crowding distance, or CD. The following equations were
used to calculate the crowding distance:

∆i =
Nobj

∑
j=1

di
j

∆ f j
(28)

∆ f j =
∣∣∣ f max

j − f min
j

∣∣∣, j ∈ [1, Nobj] (29)

di
j =

∣∣∣ f i+1
j − f i−1

j

∣∣∣ (30)

where Nobj denotes to the number of OFs, f max
i and f min

i are the max. and min. values
obtained for OFs, f i+1

i and f i−1
i are the values for the jth OF for i + 1 and i − 1. A lower CD

value indicates a greater distributed set of solutions inside a given area. Since this parameter
is determined in the objective spaces of multi-objective problems (MOPs), all NDSs must
be categorized according to the values of one of the OFs. Calculating these parameters for
every non-dominant solution is necessary. CD is calculated for all NDSs of all iteration.
The solutions that have the highest CD values must be determined. Thus, NDSs from the
non-dominated Pareto front (NDPF) are reduced and arranged using the CD technique.
CD values represent the average distance between two neighboring NDSs. First, the fitness
value of each OF should be calculated. These fitness values will be sorted in ascending
order to determine the fitness with the infinite value. The corresponding diagonal length
will be assigned to the remaining intermediate solutions. It can be represented by the
diagonal length of the cuboid in Figure 5.
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3.4. Multi-Objective Grey Wolf Optimizer (MOGWO) 

In this article, GWO was developed into MOGWO to solve MOOPF problems. Figure 

6 represents the flowchart of MOGWO. These critical phases are the two primary 

MOGWO operations (hunting and encircling), as was previously explained. GWO ad-

dresses the population in each generation of the evolutionary process. The new popula-

tion W(t + 1) is the product of the encircling and hunting. Furthermore, a comparison will 

be made between W and W(t + 1). The Pareto dominance theory must be considered when 

comparing GWO to MOGWO. The following is a summary of the MOGWO phases: 

Step 1: Initialization of system data (Max_ite, Max_pop, NDSs, control variables, etc. 

…). 

Step 2: Compute the power flow of each GWO agent. 

Step 3: Evaluate the weight factor of OFs of each GWO agent. 

Step 4: Calculate 𝑊𝛼, 𝑊𝛽 and 𝑊𝛿 

Step 5: Sort NDSs according to the weight factor of OFs of each population and save 

them in the repository. 

Step 6: The position of search agent is updated via (15) and recalculate steps 3, 4, and 6. 

Step 7: Integrate NDSs repositories of steps 5 and 6. 

Figure 5. CD estimation.
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3.4. Multi-Objective Grey Wolf Optimizer (MOGWO)

In this article, GWO was developed into MOGWO to solve MOOPF problems. Figure 6
represents the flowchart of MOGWO. These critical phases are the two primary MOGWO
operations (hunting and encircling), as was previously explained. GWO addresses the
population in each generation of the evolutionary process. The new population W(t + 1) is
the product of the encircling and hunting. Furthermore, a comparison will be made between
W and W(t + 1). The Pareto dominance theory must be considered when comparing GWO
to MOGWO. The following is a summary of the MOGWO phases:
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Step 1: Initialization of system data (Max_ite, Max_pop, NDSs, control variables, etc. . . .).
Step 2: Compute the power flow of each GWO agent.
Step 3: Evaluate the weight factor of OFs of each GWO agent.
Step 4: Calculate Wα, Wβ and Wδ

Step 5: Sort NDSs according to the weight factor of OFs of each population and save
them in the repository.

Step 6: The position of search agent is updated via (15) and recalculate steps 3, 4, and 6.
Step 7: Integrate NDSs repositories of steps 5 and 6.
Step 8: Check the criteria (number of iterations or number of NDSs), if satisfied, go to

step 9. Otherwise, return to step 3.
Step 9: Determine BCS from the NDSs.

3.5. Multi-Objective Harris Hawks Optimization (MOHHO)

Multi objective Harris Hawks Optimization (MOHHO) is the second approach that
was applied for solving MOOPF problems (two or more OFs) and to optimize simultane-
ously. In Figure 7, the MOHHO flowchart is shown. It is important to archive NDSs to
generate the Pareto front sets. This archive is updated, and NDSs are removed with every
iteration. Therefore, whenever the number of members in the Pareto archive exceeds the
Pareto archive’s size, NDSs with the lowest CD values among the Pareto archive members
are deleted. Because MOHHO uses long-distance solutions and focuses on near-optimal
solutions, it has a lot of potential for use in the design space. Furthermore, by employing
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soft besiege, hard besiege, soft besiege with progressive rapid dives, and hard besiege
with progressive rapid dives, respectively, the abilities of exploitation and exploration for
the developed approach were improved. Generally, MOHHO begins with exploitation
and progresses to exploration. However, in the first iteration, these motions function as a
heuristic. The ability of the MOHHO to focus on the best NDSs while exploring a wide
range of design space might be interpreted as this development. The steps below represent
a summary of the main phases of MOHHO:
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Step 1: Create the system data initial parameters.
Step 2: Create a random population matrix of HHO.
Step 3: Evaluate the weight factor of (OFs) of each population vector.
Step 4: Sort NDSs and save them in the HHO repository.
Step 5: Calculate the rabbit energy (E0).
Step 6: Update the energy rabbit using (17).
Step 7: Update the position of HHO agent and recalculate steps 3 and 4.
Step 8: Sort NDSs and save them in the HHO repository.
Step 9: Combine all NDSs (step 4 and 8) to find new NDSs.
Step 10: Check the criteria (number of iterations or number of NDSs), if satisfied, go to

step 11. Otherwise, return to step 3.
Step 12: Determine the BCS from the NDSs.

4. Application of Metaheuristics Optimization Techniques to Solve MOOPF Problems

To demonstrate the robustness and effectiveness of the developed approaches (MOGWO
and MOHHO) to solve the MOOPF problem in power systems, two bus test systems were
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proposed, namely IEEE 30-bus and IEEE 57-bus power systems. The characteristics of these
systems are listed in Table 1. Twenty-one case studies were applied, as shown in Table 2.

Table 1. The characteristics of two systems (IEEE 30-bus and IEEE 57-bus).

Characteristics IEEE 30-Bus IEEE 57-Bus

Buses 30 57
Branches 41 80
Generators 9 7
The limits of PV voltages [p.u.] 0.90–1.1 0.90–1.1
The limits of PQ voltages [p.u.] 0.95–1.05 0.94–1.06
Limit of tap changer setting [p.u.] 0.90–1.1 0.90–1.1
Limit of source VAR [MVAr] 0–5 0–20
Shunts 9 3
Transformers 4 17
MW demand 283.4 1250.8
Control variables 24 33

Table 2. Various case studies.

