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Abstract: The present article investigates the possibility of simulating the electrical conductivity of
carbon nanotube-reinforced polymer composites by numerical methods. Periodic representative
volume elements are generated by randomly distributing perfectly conductive reinforcements in an
insulating matrix and are used to assemble an electrical network representative of the nanocomposite,
where the nanotube–nanotube contacts are considered equivalent resistors modeled by means of
Simmons’ equation. A comparison of the results with experimental data from the literature supports
the conclusion that a random distribution of reinforcements is not suitable for simulating this class
of materials since percolation thresholds and conductivity trends are different, with experimental
percolation taking place before the expectations. Including nanotube curvature does not solve the
issue, since it hinders percolation even further. In agreement with experimental observations, the
investigation suggests that a suitable approach requires the inclusion of aggregation during the
volume element generation to reduce the volume fraction required to reach percolation. Some
solutions available in the literature to generate properly representative volume elements are thus
listed. Concerning strain sensing, the results suggest that representative volume elements generated
with random distributions overestimate the strain sensitivity of the actual composites.
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1. Introduction

The research for methods aimed at the Structural Health Monitoring, SHM, and
strain sensing in polymeric composites is a bustling research field, where more than a
hundred new articles are published every year. Considering a recent review of the damage
monitoring methods available for fiber-reinforced polymer joints [1], among the several
techniques investigated, the authors reported that the ones that are based on carbon
nanotubes, CNTs, have attracted great interest in the last few years. These methods rely
on the extraordinary mechanical and functional properties of CNTs and try to directly mix
them with polymers to obtain materials with self-embedded sensors or try to create more
intricate designs guiding their assembly at the nanoscale. In 2008, Böger et al. provided
an early attempt at the former approach [2] by mixing an epoxy resin with carbon-based
nanoreinforcements and using that compound for manufacturing glass fiber-reinforced
epoxy laminates. Those laminates were electrically conductive and, by means of continuous
monitoring of their conductivity during tensile and fatigue tests, the authors proved that it
was possible to measure resistance changes directly related to microscale damage, such as
inter-fiber failure. Nowadays, several research groups follow that approach, as proven by
the many recent publications available involving various matrix materials, either polymeric
or not, and different types of carbon-based reinforcements (e.g., [3–9]).

Polymer nanomodification by means of carbon nanotubes is a consolidated technique
that results in extraordinary enhancements of the neat polymer mechanical and functional
properties, as proven by decades of scientific research published on the topic [10]. There
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are, however, a few limitations that prevent the technique from becoming ubiquitous in
the industry: CNTs are expensive to manufacture, they cause safety concerns [11], and
they significantly increase the viscosity of the polymer matrix, negatively affecting its
processability. The direct consequence of these issues is that CNTs are applied judiciously,
limiting their quantity to the minimum amount possible. In addition, CNT-modified
polymers usually exhibit a sudden transition in a property of interest (e.g., electrical
conductivity) at a given CNT amount, and the scientific community dedicated significant
efforts to developing methodologies for identifying that threshold condition for several
material systems and target properties [12–14].

One of the most used research methods is based on the computational simulations of
the nanocomposite material systems [12,15–20]. This method has a standardized structure,
with a pre-processing phase in which the geometrical configuration of the material is
embodied into a representative volume element, RVE, followed by a solution phase in
which tools such as Finite Element Analysis are employed to generate data for a final
post-processing phase, followed by the researcher deductions. With this structure, the
ability of an RVE to be truly representative of a material system is of paramount importance
for sustaining the validity of the results, and the choice of using a random distribution of
particles, in place of other types of distributions, should be supported by strong evidence
when generating the input for the solution phase. Nonetheless, in the literature, random
distributions are commonly used by default, and discrepancies between the simulation
results and experimental data are usually justified by unknown material parameters, or are
adsorbed by best-fit procedures.

The literature about experimental data in CNT-reinforced polymers supports the idea
that CNT distribution is neither homogeneous nor random. In his doctorate thesis dated
1998, Zhang [21] proposed the concept of dynamic percolation to refer to the dependency
on time and temperature of the formation of conductive networks in polymer nanocom-
posites, a concept that he exploited in a series of research papers studying conductivity
on several different thermoplastic polymers [22–24]. The underlying idea is that the poly-
mer viscosity during the material processing plays a key role in determining the final
composite conductivity, and this behavior is explained by CNTs’ mutual attraction. Other
authors [25,26] reported how a CNT-modified polycarbonate exhibited a transition from
insulator to conductor following a time-dependent reorganization of CNTs into the melted
polymer. In [27], the authors studied the evolution of the conductivity in CNTs dispersed
into silicone oil, providing more evidence of the tendency of CNTs to spontaneously create
a conductive pathway. Martin et al. [28] investigated the formation of percolating networks
in multi-wall CNT epoxy composites and provided evidence that electrical percolation ap-
pears at volume fractions significantly below those expected by the assumption of random
distribution of particles. They explained the behavior in terms of local aggregation of CNTs,
happening before the setting of the resin. Furthermore, they remarked that the processing
parameters and the chemical nature of the composite constituents significantly affect the
composite properties.