System Type of OF(s) Case # FC E APL VD VSI

IEEE 30-bus

Bi-OF(s)

1
√ √ √

2
√ √ √

3
√ √ √

4
√ √

5
√ √

Triple-OF(s)

6
√ √ √ √

7
√ √ √ √

8
√ √ √ √

9
√ √ √

Quad-OF(s) 10
√ √ √ √ √

IEEE 57-bus

Bi-OF(s)

11
√ √ √

12
√ √ √

13
√ √

14
√ √ √

15
√ √

16
√ √

Triple-OF(s)

17
√ √ √ √

18
√ √ √ √

19
√ √ √ √

20
√ √ √

Quad-OF(s) 21
√ √ √ √ √

4.1. IEEE 30-Bus

The details of IEEE 30-bus data are given in [50]. The coefficients of cost and emission
of generators are given in Table A1. A single-line diagram of this system is shown in
Figure A1. Ten case studies were applied to solve the MOOPF problem in this test bus
system (five of Bi, four of Tri, and one of Quad objective functions) and are shown in Table 2.
The control variables of this system are 24 items (5 for the active power output of generation
units, 6 for voltage magnitude at the PV bus, 4 for tap changer setting, and 9 for shunt VAR
compensation). The MATLAB program stops when one of the conditions is satisfied: the
number of iterations or the number of NDSs equals 500. The population size is 500 items.
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4.1.1. Bi-Objective OPF on IEEE 30-Bus

The main aim of applying Bi objective functions (OFs) is to optimize two OFs simulta-
neously and select BCS from NDSs. To prove the efficiency of the developed approaches
(MOGWO and MOHHO) in Bi OFs, five case studies were proposed.

Case #1: Minimization of FC and E simultaneously

In the first case, FC and total E were minimized simultaneously using MOGWO and
MOHHO. For the proposed methods, the best compromise solutions (BCS) of FC and E are
as follows:

• FC: 832.82 [$/h] and 826.785 [$/h] for MOGWO and MOHHO, respectively.
• E: 0.2455 [ton/h] and 0.2553 [ton/h] for MOGWO and MOHHO, respectively.

These results illustrated that the optimal results obtained by MOHHO are not dom-
inated by the optimal results obtained by MOGWO, and vice versa. The Pareto front
non-dominated solutions (PFNDSs) produced by MOGWO have a better distribution than
the solutions produced by MOHHO, as shown in Figure 8a.

Case #2: Minimization of FC and APL simultaneously

In the second case, FC and APL were considered OFs and minimized simultaneously
using MOGWO and MOHHO. BCS of FC and APL for these approaches are as follows:

• FC: 825.91 [$/h] and 824.6 2 [$/h] for MOGWO and MOHHO, respectively.
• APL: 5.527 [MW] and 5.727 [MW] for MOGWO and MOHHO, respectively.

These results illustrated that the optimal results obtained by MOHHO are not domi-
nated by the optimal results obtained by MOGWO, and vice versa. However, as Figure 8b
illustrates, PFNDSs obtained by MOGWO have a better distribution than results obtained
by MOHHO.

Case #3: Minimization of FC and VD simultaneously

In this article, FC and VD employing MOGWO and MOHHO represent the third case
of Bi OFs that were optimized. The BCS of FC and VD for these methods are as follows:

• FC: 801.39 [$/h] and 801.3053 [$/h] for MOGWO and MOHHO, respectively.
• VD: 0.3457 [MW] and 0.3321 [MW] for MOGWO and MOHHO, respectively.

MOGWO dominated the optimal results obtained by MOHHO in terms of dominance.
Figure 8c displays PFNDSs for this case that were obtained using MOGWO and MOHHO.

Case #4: Minimization of E and VD simultaneously

Using MOGWO and MOHHO, the fourth case in this work minimizes E and VD
simultaneously. The BCS of E and VD are as folows:

• E: 0.2068 [ton/h] and 0.2086 [ton/h] for MOGWO and MOHHO, respectively.
• VD: 0.1403 [p.u.] and 0.2553 [p.u.] for MOGWO and MOHHO, respectively.

The results obtained by MOGWO are dominated by the results produced by MOHHO.
Figure 8d displays the PFNDS for this case.

Case #5: Minimization of APL and VD simultaneously

APL and VD represent the OFs that were minimized simultaneously using MOGWO
and MOHHO. The BCS of APL and VD for the proposed approaches are as follows:

• APL: 3.7347 [MW] and 4.6037 [MW] for MOGWO and MOHHO, respectively.
• VD: 0.1557 [p.u.] and 0.2517 [p.u.] for MOGWO and MOHHO, respectively.
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The results obtained by MOGWO are dominated by the results produced by MOHHO.
Figure 8e displays the PFNDS for this case. It can be observed from Figure 8a–e that the
PFNDSs obtained by MOGWO have a better distribution than the PFNDSs obtained by
MOHHO for Cases 1–5. The voltage profiles (VP) of the Bi OFs obtained for cases 1–5
are displayed in Figure 9a–e. VD is very important in OPF problems because the results
obtained by developed approaches are effective in cases where the VD is OFs (3, 4, and
5) and infeasible in cases where the VD is not OFs (1 and 2), as shown in Figure 9a–e. In
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Table 3, BCS and the optimal control variables (OCV) of Bi OFs for Cases 1–5 that were
obtained by MOHHO and MOGWO are presented.
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Table 3. OCVs obtained by MOGWO and MOHHO for Cases (1–5) IEEE 30 bus test system.

Item
Case #1 Case #2 Case #3 Case #4 Case #5

MOGWO MOHHO MOGWO MOHHO MOGWO MOHHO MOGWO MOHHO MOGWO MOHHO

Pg
[M

W
]

P1 115.77 123.40 128.246 129.794 175.797 178.878 68.350 68.564 62.131 84.455
P2 57.867 56.256 49.361 48.640 49.578 48.510 66.680 71.887 78.145 72.392
P5 27.986 26.175 31.623 32.262 19.943 21.370 49.805 47.981 49.399 48.230
P8 34.877 33.287 33.614 34.952 21.340 19.949 34.682 33.087 34.993 24.654
P11 25.800 25.782 27.628 20.377 12.605 12.062 29.568 28.919 25.006 27.280
P13 26.408 24.537 18.475 23.123 13.317 12.000 39.630 38.344 37.690 31.012

V
g

[p
.u

.]

V1 1.099 1.090 1.099 1.098 1.085 1.077 1.005 1.035 1.023 1.034
V2 1.089 1.090 1.086 1.079 1.062 1.063 0.968 0.999 1.015 1.034
V5 1.066 1.090 1.061 1.052 1.038 1.031 0.984 0.992 1.014 1.001
V8 1.071 1.090 1.075 1.061 1.043 1.040 1.011 1.045 1.013 1.010
V11 1.095 1.090 1.082 1.086 1.025 1.070 1.081 1.063 1.039 1.037
V13 1.092 1.090 1.084 1.077 1.047 1.034 1.067 1.043 0.994 1.094

Sh
un

tE
le

m
en

t[
M

VA
r] Qc10 1.876 3.399 3.484 2.532 3.279 3.716 4.007 1.648 3.631 3.769

QC12 1.456 1.776 0.656 0.165 2.217 0.994 3.134 3.199 3.350 1.263
Qc15 3.567 1.959 1.373 3.344 2.557 2.580 0.342 0.362 2.250 0.099
Q17 1.720 1.869 3.309 3.927 4.122 2.115 1.638 2.649 4.297 1.309
Qc20 4.508 2.107 2.153 0.899 2.573 4.981 4.757 1.416 3.898 3.222
Q21 2.803 1.510 4.279 0.793 2.415 1.658 3.999 4.071 4.912 0.957
Qc23 2.655 2.202 1.961 3.193 1.248 0.478 4.904 1.076 3.437 0.217
Q24 1.719 0.225 3.556 4.011 3.948 4.311 1.506 1.944 4.614 2.427
Q29 2.240 1.009 2.578 2.226 2.005 2.470 3.509 1.406 1.532 2.609

Ta
p

Po
si

ti
on

T11 1.024 1.019 1.039 1.059 1.027 1.018 1.080 0.966 0.951 1.031
T12 1.048 1.085 1.087 0.995 1.050 1.019 1.020 1.036 0.991 0.962
T15 0.978 0.970 0.952 1.006 0.959 1.048 0.962 1.014 0.980 1.057
T36 0.986 0.997 1.007 0.987 1.003 0.993 0.958 0.966 0.951 0.957

FC [$/h] 832.82 826.785 825.91 824.624 801.39 801.305 945.01 935.569 947.59 910.300
loss [MW] 5.2936 6.0184 5.527 5.7268 9.1917 9.3480 5.2935 4.0230 3.7347 4.6037

Em [ton/h] 0.2455 0.2553 0.2468 0.2635 0.3264 0.3711 0.2068 0.2086 0.1981 0.2269
VD [p.u.] 1.2158 1.1531 0.9766 0.9231 0.3457 0.3321 0.1403 0.2553 0.1557 0.2517

The BCS of OFs are given in bold.

4.1.2. Triple-Objective OPF on IEEE 30-Bus

In this type, three OFs were optimized simultaneously to obtain BCS from NDSs. Four
case studies were suggested. It can be summarized as below:

Case #6: Optimization of FC, E, and APL simultaneously

In the first case of this type, FC, E, and APL are minimized simultaneously using
MOGWO and MOHHO to find PFNDSs. The BCS of FC, E, and APL for the proposed
approaches are the following:

• FC: 873.07 [$/h], and 868.13 [$/h], for MOGWO and MOHHO, respectively.
• E: 0.2200 [ton/h] and 0.2272 [ton/h] for MOGWO and MOHHO, respectively.
• APL: 4.332 [MW] and 4.551 [MW] for MOGWO and MOHHO, respectively.

Figure 10a illustrates the PFNDSs that MOHHO and MOGWO that are obtained in
this case.

Case #7: Minimization of FC, E, and VD simultaneously

In the seventh case of this paper, FC, E, and VD are optimized simultaneously using
MOGWO and MOHHO to achieve PFNDSs. BCS of FC, E, and VD for the proposed
approaches are as follows:

• FC: 832.56 [$/h] and 835.2 [$/h], for MOGWO and MOHHO, respectively.
• E: 0.2531 [ton/h] and 0.2553 [ton/h] for MOGWO and MOHHO, respectively.
• VD: 0.1584 [p.u.] and 0.2184 [p.u.] for MOGWO and MOHHO, respectively.
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The MOGWO results were superior to the MOHHO results in terms of optimal results.
Figure 10b illustrates the PFNDSs that MOHHO and MOGWO were able to obtain for
this case.

Case #8: Minimization of FC, APL, VD simultaneously

The third case of triple OFs is a minimization of FC, APL, and VD simultaneously
using MOGWO and MOHHO to achieve PFNDSs. BCS of FC, APL, and VD for MOGWO
and MOHHO are the following:

• FC: 824.6131 [$/h] and 822.197 [$/h] for MOGWO and MOHHO, respectively.
• APL: 6.5035 [MW] and 6.8626 [MW] for MOGWO and MOHHO, respectively.
• VD: 0.1733 [p.u.] and 0.2709 [p.u.] for MOGWO and MOHHO, respectively.

Figure 10c displays the PFNDSs for this case that were obtained by MOGWO and MO-
HHO.

Case #9: Minimization of APL, E, and VD

APL, E, and VD are the OFs that were minimized simultaneously to achieve PFNDSs
using MOGWO and MOHHO. BCS of APL, E, and VD for the proposed approaches are
as follows:

• APL: 3.5429 [MW] and 4.9524 [MW] for MOGWO and MOHHO, respectively.
• E: 0.2063 [ton/h] and 0.2167 [ton/h] for MOGWO and MOHHO, respectively.
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• VD: 0.1733 [p.u.] and 0.2132 [p.u.] for MOGWO and MOHHO, respectively.

The MOGWO results were superior to the MOHHO results. The PFNDSs for this case
that were obtained by MOHHO and MOGWO are displayed in Figure 10d. Table 4 presents
the optimal result of the OFs and the best control variables of the Triple as determined by
the proposed approaches.

Table 4. OCVs obtained by MOGWO and MOHHO for Cases (6–10) IEEE 30 bus.

Item
Case #6 Case #7 Case #8 Case #9 Case #10

MOGWO MOHHO MOGWO MOHHO MOGWO MOHHO MOGWO MOHHO MOGWO MOHHO

Pg
[M

W
]

P1 92.747 96.8526 120.350 120.137 126.606 142.628 57.852 81.9629 128.384 119.263
P2 59.058 65.3022 61.612 66.8159 60.904 49.0214 75.388 71.8680 57.126 56.912
P5 38.151 40.3351 27.300 25.3743 28.867 35.3521 49.605 41.2094 31.894 36.532
P8 34.952 33.7981 31.861 33.1248 34.275 26.4919 34.879 29.8643 27.771 25.380
P11 29.814 29.0385 29.077 24.4456 22.998 19.9011 29.817 25.2125 19.912 22.304
P13 33.030 22.6449 19.759 21.2523 16.274 16.8885 39.422 38.2552 24.921 29.226

V
g

[p
.u

.]

V1 1.086 1.0928 1.036 1.0155 1.037 1.0565 1.029 1.0326 1.043 1.042
V2 1.072 1.0928 1.016 1.0129 1.025 1.0455 1.018 1.0252 1.026 1.042
V5 1.048 1.0928 1.020 0.9626 0.999 1.0098 0.990 1.0252 1.004 1.042
V8 1.063 1.0928 1.007 1.0378 1.013 1.0229 1.009 1.0252 1.000 1.042
V11 1.073 1.0928 1.047 0.9740 1.072 1.0674 1.055 1.0072 1.086 1.042
V13 1.078 1.0928 1.031 1.0727 1.022 1.0520 1.040 1.0252 1.069 1.042

Sh
un

tE
le

m
en

t[
M

VA
r] Qc10 0.045 0.1804 1.814 0.8021 2.505 2.0147 3.288 0.6628 2.137 1.042

QC12 4.412 0.1059 0.882 0.1011 1.813 0.8359 1.291 0.4180 3.771 1.042
Qc15 2.307 3.0777 3.296 0.7415 2.578 2.3531 2.772 0.6948 2.934 1.042
Q17 3.728 0.5221 1.095 0.2440 1.526 2.0650 2.241 0.8163 2.329 1.042
Qc20 3.627 1.3924 3.787 1.4416 3.269 3.0422 4.621 3.4108 2.321 3.076
Q21 1.309 1.9978 3.720 3.8092 3.404 1.6441 0.969 2.4186 2.606 3.076
Qc23 2.473 0.3811 0.580 2.3401 4.315 0.2479 2.946 0.5415 1.844 3.076
Q24 2.463 3.2520 4.701 3.3128 3.946 2.6019 3.110 0.3501 0.767 3.076
Q29 2.403 0.7225 2.629 4.4777 4.637 0.3921 1.682 0.8227 2.162 3.076

Ta
p

Po
si

ti
on

T11 1.048 1.0460 1.003 1.0335 0.983 1.0525 1.005 0.9576 1.030 1.094
T12 1.058 1.0689 0.990 0.9561 1.025 0.9600 0.996 0.9688 0.986 1.006
T15 1.037 1.0019 0.972 0.9564 0.987 1.0357 0.969 0.9567 1.040 0.952
T36 1.017 1.0072 0.957 0.9808 0.980 0.9706 0.957 0.9551 0.976 0.972

FC [$/h] 832.82 873.071 868.126 832.565 835.199 824.613 822.197 955.313 900.227 827.75
loss [MW] 5.2936 4.3319 4.5513 6.3268 6.8006 6.5035 6.8626 3.5429 4.9524 6.5865

Em [ton/h] 0.2455 0.2200 0.2272 0.2531 0.2553 0.2661 0.2882 0.2063 0.2167 0.2625
VD [p.u.] 1.2158 0.4720 0.6153 0.1584 0.2184 0.1733 0.2709 0.1733 0.2132 0.2575

The BCS of OFs are given in bold.