In the past few years, several researchers published articles in which they reported
their findings about dynamic percolation from an experimental perspective [29,30], proving
that the topic is of interest. However, from the computational perspective, the relevance of
a proper characterization of the nanoparticle distribution is often overlooked, and the data
presented in the literature are biased by algorithms that employ random patterns or do not
offer a statistical description of the resulting RVE.

Considering the research on strain sensitivity of polymer/CNT composites through
electrical measurements, several authors have contributed experimental and computational
results. One of the earliest applications of these materials for macroscopic strain sensing
was investigated by Dharap et al. [31], who provided evidence of a linear relation between
stress and voltage in a composite film. Many other research activities were then published,
investigating the effect of the material properties on strain sensitivity [20,32–34] and proving
that this approach is of interest.
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The present article investigates nanomodification-induced conductivity to compare
the predictions based on RVEs generated with a random distribution of CNTs, with experi-
mental data retrieved from the literature. At the same time, a way to infer the strain-sensing
property of the nanocomposite is presented. Based on Simmons’ equation [35] to model
the electrical conductivity of CNT contacts, the results support the idea that the random
distribution is not suitable for representing these materials’ behavior, and that aggregation
takes place regardless of the processing conditions employed. The direct consequence is
that RVEs need to be constructed with particle distributions able to properly represent the
material morphology in order to predict and investigate the material behavior. Eventually,
some methods and computational tools available in the literature for generating RVEs with
non-random distribution of reinforcements are briefly presented.

2. Theoretical Background

This section introduces the concepts of percolation, highlighting the difference between
percolation from a geometrical perspective and percolation from a functional perspective.
Then, the hypotheses and the procedure for constructing an electrical network represen-
tative of the RVE are presented alongside the physical equation used to infer the contact
resistance between CNTs and a few parameters that will be used while discussing the
analysis results.

2.1. Percolation in Nanocomposites

According to [36], the percolation threshold identifies the volume fraction at which
CNTs develop a continuous network within the matrix, and it is of particular interest since
it is usually coincident with the volume fraction at which the property enhancement due to
nanomodification becomes appreciable. From a geometrical perspective, the concept of a
continuous network underlies the need for contact between reinforcements. However, this
constraint is not strictly mandatory for reaching electrical percolation, because it may not be
required by the physical mechanism investigated: i.e., the electrical percolation is based on
electrons tunneling through the insulating polymeric matrix and, as such, does not require
physical contact between CNTs. It follows that to study the percolation condition, the
knowledge of the mere interparticle distances is not enough, since the physical threshold
distance for the electrical percolation in the material system being investigated plays a
fundamental role.

To study percolation from a general perspective, this article distinguishes between
a percolation distance related to the spatial distribution of reinforcements, dGEOM, and
a percolation distance related to the physical mechanism of percolation in the material
system, dMAT. The first one can be evaluated for any volume fraction, and it is defined as
the minimum interparticle distance from which a percolative network can be geometrically
identified across an RVE. The second one emerges from the addition of a physical property
of interest (i.e., electrical conductivity), and it is related to the onset of the enhancement
in the composite functional properties. To better clarify this difference, if assuming that
a given RVE has an extremely low CNT volume fraction, it would not be conductive, but
in this context, it would still be possible to identify dGEOM for the given volume fraction:
a continuous path from one face of the RVE to the opposite one can be identified moving
through reinforcements at most X nanometers apart from each other, meaning that dGEOM
is X. Increasing the volume fraction, dGEOM will decrease. At a given volume fraction, the
electrical percolation is reached, and electrons can flow from one face of the RVE to the
opposite one; dGEOM reaches dMAT.

2.2. Modelling of the RVE Electrical Conductivity

The modeling of the material electrical conductivity in the following treatise is based
on a few hypotheses:

1. The matrix is a perfect insulator, given the extremely low conductivity of an average
polymer (e.g., 10−8 S/m [37]);
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2. The electrical resistance of CNT contacts can be represented by a quantum mechanics
phenomenon, where the current flows by means of the tunneling of electrons moving
between two electrodes (i.e., the CNTs) separated by an insulator material (i.e., the
matrix) [35];

3. CNTs are regarded as perfect conductors since their conductivity is orders of magni-
tude higher than that of a CNT contact (i.e., more than 104 S/m [13]).

Under those hypotheses, the RVE can be regarded as an electrical network, where elec-
trical joints among CNTs are considered electrical resistors, and the source and the sink of
the electrical potential field are two opposite RVE faces (VSOURCE and VSINK, respectively).
The electrical resistance of the RVE is, therefore, the electrical resistance of the network.
This system can be easily solved using Kirchhoff’s laws, as reported in other articles from
the literature [13,38,39].

Worth mentioning is that the application of periodic boundary conditions requires
some care: considering cubic RVEs, periodicity can be applied to faces that are not sink or
source sites, which means four out of the six faces. Applying periodicity to the sink and
source faces would cause an electrical shortcut. Therefore, three different networks for each
RVE need to be constructed, one for each set of opposite faces.

2.3. Modelling of CNT Contact Resistance

To describe the electrical resistance of CNT contacts, Simmons’ equation is commonly
used in the literature [13,39]. It can model the tunneling of electrons moving through a
few nanometers of the insulator, such as in the case of CNTs dispersed in a polymer. The
equation is

R =
h2d

ae2
√

2m∆
exp

(
4π
h

d
√

2m∆
)

, (1)

where R is the electrical resistance of the contact, h is Plank’s constant, d is the interparticle
distance, e is the charge of an electron and m is its mass, a is the contact area assumed
equal to the square of the diameter of the nanotube, and ∆ is the energy barrier of the
material system.

2.4. Parameters that Describe a CNTs RVE

To better understand the results reported in the Results Section, the parameters that
characterize an RVE are defined here, and their mathematical relations are presented.

An RVE has a given CNT volume fraction, VF, defined as the ratio between the overall
volume of the CNTs adsorbed in the RVE, VolCNT, and the volume of the RVE itself, VolRVE.
VolCNT is calculated as the number of CNTs adsorbed in the RVE, NCNT, multiplied by the
volume of one CNT, LCNTπD2

CNT/4, where a common constant length for the cylindrical
CNTs, LCNT, and a common diameter, DCNT, are assumed. The aspect ratio, AR, of a CNT
is LCNT/DCNT. From these considerations, it follows that

VF =
NCNT VolCNT

VolRVE
=

NCNT π
D2

CNT
4 LCNT

VolRVE
. (2)

If CNTs are split into segments (a property that will be used in the next section), the
equation still stands if LCNT = NSEGMENT · LSEGMENT, with NSEGMENT being the number of
equal-length segments that divide the CNT, and LSEGMENT their average length.

Since the RVE is a cube, VolRVE is calculated as the cube of its edge, EdgeRVE. Moreover,
it is possible to define a constant ratio between EdgeRVE and LCNT, β. Then, the following
relations stand:

VF =
NCNT π

D2
CNT
4 LCNT

Edge3
RVE

=
NCNT π

D2
CNT
4 LCNT

L3
CNTβ

3 =
NCNTπ

4AR2β3 . (3)
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Inverting the last equation, it is possible to obtain

NCNT

β3 =
4
π

VFAR2 = NNORM. (4)

Since β depends only on the relative dimensions of CNT and RVE, it is possible to
define a normalized number of reinforcements NNORM as NCNT/β3, which allows us to
describe the RVE only in terms of AR and VF. This last expression is used in the Results
and Discussion Section.

3. Numerical Model

This section provides the numerical procedure for generating an RVE with random
distributions of reinforcements, alongside the procedure for determining its geometrical
percolation distance, dGEOM, and for assessing its electrical resistance. Eventually, an
equation for determining the strain-sensing behavior of the composite is provided.

3.1. Generation of the Representative Volume Elements

The RVE generation is based on the ubiquitous Random Sequential Adsorption Algo-
rithm, RSAA [40,41]. As the name suggests, it works by generating reinforcements with a
random orientation and position within the RVE domain. The generation of reinforcements
is sequential, which means that only one reinforcement is adsorbed into the RVE before
a new one is generated. The reinforcement is checked for admissibility, verifying that no
intersections with other reinforcements already adsorbed in the RVE are detected. If this
condition stands, the reinforcement is adsorbed, and the RVE volume fraction increases
accordingly. If intersections are detected, the reinforcement is discarded. This process is
iterated until the target volume fraction is reached.

In more detail, in the present implementation of RSAA, CNTs are segmented into
equal-length cylinders chained together. For modeling straight CNTs, each segment of
the CNT is coaxial, while for modeling curved CNTs, each segment is tilted by a random
solid angle within ±45 degrees with respect to the axis of the adjacent segment. It follows
that the number of segments that divide the CNT affects the “magnitude” of its maximum
global curvature.

Boundary conditions are periodic, meaning that CNTs can cross RVE faces, and in
such events, periodic instances are generated in the RVE to preserve the expected CNT
volume fraction (see Figure 1).
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Figure 1. Representation of a bi-dimensional RVE with periodic instances. A1, A2, and A3 represent
the same CNT, so that their combined area within the RVE is equal to one full CNT. The same concept
stands for CNT B1 and B2.

3.2. Calculation of the Interparticle Distances

The calculation of the interparticle distances relies on a geometrical routine that
converts cylinders to polyhedrons, and then another routine that calculates the distance
between such convex hulls [42]. This choice is based on the idea of developing a tool that
can model complex shapes of arbitrary geometry, not just cylinders, a property that will be
used in future research activities. For each new reinforcement, the distance from each of its
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segments to the segments of the reinforcements already adsorbed is recorded. Then, it is
possible to find the minimum distance between each CNT to determine dGEOM. Relying
on the property that the distance between two generic reinforcements is bijective, the
calculation of interparticle distances can be performed incrementally, with a computational
time that is O(N) for each iteration, with N number of reinforcement segments already
adsorbed in the RVE (i.e., once a new reinforcement is adsorbed, the calculation of its
distance from all the previously adsorbed reinforcements also provides the distance from
each of the other reinforcements to the current one since the distance is the same).