4.1.3. Quad Objective OPF on IEEE 30-Bus

The last type of OFs in this article is the Quad OFs, as shown in Table 2. One case
study of Quad OFs is the case that was suggested to solve MOOPF.

Case #10: Minimization of FC, E, APL, and VD simultaneously

FC, APL, E, and VD are the OFs that were minimized in this case using the proposed
approaches to achieve PFNDSs. BCS of FC, APL, E, and VD for MOGWO and MOHHO
are the following:

• FC: 836.5049 [$/h] and 863.4444 [$/h] for MOGWO and MOHHO, respectively.
• APL: 5.9222 [MW] and 5.2679 [MW] for MOGWO and MOHHO, respectively.
• E: 0.2460 [ton/h] and 0.2320 [ton/h] for MOGWO and MOHHO, respectively.
• VD: 0.2264 [p.u.] and 0.7258 [p.u.] for MOGWO and MOHHO, respectively.

It can be observed from Figure 11a–d that PFNDSs obtained by MOGWO have a better
distribution than PFNDSs obtained by MOHHO for all Cases (6–9). Figure 11a–e shows the
VP of the Triple and Quad OFs obtained by MOGWO and MOHHO for cases (6–10). The
results obtained by the developed approaches are effective in cases where the VD is OFs
(7–10) and infeasible in cases where the VD is not OFs (Case #6), as shown in Figure 11a–d.
Table 5 presents the best result for OFs and the optimal control variables (OCVs) of the
Triple and Quad OFs for Cases (6–10) as determined by MOGWO and MOHHO. For Cases
1, 2, 3, and 6, Tables 4 and 6 compare the BCS of MOGWO and MOHHO with other
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newly optimization techniques. In terms of BCS results, it is evident that the developed
approaches give a better result than other optimization methods.
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Table 5. Comparison of BCS for MOGWO and MOHHO with optimization methods for cases (1–2).

Case #1 Case #2

Method FC [$/h] E [ton/h] Method FC [$/h] RPL [MW]

IMOMRFO [51] 817.96 0.2736 Jaya [49] 817.13 6.04
MSFLA [52] 823.278 0.29078 MO-DEA [53] 820.8802 5.5949

MOEA/D-SF [54] 829.515 0.2501 EGA [55] 822.87 5.613
MOSGA [35] 830.694 0.2495 NSGA-II [30] 823.8875 5.7699

ESDE-MC [56] 830.719 0.2483 QOTLBO [31] 826.4954 5.2727
MGBICA [57] 830.851 0.2484 ESDE-MC [56] 827.16 5.227
GBICA [57] 830.852 0.2488 MOABC/D [58] 827.636 5.2451

NHBA-CPFD [59] 830.959 0.2350 ESDE-EC [56] 827.95 5.4524
ESDE-EC [56] 831.094 0.2510 ESDE [56] 828.841 5.59
NMBAS [60] 831.439 0.2337 TLBO [31] 828.53 5.2883
MODFA [61] 831.665 0.2432 DE [62] 828.59 5.69
MHBAS [63] 832.036 0.2337 NMBAS [60] 831.155 5.0707

MOIDEA [23] 832.4283 0.2336 MPIO-COSR [64] 831.558 5.1085
MPIO-COSR [64] 832.4655 0.2351 MOIDEA [23] 831.841 5.17

NSGA-III [61] 832.5323 0.2483 NHBA [61] 831.8513 5.1096
NHBA [59] 832.6471 0.2375 MHBAS [63] 832.1236 5.0566

MPIO-PFM [61] 833.1703 0.2397 MPIO-PFM [61] 832.2274 5.1270
MDE [63] 833.1728 0.2346 HFBA-COFS [65] 832.3203 5.0796

NSGA-II [61] 833.2605 0.2367 DE-PFA [65] 833.4465 5.1354
ESDE [56] 833.4743 0.2540 NSGA-II [61] 833.5363 5.3483

MOPSO [61] 833.7139 0.2492 MDE [63] 833.789 5.1517
BSA [66] 835.02 0.2425 MOHS [30] 832.6709 5.3143

MOPSO [60] 835.3988 0.2386 NSGA-II [36] 835.444 5.16
MODA [67] 838.6037 0.2536 NSGA-III [61] 836.81 5.1775

rNSGA-II [36] 848.1499 0.2464 MOPSO [61] 837.347 5.2635
NSGA-11 [36] 850.92 0.2442 MOMICA [68] 848.0544 4.5603

SPEA2 [36] 860.983 0.2305 MOSGA [35] 848.56 4.8975
ISPEA [36] 865.95 0.2234 MODA [67] 849.3526 4.814
MOHHO 826.785 0.2553 MOPSO [60] 852.8083 5.2310
MOGWO 832.82 0.2455 MOAGDE [51] 856.833 5.1224

OMNI [51] 861.051 5.6896
MO_RING_PSO_SCD [51] 892.141 4.8224

MOHHO 824.6240 5.7268
MOGWO 825.91 5.527

The values given in bold represent the proposed approaches.

Table 6. Comparison of BCS for MOGWO and MOHHO with other methods.

Case #3 Case #6

Method FC [$/h] VD [p.u.] Method FC [$/h] E [ton/h] RPL [MW]

MOIDEA [23] 802.48 0.1452 MOSGA [35] 857.5806 0.2288 4.7379
MOSMA [24] 802.0533 0.3267 MOEA /D-SF [54] 881.012 0.2164 4.1441
MOHGS [26] 803.094 0.1813 NMBAS [60] 863.8246 0.2123 4.2089

MOAGDE [51] 821.992 0.1285 MPIO-PFM [61] 866.0601 0.2160 4.4474
OMNI [51] 838.232 0.3317 MOPSO [61] 868.0536 0.2168 4.4576

MO_RING_PSO_SCD [51] 844.617 0.1571 MHBAS [63] 864.4699 0.2114 4.2476
MO-DEA [53] 803.9116 0.1158 MDE [63] 867.1991 0.2116 4.7428

DE [62] 805.262 0.1357 MPIO-COSR [64] 863.9503 0.2126 4.3177
MOMICA [68] 804.9611 0.0952 HFBA-COFS [65] 867.4262 0.2100 4.1544

NKEA [68] 804.9612 0.099 NSGA-II [65] 867.9027 0.2111 5.0865
BB-MOPSO [68] 804.9639 0.1021 DE-PFA [65] 869.9216 0.2087 4.2429
MNSGA-II [68] 805.0076 0.0989 I-NSGA-III [69] 871.022 0.2218 4.6004

MOICA [68] 805.0345 0.1004 NSGA-III [69] 873.7811 0.2219 4.8522
IMFO [70] 803.5715 0.0954 FAHSPSO-DE [71] 867.9808 0.2666 5.5638

I-NSGA-III [69] 803.129 0.1212 MOHHO 868.1260 0.2272 4.5513
NSGA-III [69] 803.241 0.1157 MOGWO 873.0706 0.2200 4.3319

BHBO [72] 804.598 0.1262
BBO [73] 804.998 0.102
MOHHO 801.3053 0.3321
MOGWO 801.39 0.3457

The values given in bold represent the proposed approaches.
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4.2. IEEE 57-Bus Power System

The second standard for evaluating the performance of MOGWO and MOHHO is the
IEEE 57-bus system. Table 1 lists the characteristics of this system. Total demand of this
system is 1250.8 MW [74]. Figure A2 represents the single-line diagram. This system has
33 control variables. The cost and emission coefficients are illustrated in Table A2. The
MATLAB program stops when one of the following conditions is satisfied: the number of
iterations equals 100 or the number of NDSs equals 500. The population size is 100 items.
BCS and OCVs were obtained by MOGWO and MOHHO and are reported in Tables 7–9.
Tables 10 and 11 compare the BCS of MOGWO and MOHHO with other optimization
algorithms for Cases (11, 12, and 17). In terms of BCS results, it is evident that MOGWO
and MOHHO are superior to several methods.