3.3. Calculation of dGEOM with the Graph Theory

The calculation of dGEOM requires the search for the minimum interparticle distance
from which a continuous network can be identified. Since each reinforcement may be
in contact with every other reinforcement and RVE face, the determination of dGEOM
is not trivial: given N as the number of CNTs and RVE walls, there could be up to
N!/2(N-2)! contacts. The solution that is implemented here is based on the graph the-
ory [43,44], where the graph that represents the RVE is constituted by a set of nodes that
contains all reinforcements and all RVE faces, and a set of edges that contains all distances
between nodes. Edges are bijective relationships between nodes, and the search for a
continuous pathway between VSINK and VSOURCE nodes can be made using a breadth-first
search algorithm, BFS [44]:

1. After the selection of a test value for dGEOM, VSOURCE is inspected to determine a list
of nodes connected to it;

2. Then, the nodes of this list are further inspected to determine a new list of nodes
connected to them to inspect;

3. This process is iterated until the next new list is an empty one, or it contains VSINK.

In the first case (i.e., the node containing VSINK is not found), there is no continuous
path between VSINK and VSOURCE; conversely, in the second case, the path is discovered
together with each reinforcement that is involved in its construction. To identify the
minimum value for dGEOM, a search for a continuous pathway between VSINK and VSOURCE
is performed running BFS with dGEOM test values increasing from zero up to EdgeRVE until
a percolation path is identified. For example, if there are two CNTs with an interparticle
distance of 1.3 nm, they represent two nodes in a graph with an edge of length 1.3 nm
that connects them. To find the minimum interparticle distance, it is possible to run the
BFS algorithm with increasing tentative values of dGEOM until it detects that at distances
starting from 1.3 nm, the two nanotubes are connected. Extending this reasoning to RVEs
of thousands of reinforcements is just a matter of computational effort. In [44], an open-
source implementation of BFS is available for free, alongside examples to better understand
the algorithm.

3.4. Calculation of the Electrical Conductivity

To determine the electrical conductivity of the RVE, the previously mentioned linear
problem derived from Kirchhoff’s laws is solved. Since three networks exist for each RVE
(one for each couple of opposite faces), three different values of electrical resistance can be
determined. To aggregate the results, given the fact that a component will be constituted
by a distribution of such a kind of RVE randomly oriented, the highest value for the
resistance is regarded as representative of the simulated material. This choice is supported
by the literature [45], and it implies that the material electrical resistance is determined
by the highest value of dGEOM among the three values calculated in the three periodic
directions, d’GEOM.

Besides the calculation of the RVE electrical resistance by solving the electrical network
by means of Kirchhoff’s laws, it is possible to approximate the resistance of the whole
network with the electrical resistance obtained from a single Simmons’ equation which
considers d’GEOM as the value for the distance, taking advantage on the fact that the elec-
trical resistance increases exponentially with the interparticle distance; thus, the electrical
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resistance of the junction at d’GEOM is the highest one. This means that the overall RVE
resistance may be approximated as the electrical resistance of the sole d’GEOM junction
since the other junctions in the network will give a smaller contribution. This solution is
especially useful once a mathematical expression of d’GEOM as a function of CNT volume
fraction is known. Both this mathematical expression and a comparison between the two
methods of calculating the RVE electrical resistance are reported in the next section.

Once the RVE electrical resistance is known, it is possible to evaluate the RVE electrical
resistivity by dividing the resistance value by the distance between the sink and source
faces and multiplying the result by the RVE cross-section. Given the fact that the RVE is a
cube, its resistivity is obtained by multiplying its resistance by EdgeRVE. Finally, the RVE
conductivity can be obtained as the reciprocal of its resistivity.

3.5. Calculation of Strain-Sensing Effect in the VE

The calculation of the strain-sensing effect in the RVE is straightforward under the
assumption that when there is an elastic deformation in the RVE, its volume changes, but its
CNT volume fraction is the same. As such, it is possible to apply again the proposed model
to infer the new electrical conductivity of the RVE along the loading direction, considering
the new apparent volume fraction for CNTs.

Considering that the RVE initial volume is Vi = l30 and the volume after elastic
deformation is Vf = lx·ly·lz, with l0 being the edge length of the undeformed RVE and li
being the edge length after deformation in the i-th direction, it is possible to express Vf as

Vf = Vi·
(

1 + εy·(1− 2ν) + ε2
y·
(
ν2 − 2ν

)
+ ε3

yν
2
)

, (5)

under the hypothesis of a deformation εy applied in the y direction.

4. Results and Discussion
4.1. Trend of Interparticle Distances in the Reference RVE

This subsection reports the findings of the research activity on the percolation condition
of CNT-reinforced RVEs generated using the previously mentioned RSA algorithm. First,
the case of straight CNTs is studied, followed by the case of curved CNTs. It will be shown
that the introduction of curved CNTs has a detrimental effect on percolation—i.e., straight
CNTs are more effective than curved CNTs in reaching the percolation condition.

Several RVEs were generated at different volume fractions and aspect ratios consider-
ing straight CNTs, following the procedure described in Section 3. The predicted values for
dGEOM of 22 simulations of RVEs are reported in Figure 2, where for each RVE, three points
are plotted, representing dGEOM calculated in the three periodic directions. The dotted
lines represent power law regression curves for the average dGEOM value of each RVE. In
these simulations, the CNT length, LCNT, was 1200 nm, while the RVE edge was equal to
2400 nm. Such values were chosen following a convergence analysis, which proved to be
coherent with that reported in [46].

The trend of dGEOM as a function of VF is similar at all AR, as it is evident considering
the dotted lines: increasing VF and/or increasing AR, there is a reduction in the percolation
distance dGEOM. Another interesting consideration emerges plotting dGEOM as a function
of NNORM, which is the parameter introduced in Equation (4), as in Figure 3a: the different
values for dGEOM, as a function of AR and VF, are collapsed into a single band. This result
is important since only one function is needed to describe the dGEOM trend for all the
simulated RVEs. The same results are reported in Figure 3b considering the sole d’GEOM,
since it is the distance used in the electrical model. The trend is the same.
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Dotted lines represent regression lines of power law best fit applied to each value of AR.

To assess the validity of this band, even accounting for an LCNT change, new RVEs
were generated considering reasonable values for CNT length (such as 150, 800, 1200, and
1500 nm). The results are reported in Figure 4 in terms of d’GEOM as a function of NNORM.
The d’GEOM for each different value of LCNT was conveniently scaled up (or down) with a
multiplying factor equal to LCNT/1200 nm to show that, using such scaling, the new data
points belong to the same band. Under this condition, the existence of the proposed band
appears to be independent of LCNT; thus, it is possible to use it to infer the interparticle
distance for every combination of LCNT, AR, and VF.
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Regression curves based on power laws fitted to d’GEOM in simulated RVEs are re-
ported in Figure 5, where the results for the case of straight and curved CNTs are reported.

Considering that values for dMAT reported in the literature [39] in the case of electrical
percolation are above 1 nm [35], it is revealed that straight CNTs perform better than
curved CNTs, since a lower VF is needed to reach electrical percolation at a given AR
value. This result agrees with other results available in the literature [45,47] that show how
including CNT curvature hinders electrical percolation, thus supporting the soundness of
the approach being used.
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values, while the dotted lines represent 10% and 90% probability.

4.2. Calculation of Electrical Conductivity in a Case Study

The idea that the simulated values of the electrical resistance for an RVE can be
calculated either by solving the electrical network using Kirchhoff’s laws or applying
Simmons’ equation directly to d’GEOM was previously discussed in Section 3.4: d’GEOM is
associated with the highest resistance in the network, and it is unlikely that the overall
resistance is much higher than that since Equation (1) predicts an exponential trend. If this
approach is validated, the reduction in computational cost would be significant.

To support the validity of the assumption, Figure 6 shows a comparison of the pre-
dicted values for the RVE resistance as obtained by the two approaches. The figure re-
ports the case of an RVE with VF = 0.5%, LCNT = 1200 nm, AR = 200, and energy barrier
1 eV. Three datasets are reported in the image, considering the same RVE simulated in the
three periodic directions, alongside the estimation of the electrical resistance of the sole
junction at dGEOM according to Equation (1). At an interparticle distance greater or equal to
dGEOM, the electrical resistance assumes a finite value since the BFS algorithm finds a path
connecting the source and sink faces. Such resistance is kept practically constant even if
additional contacts may be added to the network at distances greater than dGEOM. Adding
those contacts means, from an electrical perspective, that new resistors are being placed in
a parallel configuration with respect to the existing ones, but since they have a significantly
higher electrical resistance, they would only marginally affect the overall resistance of
the RVE.

The maximum error in the estimation of the electrical resistance is detected for the y
direction, where the resistance estimated with Equation (1) is of about 3E7 Ohm, while the
resistance directly evaluated from solving the electrical network is of about 9E7 Ohm. Upon
further examination, the discrepancy is due to the presence of other junctions of length
close to that of dGEOM in a series configuration. To account also for this condition, a possible
approach should consider the statistical distribution of junction lengths that characterize
the particle distribution and apply a correction factor. Eventually, in the following part
of the manuscript, the material conductivity values were evaluated directly by applying
Simmons’ equation to d’GEOM.
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Figure 6. Points represent the simulated value for the RVE resistance as a function of dGEOM, obtained
by solving the electrical network with Kirchhoff’s laws in the three RVE directions, while the dashed
lines represent the electrical resistance value as obtained from a single Simmons’ equation that
considers as distance just dGEOM of the given direction.

With the proposed procedure, it is then possible to estimate the electrical conductivity
for a CNT-reinforced polymer as a function of VF by just providing a value for AR, DCNT,
and Simmons’ equation energy barrier. An example is reported in Figure 7, where the
electrical conductivity of a polymer containing CNTs of length 1200 nm and diameter 6 nm
is simulated for two values of energy barrier, namely 1 eV and 5 eV, as a function of the
CNT volume fraction.
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Figure 7. Electrical conductivity prediction obtained using a hard-core random process for generating
the CNT RVE and Simmons’ equation. Two values for the energy barrier are reported: 1 eV and 5 eV.