Table 7. OCVs obtained by MOGWO and MOHHO for Cases (11–14) IEEE 57-bus test.

Item
Case #11 Case #12 Case #13 Case #14

MOGWO MOHHO MOGWO MOHHO MOGWO MOHHO MOGWO MOHHO

Pg
[M

W
]

P1 162.1359 161.877 164.044 152.300 149.9059 171.865 164.550 154.1291
P2 99.9912 93.150 65.767 77.060 99.9936 75.360 80.452 59.2831
P5 76.6777 82.569 54.310 59.257 132.0398 128.870 53.169 40.9314
P8 99.1484 93.524 83.286 94.506 92.2167 89.934 53.126 64.3804
P11 364.6249 357.647 408.738 378.438 287.7559 302.644 473.914 490.9300
P13 97.8011 97.250 89.877 95.470 98.7578 95.980 81.226 77.2354

V
g

[p
.u

.]

V1 363.0426 377.725 397.310 405.393 402.2666 396.967 361.379 384.8481
V2 1.0893 1.083 1.066 1.096 1.0793 1.096 1.016 1.0136
V5 1.0854 1.083 1.070 1.096 1.0885 1.096 1.018 0.9825
V8 1.0744 1.075 1.060 1.096 1.0621 1.096 0.997 1.0061
V11 1.0879 1.083 1.063 1.096 1.0655 1.096 1.011 0.9746
V13 1.0694 1.080 1.060 1.096 1.0893 1.096 1.013 0.9823

Sh
un

tE
le

m
en

t[
M

VA
r] Qc10 1.0543 1.083 1.058 1.096 1.0593 1.096 1.032 1.0268

QC12 1.0440 1.083 1.059 1.096 1.0597 1.096 1.012 1.0064
Qc15 1.0054 1.008 0.963 1.035 1.0456 1.096 0.958 0.9531
Q17 0.9258 1.073 0.990 1.084 0.9325 1.075 1.013 0.9735
Qc20 1.0175 1.083 0.975 0.959 0.9809 1.046 0.967 0.9677
Q21 1.0046 1.056 0.997 1.017 0.9084 1.067 0.956 0.9592
Qc23 1.0147 0.969 0.956 0.978 1.0310 0.973 0.991 0.9513
Q24 1.0859 1.083 1.026 1.046 0.9476 1.051 1.027 1.0060
Q29 0.9562 1.089 0.955 1.096 1.0208 1.064 0.954 0.9622

Ta
p

Po
si

ti
on

T11 1.0201 1.083 0.973 0.967 1.0923 1.041 0.946 0.9859
T12 1.0142 1.076 0.972 1.000 0.9090 0.998 0.913 0.9532
T15 0.9188 1.046 0.913 1.066 1.0603 0.982 0.937 0.9645
T36 0.9178 1.046 0.956 1.033 1.0112 0.975 0.972 0.9527

FC [$/h] 42,219.67 42,408.02 41,871.93 41,994.52 44,528 44,255 41,823.48 41,985.63
Em [ton/h] 1.0953 1.1013 1.2818 1.2003 0.9990 1.0384 1.4252 1.5251
loss [MW] 12.6232 12.9416 12.5332 11.624 12.1365 10.820 17.0204 20.8913
VD [p.u.] 4.1332 2.6270 3.1533 1.8831 1.6405 2.3705 0.7091 0.7565

The BCS of OFs are given in bold.

Table 8. OCVs obtained by MOGWO and MOHHO for Cases (15–18) IEEE 57 bus test.

Item
Case #15 Case #16 Case #17 Case #18

MOGWO MOHHO MOGWO MOHHO MOGWO MOHHO MOGWO MOHHO

Pg
[M

W
]

P1 178.4164 201.1055 216.2864 404.415 149.786 171.974 141.049 240.603
P2 77.6697 57.3015 97.5350 75.490 86.910 89.678 94.506 79.597
P5 118.2028 127.5753 137.4893 85.199 73.532 74.176 89.761 84.018
P8 91.6089 63.0544 94.6897 59.629 96.813 93.564 85.988 77.359
P11 292.4633 358.4195 284.0895 213.733 353.454 342.315 366.206 359.180
P13 97.1793 63.2194 96.9802 73.656 95.435 97.118 90.626 80.433

V
g

[p
.u

.]

V1 406.9564 393.3972 341.4035 363.971 406.097 393.719 396.830 345.021
V2 1.0368 1.0344 0.9957 1.021 1.062 1.083 1.015 1.017
V5 1.0417 1.0225 1.0331 1.016 1.068 1.092 1.012 1.020
V8 1.0219 1.0135 1.0150 1.012 1.056 1.091 0.999 1.011
V11 0.9991 0.9886 0.9923 0.998 1.051 1.093 1.011 1.007
V13 1.0208 1.0227 1.0165 0.984 1.082 1.091 1.013 1.017
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Table 8. Cont.

Item
Case #15 Case #16 Case #17 Case #18

MOGWO MOHHO MOGWO MOHHO MOGWO MOHHO MOGWO MOHHO

Sh
un

tE
le

m
en

t[
M

VA
r]

Qc10 1.0121 1.0178 1.0171 1.025 1.091 1.091 1.047 1.010
QC12 1.0125 1.0113 1.0307 1.013 1.072 1.091 1.003 1.021
Qc15 0.9251 0.9866 1.0286 0.969 0.990 1.092 0.937 1.025
Q17 0.9617 0.9536 0.9455 0.952 0.930 1.095 1.013 0.951
Qc20 0.9595 0.9622 0.9586 0.952 0.985 1.052 0.933 0.954
Q21 0.9520 0.9500 0.9580 0.964 0.969 0.994 0.951 0.957
Qc23 0.9925 0.9544 0.9913 0.950 1.054 1.005 0.987 1.022
Q24 1.0292 1.0367 1.0257 1.015 0.952 0.976 0.997 1.039
Q29 1.0002 0.9616 0.9560 0.955 0.910 1.038 0.982 0.951

Ta
p

Po
si

ti
on

T11 0.9325 0.9532 0.9696 0.952 0.973 1.085 0.956 0.955
T12 0.9332 0.9588 0.9512 0.952 1.021 1.070 0.923 0.954
T15 0.9697 0.9575 0.9480 0.952 0.982 1.043 0.930 0.952
T36 0.9592 0.9555 0.9400 0.962 0.941 1.035 0.971 0.952

FC [$/h] 44,029 43,810 45,345 49,643 42,277 42,399.25 42,588.82 43,225.92
Em [ton/h] 1.0452 1.2650 0.9844 1.498 1.1338 1.1087 1.1354 1.1802
loss [MW] 11.6969 14.0954 17.6683 25.2919 11.2276 11.7439 14.167 15.412
VD [p.u.] 0.7277 0.7146 0.7599 0.6564 3.6118 1.7873 0.6881 0.7284

The BCS of OFs are given in bold.