As far as the value of the energy barrier is concerned, it results in a curve translation,
preserving the overall trend. Thus, since its values depend on the material system being
considered, and since the literature reports values generally up to 5 eV [16,39,48], a value
of 1 eV will be used in Section 4.4 of the paper, deeming that this choice does not hamper
the following considerations about the CNT distribution.
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4.3. Strain-Sensing Effect

The proposed methodology is useful for estimating the effectiveness of a composite
blend in detecting the strain applied to the material. Following the approach proposed
in Section 3.5, the strain-sensing effect based on the specimen’s electrical conductivity
can be studied very straightforwardly. An example is reported in Figure 8a,b, in the
case of an RVE subjected to tension in the y direction, with the x and z directions free
to deform according to Poisson law. εy represents the strain applied to the RVE. Elas-
tic properties are representative of an average epoxy resin, with the Young modulus
E = 3 GPa, and Poisson coefficient ν = 0.33, whereas the reinforcements are CNTs of length
1200 nm and diameter 6 nm at two different volume fractions (1% in Figure 8a and 3% in
Figure 8b). Three different values for the energy barriers are reported: 0.5 eV, 1 eV, and
2 eV. The model predicts that a higher energy barrier, at volume fractions above percolation,
results in a higher strain-sensing sensitivity, defined as the ratio between the RVE electrical
resistance variation, ∆R, and the RVE initial electrical resistance, R0. At the same time, a
higher VF negatively affects the sensitivity to strain. These results are congruent with the
trends exhibited in Figure 7, where a higher slope of the curves corresponds to a higher sen-
sitivity to strain. These results are coherent with those reported in [48], where the authors
presented analytical and experimental evidence of the described trends, and the results
reported in [39], where the increase in the height of barrier potential led to a more sensitive
piezoresistivity. Considering reference [33], where a computational investigation on strain
sensitivity in CNT-modified polymers is compared with experimental data, the increase
in CNT VF again resulted in a decrease in strain sensitivity, and the overall magnitude of
strain sensitivity agrees with that predicted by the proposed methodology.

4.4. Comparison with Experimental Results

Besides the methodology proposed for estimating the strain-sensing capability of a
CNT-reinforced polymer, this manuscript’s goal is to investigate the effect of the CNT
distribution and curvature on the conductivity of the polymer. In the previous sections, it
was presented how the curvature in CNTs is detrimental to reaching electrical percolation.
However, one aspect that is still undiscussed is if a random distribution, such as that
obtained by RSA algorithms, is properly representing these kinds of composites. This
subsection attempts to shed light on this aspect using comparisons with experimental data
retrieved in the literature.

The presented approach for simulating the material conductivity from d’GEOM may be
reversed: once the experimental conductivity of a CNT-reinforced polymer is known, it is
possible to obtain a value for d’GEOM, inverting Simmons’ equation. To this end, a value for
the energy barrier needs to be assumed, and for comparing heterogeneous data from the
literature, a constant value of 1 eV was used. Under those hypotheses, the results presented
in the previous section can be compared with results from the literature once VF, LCNT,
and DCNT are known. The comparison is reported in Figure 9 and Table 1, where data
about conductivity were taken from [27,37,48–50] for single-walled, multi-walled, and dual-
walled CNTs obtained by different researchers with different manufacturing processes. To
convert the CNT volume fraction to weight fraction, a density of 1.2 g/cm3 was assumed for
the polymer, and 2.2 g/cm3 was assumed for CNTs. In all cases but [27], the matrix is Epoxy
resin, which is a polymer suitable for structural applications thanks to its relatively high
mechanical properties and which would benefit from the strain-sensing property obtained
by nanomodification. Conversely, in [27], the matrix is a silicone oil employed for the precise
purpose of studying dynamic percolation. In addition, [27]-1 and [27]-2 represent the same
composite tested 17 and 700 s after stirring, respectively. These measurements are meant
to prove that the variation of the polymer viscosity with time is of paramount importance
when processing CNT-reinforced polymers, since differences in electrical properties may
be due to a morphological reconfiguration of the reinforcements.
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Figure 9. Values of the electrical conductivity (a) and inferred values for d’GEOM (b) obtained from
several experimental data according to the proposed methodology. For the correspondent references
see Table 1.

Figure 9a provides an overview of the composites’ conductivity considering CNT
weight fractions, but such a representation is not able to take into account the different
lengths and aspect ratios of CNTs. Figure 9b elaborates on the data of Figure 9a, inferring
d’GEOM as a function of NNORM to filter out the effects of different CNT lengths and
aspect ratios, following the considerations of Section 4.1. Considering that the interparticle
distance at which electrical percolation is reached in this class of materials (i.e., dMAT) is
between 1 and 2 nm (as reported in [39]), it can be seen that such a condition is reached
regardless of the actual NNORM. This outcome is supported by the experimental results and
conclusions reported in [28], where the authors observed that CNTs spontaneously form
aggregates that subsequently agglomerate, resulting in a macroscopic network covering
large volume fractions of the epoxy. Moreover, the authors remarked that long CNTs
and short CNTs follow different mechanisms. It means that the real behavior of these
materials cannot be properly represented by an RVE generated with random distributions
of reinforcements.
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Table 1. The third and the fourth columns report the coefficient, C, and the exponent, E, of the best-
fitting power law equation d’GEOM = C(NNORM)ˆE applied to the experimental data of [27,37,48–50]
and plotted in Figure 9b. Material column indicates the kind of CNT; LCNT and DCNT columns list the
value reported in the referenced articles. Processing synthetically describes the material processing
used in the referenced publication. The first row reports the results of the computational method
discussed in this article.