Table 9. OCVs obtained by MOGWO and MOHHO for Cases (15–18) IEEE 57 bus test.

Item
Case #19 Case #20 Case #21

MOGWO MOHHO MOGWO MOHHO MOGWO MOHHO

Pg
[M

W
]

P1 175.814 157.538 186.053 174.293 150.234 183.301
P2 55.600 92.786 75.979 98.340 91.779 67.500
P5 51.960 92.563 133.774 134.739 94.909 64.185
P8 77.276 96.436 96.796 97.117 94.745 75.877
P11 445.829 335.289 299.919 297.962 331.307 399.713
P13 79.739 88.563 87.721 82.667 94.882 78.741

V
g

[p
.u

.]

V1 379.595 400.994 383.783 379.471 404.767 397.719
V2 1.009 0.998 1.022 1.023 1.034 1.003
V5 1.010 1.020 1.027 1.030 1.036 0.980
V8 1.020 1.020 1.015 1.015 1.020 1.019
V11 1.032 0.990 1.002 1.002 1.003 1.025
V13 1.061 1.020 1.038 1.010 1.019 1.010

Sh
un

tE
le

m
en

t[
M

VA
r] Qc10 1.035 1.020 1.028 1.031 1.016 1.036

QC12 1.013 1.020 1.004 1.009 1.007 1.030
Qc15 0.963 0.966 0.982 0.953 1.017 0.970
Q17 1.062 0.976 1.050 0.996 0.970 0.996
Qc20 0.963 0.956 0.958 0.963 1.014 0.955
Q21 0.971 0.953 1.011 0.965 0.996 0.995
Qc23 0.997 0.974 0.951 0.974 0.977 0.973
Q24 1.006 1.020 0.991 1.025 1.017 1.034
Q29 1.003 0.959 1.015 0.957 0.956 0.956

Ta
p

Po
si

ti
on

T11 0.938 0.966 0.949 0.956 0.987 0.964
T12 0.929 0.952 0.961 0.953 0.948 1.005
T15 0.928 0.953 0.945 0.952 0.934 0.956
T36 0.968 0.952 0.954 0.958 0.940 0.958

FC [$/h] 41,863.13 42,449.45 44,633 44,632 42,876.63 42,241.61
Em [ton/h] 1.3808 1.0900 1.0323 1.0053 1.0801 1.2809
loss [MW] 15.01 13.349 13.2255 13.7882 11.8224 16.2366
VD [p.u.] 0.7936 0.7434 0.7711 0.7294 0.8300 0.8384

The BCS of OFs are given in bold.
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Table 10. Comparison of BCS for MOGWO and MOHHO with optimization methods for cases (11
and 12).

Case #11 Case #12

Method FC [$/h] E [ton/h] Method FC [$/h] RPL [MW]

MOSGA [35] 42,497.013 1.2712 MOSGA [35] 41,994.618 11.8514
ISPEA [36] 42,444.554 1.2904 MO-DEA [56] 42,006.14 12.3669
SPEA2 [36] 42,320.255 1.4054 ESDE-EC [56] 42,013.34 11.9668

rNSGA-II [36] 42,635.717 1.3784 ESDE [56] 42,020.744 12.2155
NSGA-II [36] 43,567.765 1.2979 ESDE-MC [56] 41,998.359 11.8415

IMOMRFO [51] 41,742.944 1.7912 MHBAS [63] 42,084.81 10.5043
ESDE-MC [56] 42,857.487 1.2191 MDE [63] 42,125.83 10.9193
ESDE-EC [56] 42,863.212 1.2387 HFBA-COFS [65] 42,122.014 10.6995

ESDE [56] 42,863.324 1.2662 NSGA-II [65] 42,125.604 11.1296
MGBICA [57] 42,369.066 1.2940 MOQRJFS [75] 41,846.225 15.8873
GBICA [57] 42,138.37 1.3941 MOJFS [75] 42,591.871 15.1461
NMBAS [60] 43,117.86 1.2245 IHOA [76] 42,419.525 10.8192
MOPSO [60] 43,279.64 1.2546 MOHHO 41,994.52 11.624

MPIO-PFM [61] 43,205.848 1.2386 MOGWO 41,871.93 12.5332
MHBAS [63] 43,174.05 1.2211

MDE [63] 43,505.90 1.2236
MPIO-COSR [64] 43,131.274 1.2314
HFBA-COFS [65] 43,259.3 1.2129

DE-PFA [65] 43,331.757 1.2180
NSGA-II [65] 43,353.566 1.2272

MOQRJFS [75] 43,713.015 1.3074
MOJFS [75] 43,888.232 1.2383
IHOA [76] 43,864.88 1.2192
MOHHO 42,219.67 1.0953
MOGWO 42,408.02 1.1013

The values given in bold represent the proposed approaches.

Table 11. Comparison of BCS for MOGWO and MOHHO with optimization methods for Case 17.

Case #17

Method FC [$/h] E [ton/h] RPL [MW]

MOSGA [35] 42,815.789 1.3219 10.7648
MPIO-PFM [61] 43,133.99 1.5027 11.7899

MPIO-COSR [64] 42,133.331 1.4360 11.7711
DE-PFA [65] 42,387.156 1.5175 11.3076

HFBA-COFS [65] 42,856.49 1.3436 11.6782
NSGA-II [65] 42,887.024 1.4572 11.6865

FAHSPSO-DE [71] 44,759.776 1.6035 13.1377
MOQRJFS [75] 44,315.748 1.3597 14.2560

MOJFS [75] 45,064.711 1.1891 15.0875
MOHHO 42,399.25 1.1087 11.7439
MOGWO 42,277 1.1338 11.2276

The values given in bold represent the proposed approaches.

4.2.1. Bi OFs OPF

Two OFs were minimized simultaneously to obtain BCS from NDSs. FMF is the
strategy used to find BCS. CD is the approach employed to arrange NDSs in PFNDSs.
To illustrate the effectiveness and superiority of the developed techniques MOGWO and
MOHHO to solve Bi OFs OPF, six cases were proposed. The summary of these cases is as
follows:

Case #11: Optimization of FC and E.
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The first case of this type on this system is to find the minimization of FC and E simul-
taneously using MOGWO and MOHHO. BCS of FC and E for the proposed approaches are
the following:

• FC: 42,219.67 [$/h] and 42,408.02 [$/h] for MOGWO and MOHHO, respectively.
• E: 1.0953 [ton/h] and 1.1013 [ton/h] for MOGWO and MOHHO, respectively.

These results show that MOGWO dominated MOHHO in terms of BCS. Figure 12a
displays PFNDSs for this case that were produced by MOGWO and MOHHO.
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Case #12: Minimization of FC and APL

FC and APL were considered as OFs and minimized using MOGWO and MOHHO.
BCS of FC and APL for MOGWO and MOHHO are as follows:

• FC: 41,871.94 [$/h] and 41,994.52 [$/h] for MOGWO and MOHHO, respectively.
• APL: 12.53 [MW] and 11.62 [MW] for MOGWO and MOHHO, respectively.

Figure 12b displays the PFNDSs obtained by the proposed approaches.

Case #13: Minimization of E and APL

The third case of Bi OFs on the IEEE 57-bus test is to optimize E and APL by using
MOGWO and MOHHO. The BCS of E and APL for MOGWO and MOHHO are the following:

• E: 0.9990 [ton/h] and 1.0384 [ton/h] for MOGWO and MOHHO, respectively.
• APL: 12.137 [MW] and 10.820 [MW] for MOGWO and MOHHO, respectively.

PFNDSs obtained by MOGWO and MOHHO for this case are shown in Figure 12c.

Case #14: Minimization of FC and VD

In this case, The OFs that were minimized using MOGWO and MOHHO are FC and
VD. BCS of FC and VD for MOGWO and MOHHO are as follows:

• FC: 41,823.485 [$/h] and 41,985.63 [$/h] for MOGWO and MOHHO, respectively.
• VD: 0.7091 [p.u.] and 0.7565 [p.u.] for MOGWO and MOHHO, respectively.

PFNDSs obtained by MOGWO and MOHHO for this case are presented in Figure 12d.
BCS obtained by MOHHO were dominated by MOGWO.

Case #15: Minimization of APL and VD

The OFs that were simultaneously optimized using MOGWO and MOHHO are repre-
sented by APL and VD. BCS of VD and APL for the proposed techniques are as follows:

• APL: 11.6969 [MW] and 14.0954 [MW] for MOGWO and MOHHO, respectively.
• VD: 0.7277 [p.u.] and 0.7146 [p.u.] for MOGWO and MOHHO, respectively.

The PFNDSs for this case that were obtained by MOHHO and MOGWO are displayed
in Figure 12e.

Case #16: Minimization of E and VD

The last case of Bi OFs OPF on an IEEE 57-bus system is the minimization of E and
VD simultaneously using MOGWO and MOHHO. The BCS of E and VD for the proposed
techniques are the following:

• E: 0.9844 [ton/h] and 1.498 [ton/h] for MOGWO and MOHHO, respectively.
• VD: 0.7599 [p.u.] and 0.6564 [p.u.] for MOGWO and MOHHO, respectively.

PFNDSs obtained by the proposed techniques MOGWO and MOHHO for this case
are shown in Figure 12f. The BCS and OFs for Bi OFs on the IEEE 57 bus system ob-
tained by MOGWO and MOHHO for Cases (11–16) are illustrated in Tables 7 and 8. From
Figure 12a–f, it can be observed that the PFNDSs obtained by MOGWO are better dis-
tributed than the PFNDSs obtained by MOHHO. Figure 13a–f shows the VD of the Bi
OFs on the IEEE 57-bus system obtained by MOGWO and MOHHO for Cases (11–16).
This figure proves that the solutions obtained by MOGWO and MOHHO are effective in
cases 14–16 (when VD is OFs) and infeasible in cases 11–13 (when VD is not OFs), as shown
in Figure 8a–e.
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4.2.2. Triple OFs OPF on IEEE 57-Bus

To obtain the BCS from NDSs in the non-dominated set, three OFs were given con-
sideration simultaneously. Four case studies were suggested. BCS and the OCV for Triple
OFs on this system obtained by MOGWO and MOHHO are illustrated in Table 8. It can be
summarized as follows:
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Case #17: Minimization of FC, E, and APL

This case combined FC, E, and APL to optimize simultaneously using MOGWO and
MOHHO to obtain the PFNDSs. The BCS of FC, E, and APL for the proposed techniques
are as follows:

• FC: 42,277.003 [$/h] and 42,399.26 [$/h] for MOGWO and MOHHO, respectively.
• E: 1.1338 [ton/h] and 1.1087 [ton/h] for MOGWO and MOHHO, respectively.
• APL: 11.2276 [MW] and 11.7439 [MW] for MOGWO and MOHHO, respectively.

Figure 14a displays PFNDSs for this case that were obtained using MOGWO and MOHHO.
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Case #18: Minimization of FC, E, and VD

In the eighteenth case, in order to achieve PFNDSs, the FC, E, and VD were considered
as OFs and minimized simultaneously using MOGWO and MOHHO. BCS of FC, E, and
VD for the proposed techniques are the following:

• FC: 42,590.707 [$/h] and 43,225.917 [$/h] for MOGWO and MOHHO, respectively.
• E: 1.0970 [ton/h] and 1.1802 [ton/h] for MOGWO and MOHHO, respectively.
• VD: 0.7818 [p.u.] and 0.7284 [p.u.] for MOGWO and MOHHO, respectively.

Figure 14b displays the PFNDSs that MOHHO and MOGWO obtained for this Case.

Case #19: Minimization of FC, APL, and VD

The nineteenth case of this paper is a minimization of FC, APL, and VD simultaneously
using MOGWO and MOHHO to achieve the PFNDSs. BCS of FC, APL, and VD for the
proposed techniques are as follows:
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• FC: 42,648 [$/h] and 42,854 [$/h] for MOGWO and MOHHO, respectively.
• APL: 11.972 [MW] and 13.370 [MW] for MOGWO and MOHHO, respectively.
• VD: 0.7886 [p.u.] and 0.7087 [p.u.] for MOGWO and MOHHO, respectively.

Figure 14c displays PFNDSs that MOHHO and MOGWO were able to obtain for
this case.

Case #20: Minimization of E, APL, and VD

The twentieth case of this paper is the simultaneous minimization of E, APL, and VD
using MOGWO and MOHHO to achieve the PFNDSs. The BCS of E, APL, and VD of the
proposed techniques are the following:

• E: 1.0323 [ton/h] and 1.0053 [ton/h] for MOGWO and MOHHO, respectively.
• APL: 13.2255 [MW] and 13.7882 [MW] for MOGWO and MOHHO, respectively.
• VD: 0.7711 [p.u.] and 0.7294 [p.u.] for MOGWO and MOHHO, respectively.

Figure 14d displays PFNDSs for this case that were obtained by MOGWO and MOHHO.

4.2.3. Quad Objective OPF on IEEE 57-Bus

The last type of OFs in this paper represents the Quad OFs on the IEEE 57-bus, as
shown in Table 2. In one case study, Quad OFs were suggested to solve MOOPF of this
type. It can be summarized as follows:

Case #21: Minimization of FC, E, APL, and VD voltage deviation

The OFs that were simultaneously optimized using MOGWO and MOHHO to produce
the PFNDSs are FC, APL, E, and VD. The BCS of the proposed techniques for FC, APL, E,
and VD are as follows:

• FC: 42,876.63 [$/h] and 42,241.61 [$/h] for MOGWO and MOHHO, respectively.
• E: 1.0801 [ton/h] and 1.2809 [ton/h] for MOGWO and MOHHO, respectively.
• APL: 11.8224 [MW] and 16.2366 [MW] for MOGWO and MOHHO, respectively.
• VD: 0.8300 [p.u.] and 0.8384 [p.u.] for MOGWO and MOHHO, respectively.

The best result and OCV for Tri and Quad OFs on this system obtained by MOGWO
and MOHHO for Cases (17–21) are illustrated in Tables 6 and 7. From Figure 14a–d, it
can be observed that the PFNDSs obtained by MOGWO are better distributed than the
PFNDSs obtained by MOHHO. Using the developed techniques MOGWO and MOHHO,
Figure 15a–e shows the voltage magnitude values of the Triple and Quad OFs for Cases
(17–21). As seen in Figure 15a–e, this figure demonstrates that the solutions found by
MOGWO and MOHHO are effective in cases 18–21 (when VD is OFs) and infeasible in
case 17 (where VD is not OFs).
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4.3. Discussion

Due to the poor convergence to the Pareto front solutions of other multi-objective
methods, these algorithms tend to converge to a local optimum, while the developed
approaches, MOGWO and MOHHO, maintain well-distributed and good convergence
characteristics. It is worth mentioning, it is more difficult to obtain the optimal solution
for all objective functions to solve multi-objective optimizing problems, based on the “no
free lunch” theorem which states “none of the meta-heuristics algorithms can be talented
to resolve all optimization problems” [74]. From the analysis of the results presented in
Tables 5, 6, 10 and 11, it appears that the developed approaches, MOGWO and MOHHO,
have very good results in relation to other methods presented in the literature, for different
test cases.