Label Reference Power Law
Coefficient

Power Law
Exponent Material LCNT [µm] DCNT [nm] Processing

RSAA RSAA 873 −1.03 - 1.2 6 RSA Algorithm
A-1 [49]-1 2.07 −0.121 MWCNT 50 50 high-speed shear mixing

A-2 [49]-2 29.6 −0.42 SWCNT 3 2
sonication in

ethanol + high-speed
shear mixing

A-3 [49]-3 35.2 −0.395 SWCNT 3 2 ball milling + high-speed
shear mixing

B-1 [37]-1 8.49 −0.222 MWCNT 37.5 15 3-roll milling
B-2 [37]-2 11.8 −0.238 SWCNT 8 2 3-roll milling
B-3 [37]-3 66.8 −0.409 DWCNT 8 2.8 3-roll milling
C [50] 18.9 −0.526 MWCNT 1.4 13 magnetic stirring + sonication

D [48] 2.4299 −0.228 MWCNT 1.5 9.5 high-speed shear
mixing + sonication

E-1 [27]-1 5.815 −0.887 MWCNT 1.5 9.5 sonication + magnetic stirring
E-2 [27]-2 3.857 −1.254 MWCNT 1.5 9.5 sonication + magnetic stirring

To bring further evidence to the limitations of the RSA algorithm in modeling CNT-
modified polymers, in Figure 10, a comparison regarding the slope of the best-fit curves
plotted in Figure 9b is presented. Two facts are clear:

1. Data obtained by various sources show a consistent trend, with a slope exponent
higher than −0.5 regardless of the processing, the material, and the research group
which published the results. The only results appreciably below that value are those
reported in [17], where the authors focused explicitly on dynamic percolation and
only considered data at extra-low volume fractions, where CNT interactions are
reduced (in fact, the best-fitting curves plotted in Figure 9b account only for the lowest
volume fractions);

2. The model created by RSAA is not representative of the experimental data obtained
by commonly used processing conditions, according to its power law exponent.
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To better describe the effect of the exponent, it should be considered that increasing
NNORM in a composite material (e.g., increasing the volume fraction of CNTs) has a lower
effect on its conductivity if the exponent tends to zero. This is usually of little importance
since percolation is reached nonetheless, but it affects the capabilities of the material
to have a high sensitivity to strain, as previously discussed. The slopes of d’GEOM for
experimental data can be explained if considering that CNTs promote clustering when
dispersed into a polymeric matrix. This clustering has a positive effect at low VF since
it promotes percolation. On the other hand, the same clustering hinders the ability of
CNTs to homogeneously occupy the space within the matrix, and the increase in VF is less
effective than it could be without CNTs’ mutual attraction. The CNTs aggregation is also
the cause of the fact that in the literature, the experimental trend of conductivity results in
an asymptotic value at increasing amounts of CNTs after percolation. These considerations
find support in papers such as [28,37], where the authors investigated the formation of
percolating networks in multi-wall CNT epoxy composites and provided evidence that
electrical percolation appears at volume fractions significantly below those expected by
the assumption of random distribution of particles. They explained the behavior in terms
of local aggregation of CNTs, happening before the setting of the resin. Furthermore,
they remarked that the processing parameters and the chemical nature of the composite
constituents significantly affect the composite properties.

An interesting consideration is that the trend of d’GEOM could not be explained by the
presence of CNTs’ curvature since that would increase the slope of the curves with respect
to the case of straight CNTs, as was discussed in Section 4.1. As far as the y intercept is
concerned, the different values exhibited by experimental data find an explanation both in
terms of the different processing parameters, which affect the final AR of the CNTs (e.g., by
breaking CNTs, and thus resulting in LCNT values different from the nominal ones) and in
the different materials, which affect the correct value for the energy barrier in Simmons’
equation. However, neither effect can result in a variation in the curve slope: as proved
in Section 4.1, the CNT aspect ratio does not affect the slope of the simulated curve as
much as the value of the energy barrier, which is a material constant superimposed to the
d’GEOM(NNORM) curve, cannot modify it.

Since the trend of the electrical conductivity of the material as a function of VF is
directly correlated to its strain sensitivity, it follows that the actual distribution of CNTs
unavoidably affects the real performance of a composite. Eventually, the results support the
idea that an RVE obtained with the RSA algorithm has a higher electrical sensitivity to strain
as compared with real composites since, past percolation, the electrical conductivity of the
real composites is less sensitive to a variation in volume fraction, and thus to deformation.
This result is a direct consequence of the slope of the experimental curves: while dynamic
percolation bolsters a material’s electrical conductivity, the resulting electrical network is
less affected by deformations.

To clarify these trends and provide a quantitative assessment of the effect of the
slope coefficient on the sensitivity to strain, Figure 11 presents three different power laws
characterized by different slope coefficients but sharing the same d’GEOM at an assumed
percolation threshold of 1 nm (=dMAT). For comparison, the figure reports the trend of [49]-1
already reported in Figure 9b to highlight the similarity with an experimental condition. In
Table 2, the values for the power law coefficients and exponents of each curve are reported.
The same table reports a value for the sensitivity to strain, defined as the average slope of
the ∆R/R0(εy) function evaluated as in Section 4.3 for a strain from zero up to 4%, for two
different volume fractions (1% and 3%), LCNT = 1200 nm, AR = 200, E = 3 GPa, ν = 0.33,
and barrier 1 eV.
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Table 2. Power law exponents and coefficients for the curves reported in Figure 11, together with the
results of a strain-sensing sensitivity analysis at different CNT volume fractions.

Curve Power Law
Exponent

Power Law
Coefficient VF

Strain
Sensitivity

RSAA −1.03 873 1% 5.7
RSAA-1 −0.5 26.8 1% 2.2
RSAA-2 −0.1 1.93 1% 0.37
RSAA −1.03 873 3% 1.9

RSAA-1 −0.5 26.8 3% 1.3
RSAA-2 −0.1 1.93 3% 0.33

The results show that, as expected, increasing the CNT volume fraction beyond
percolation conditions results in a material with a progressively reduced sensitivity to
strain. Assuming that the references reported in Table 1 are representative enough of
common applications, meaning that experimental values for the power law exponent in the
range of [−0.1, −0.5] cover a broad range of applications, RVEs constructed with random
distributions of reinforcements may overestimate strain sensitivity from about 2 to 10 times.

An interesting perspective would be to try to hinder dynamic percolation during the
material processing to gain a higher strain sensitivity.

4.5. Final Remarks and Possible Solutions

A final consideration is that to effectively simulate this kind of nanocomposite using
computational simulation, randomly distributing CNTs in RVEs is not representative of the
actual distribution of reinforcements. Efforts should be dedicated to the identification of
the realistic morphology of CNTs and their computational reproduction using a suitable
control over CNT placement. As far as the identification of the morphology is concerned,
electron microscopy may be used to collect representative images of the material. Since
these images are usually bi-dimensional, a Generative Adversarial Network can be used
to reconstruct a realistic 3D RVE [51]. Another possible approach is presented in [52],
where the authors propose an approach that relies on molecular dynamics to generate
a realistic distribution of CNTs without relying on morphological information acquired
by experimental techniques. A third possible solution may be proposed on the basis
of statistical considerations derived from microscopy observations. It consists of the
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generation of RVEs with enhanced RSA algorithms obtained by modifying the algorithm
reported in [41] for the case of spherical nanoparticles, which is based on the modification
of the resulting distribution of reinforcements using an additional aggregation step in-
between reinforcement adsorptions. In terms of implementation, it works in the same way
as the RSA algorithm, randomly distributing reinforcements in the matrix in sequential
order, but for each particle that is placed into the VE, the algorithm searches for other
particles that were previously placed near this last one, which is moved as if under the
effects of a gravitational attractive force. The magnitude of the aggregation force and the
corresponding movement can be controlled by comparing the current distribution with the
target distribution by functions such as those reported in [40], where statistical descriptors
are used for nanoplatelet distribution and can be readily adapted to the case on nanotubes.

5. Conclusions

In the present manuscript, RVEs of CNT-reinforced polymers were generated accord-
ing to the random distribution of nanotubes in cubic domains. The interparticle distance
that allows geometrical percolation within an RVE was determined by means of the graph
theory as a function of CNT lengths, aspect ratios, and volume fractions, and it was ex-
pressed by a single power law fitting against a single parameter, the normalized number of
reinforcements. Applying Simmons’ equation, the electrical conductivity of the RVEs was
determined and, inverting the procedure, the percolation distances of experimental datasets
were inferred. Comparing the geometrical percolation distance of the proposed random
distribution of straight and curved CNTs against the experimental ones, it was found
that neither straight nor curved CNTs explain the trend in experimental data. A different
explanation was proposed based on CNTs’ dynamic percolation, with nanotubes dispersed
into polymers exhibiting aggregation and developing interparticle distances significantly
below those expected by random distribution at low-volume fractions. Leveraging on a
proposed model for strain-sensing estimation, it is expected that RVEs generated with a
random distribution of CNTs overestimate the strain-sensing performance of a composite
from about 2 to 10 times. A final consideration is that the ubiquitous Random Sequential
Adsorption Algorithm is not suitable by itself for generating representative morphologies
for this kind of composite, since it fails to account for the attractive forces that promote
the generation of a continuous network of CNTs, thus predicting electrical percolation at
volume fractions higher than those shown by experimental testing, as much as predicting
a higher strain sensitivity. To overcome this limitation, tools able to enforce and control
the aggregation of reinforcements into RVEs need to be used in order to generate volume
elements that are truly representative of the material under investigation.
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