4.4. Performance Comparison

The performance of the developed approaches, MOGWO and MOHHO, to solve
MOOPF problems in power systems is presented in this subsection. The developed ap-
proaches MOGWO and MOHHO were performed in MOOPF to obtain well-distribution
and BCS in PFNDSs. Two challenges faced by the researchers to solve MOOPF problems
are to achieve both well-distribution and the global optimum of PFNDSs. In another sense,
it should be achieving the balance between coverage and convergence that confirms the
superiority and efficiency of the developed approaches. Based on the “no-free lunch”
theorem (NFL), the optimal solution of whole problems cannot be achieved by one meta-
heuristic algorithm [74]. Therefore, no metaheuristic algorithm is superior to the other
algorithms on all sides (convergence and coverage). In other words, it is more difficult to
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select the best algorithm to solve MOOPF problems and find the best solutions to whole
problems, as shown in Tables 5, 6, 10 and 11. The performance of the developed approaches
MOGWO and MOHHO is high, and the numerical results are high-quality in MOOPF. The
competition is very good in terms of computational times with other methods. Based on a
high-quality random search, the numerical results of the conflicting OFs provide trade-off
solutions for each OF. In PFNDSs, the well-distribution and high efficiency of the developed
approaches MOGWO and MOHHO are provided.

5. Conclusions

In this study, the authors developed two popular meta-heuristic optimization tech-
niques, Grey Wolf Optimizer (GWO) and Harris Hawks Optimization (HHO), to solve
MOOPF problems. These techniques were named Multi-Objective GWO (MOGWO) and
Multi-Objective HHO (MOHHO). Various conflicting objectives were optimized simultane-
ously, such as fuel cost, actual power losses, emission, and voltage deviation of all buses.
Pareto concept optimization is the method that is integrated with the proposed algorithms
to find Pareto front non-dominated solutions (PFNDSs). Fuzzy membership function (FMF)
and crowding distance (CD) are the methods used to extract the best compromise solution
(BCS) and arrange and improve the Pareto front solutions, respectively. The developed
techniques MOGWO and MOHHO were proposed to find BCS of multiple conflicting OFs
(Bi, Tri, Quad). Two different power systems—the IEEE 30-bus power system and the IEEE
57-bus power system, with 21 cases of various objective functions—were used to verify the
performance of the proposed techniques, MOGWO and MOHHO. The best compromise
solutions obtained by MOGWO and MOHHO confirmed the efficiency of the developed
approaches in providing well-distributed Pareto-front non-dominated solutions. The best
compromise solutions produced by the developed approaches were compared with other
optimization techniques to show the effectiveness and superiority of the MOGWO and
MOHHO approaches. The developed approaches provide a favorable performance and
competitive optimizer to solve MOOPF problems in power systems. The conclusion from
the simulation results can be summarized briefly as follows:

1. The proposed approaches (MOGWO and MOHHO) demonstrate efficient performance
to solve MOOPF problems when applied to two standard power systems, IEEE 30-bus
and IEEE 57-bus.

2. Compared with other new metaheuristic optimization techniques, the proposed ap-
proaches confirmed the superiority of these approaches to solve MOOPF problems.

3. The proposed approaches provide good distribution on the Pareto front and more
balance for multiple objective OPF.

4. The standard power systems that were proposed, IEEE 30-bus and IEEE 57-bus,
provide high performance in solving MOOPF problems.

Due to the limited number of pages, more improvements cannot be made to cover
different OPF problems.

1. This study is limited to addressing conventional power systems, such as IEEE 30-bus
and IEEE 57-bus, and may not necessarily be applied to other systems.

2. The comparison is unfair because it does not include all algorithms; maybe other
algorithms not listed in this paper have the best results.

3. Some parameters may affect the final results when applied to other systems.

Future research can employ the proposed methods MOGWO and MOHHO to solve
MOOPF problems with more complex power systems and control variables such as IEEE
118-bus and IEEE 300-bus systems. The techniques that were developed can also be
employed to address more problems with optimization with such sizing to include FACTS
devices, distributed generation, and renewable energy sources in power systems, as well as
economic dispatch and optimal location.



Energies 2024, 17, 2209 32 of 37

Author Contributions: Conceptualization, M.A.-K. and V.D.; methodology, M.A.-K.; software,
M.A.-K.; validation, M.A.-K., V.D. and M.E.; formal analysis, M.A.-K.; investigation, M.A.-K. and
V.D.; data curation, M.A.-K.; writing—original draft preparation, M.A.-K.; writing—review and
editing, V.D. and M.E.; visualization, M.A.-K. and V.D.; supervision, V.D. and M.E.; project adminis-
tration, M.E.; funding acquisition, V.D. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by a grant of the Ministry of Research, Innovation and Digitaliza-
tion, project number PNRR-C9-I8-760090/23.05.2023, code CF 30/14.11.2022.

Data Availability Statement: The data supporting the reported results are available in the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

OPF Optimal power flow
MOOPF Multi-objective optimal power flow
OFs Objective functions
GWO Grey Wolf Optimizer
HHO Harris Hawks Optimization
MOGWO Multi Objective Grey Wolf Optimizer
MOHHO Multi Objective Harris Hawks Optimization
FC Fuel costs
APL Active power losses
E Emission
VD Voltage deviation
BCS Best compromise solution
FMF Fuzzy membership function
NDSs non-dominated solutions
PC Pareto concept
CD Crowding distance
PFNDSs Pareto front non-dominated solutions
OCV optimal control variables
NFL No free lunch theorem

Appendix A

Table A1. The coefficients of cost and emission for IEEE 30 bus.

Coefficient

G1 G2 G5 G8 G11 G13

Fuel cost

a 0 0 00 0 0 0
b 2 1.75 1 3.25 3 3
c 0.00375 0.0175 0.0625 0.00834 0.025 0.025

Emission

α 4.091 2.543 4.258 5.326 4.258 6.131
β −5.554 −6.047 −5.094 −3.55 −5.094 −5.555
γ 6.49 5.638 4.586 3.38 4.586 5.151
ζ 2.00 × 10−4 5.00 × 10−4 1.00 × 10−6 2.00 × 10−3 1.00 × 10−6 1.00 × 10−5

λ 2.857 3.33 8 2 8 6.67
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Table A2. The coefficients of cost and emission of generators for IEEE 57-bus.

Coefficient

G1 G2 G3 G6 G8 G9 G12

Fuel cost

a 0 0 0 0 0 0 0
b 2 1.75 3 2 1 1.75 3.25
c 0.00375 0.0175 0.025 0.00375 0.0625 0.0195 0.00834

Emission

α 4.091 2.543 6.131 3.491 4.258 2.754 5.326
β −5.554 −6.047 −5.555 −5.754 −5.094 −5.847 −3.555
γ 6.49 5.638 5.151 6.39 4.586 5.238 3.38
ζ 2.0 × 10−4 5.0 × 10−4 1.0 × 10−5 3.0 × 10−4 1.0 × 10−6 4.0 × 10−4 2.0 × 10−3

λ 2.857 × 10−1 3.33 × 10−1 6.67 × 10−1 2.66 × 10−1 8.0 × 10−1 2.88 × 10−1 2.0 × 10−1
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