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Abstract: Disturbance stress assessment is crucial for ensuring the safety of deep engineering projects.
Currently, the primary technique for continuously monitoring three-dimensional disturbance stress
is the stress relief method, but its accuracy can be compromised by rock damage that occurs after
excavation. To mitigate this issue, grouting is employed to repair damaged rock masses and enhance
their mechanical properties. However, the impact of grouting techniques on improving the accuracy
of disturbance stress testing is challenging to evaluate through laboratory and in situ experiments.
To address this problem, numerical simulation technology is employed to investigate disturbance
stress testing after the repair of damaged surrounding rock through grouting. The simulation results
indicate that grouting repair significantly enhances the accuracy of stress testing. As the depth
of damaged rock mass repair increases, the error in stress testing decreases. Achieving complete
repair of the initial damage zone during grouting is essential to eliminate errors in stress testing.
Expanding on the positive effects of grouting repair on stress testing, a segmented testing method for
disturbance stress is proposed. The method involves separately testing the initial stress and stress
changes, thereby reducing the stress level within the rock, minimizing rock failure, and enhancing
the accuracy of disturbance stress testing. This study provides valuable reference methods, and the
outcomes of this research will serve as a foundation for enhancing the accuracy of disturbance stress
testing in deep hard rock engineering.

Keywords: hard rock; disturbance stress test; grouting repair; rock damage; deep tunnel

1. Introduction

In situ stress plays a crucial role in ensuring the safety and stability of deep engineering
projects [1,2]. Upon excavation of tunnel projects, the initial in situ stress within the
surrounding rock undergoes redistribution, resulting in disturbance stress, which can
lead to rock damage and various stress-controlled failures [3,4]. Stress-induced failures,
such as rib spalling, rock bursts, and stress-controlled collapse, have the potential to
cause significant engineering disasters in severe cases [5–7]. Monitoring the variation of
disturbance stress provides an effective means to evaluate the long-term behavior of hard
rock in deep tunnels [8]. This understanding helps predict the level of engineering hazards
and evaluate the suitability of excavation and support design schemes [9,10].

In situ stress measurement serves as an effective method for estimating disturbance
stress [3,8]. Most of the techniques used to measure initial stress are also applicable to
disturbance stress measurement [11,12]. Among these methods, the stress relief method
is unique in its ability to continuously monitor three-dimensional stress changes [13]. It
relies on linear elasticity theory and allows for the measurement of absolute stress or
stress changes, depending on the specific application [14,15]. However, when monitoring
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stress change in deep hard rock engineering, rock damage near the tunnel wall violates
the elastic assumption inherent in the stress relief method. As a result, this violation
introduces significant errors in the test results [16–18]. Nevertheless, understanding the
evolution of disturbance stress near the tunnel is of utmost importance to engineers [19–21].
Consequently, improving the measurement accuracy of disturbance stress in damaged
surrounding rock remains a crucial challenge.

Two methods exist for testing disturbance stress using the stress relief method: one
involves measuring the absolute value of disturbance stress at the measurement point using
the overcoring technique, while the other method entails monitoring stress changes by
embedding sensors at the measurement point and subsequently adding them to the original
rock stress to derive disturbance stress [8]. Studies have demonstrated that the error in
stress testing escalates with the depth of surrounding rock damage [22]. In deep hard
rock engineering, the depth of surrounding rock damage correlates with the magnitude of
stress, potentially resulting in greater estimation errors when measuring the absolute value
of disturbance stress compared to monitoring stress changes. Consequently, separating
stress changes from original rock stress testing may offer an effective approach for high
geostress testing in deep engineering contexts. However, currently, no pertinent research
has been identified.

On the other hand, in the context of disturbance stress monitoring, grouting is com-
monly employed to connect the sensor with the surrounding rock while simultaneously
repairing the damaged rock [23]. In engineering practice, grouting also serves as a sig-
nificant method in engineering practice for repairing fractured rock mass, effectively
enhancing the strength and stiffness of the surrounding rock through filling and cementing
processes [24–26]. However, it remains unknown whether grouting repair of the surround-
ing rock can effectively improve the accuracy of stress testing. The impact of grouting
techniques on improving the accuracy of disturbance stress testing is challenging to evalu-
ate through laboratory and in situ experiments.

This study aims to establish a simulation test method for disturbance stress and
subsequently investigate the impact of different degrees of rock damage and grouting repair
depths on the measurement accuracy of disturbance stress. Ultimately, considering the
influence of grouting repair on stress testing accuracy in damaged rock, a stress subsection
test (SST) method suitable for deep hard rock engineering is proposed. This method
involves measuring the initial stress and stress changes separately, reducing the disturbance
stress level, and minimizing rock damage through grouting, thereby improving the accuracy
of disturbance stress testing. The research outcomes will serve as a reference for enhancing
the measurement accuracy of disturbance stress in deep hard rock engineering.

2. Disturbance Stress Simulation Test in Damaged Hard Rock
2.1. Numerical Models and Simulation Procedures

To investigate the impact of rock damage on the accuracy of disturbance stress test-
ing, this study uses FLAC3D 6.0 numerical software to simulate the testing process in
engineering practice [27]. The stress test based on the stress relief method theory requires
calculating stress by strain. When constructing a numerical model for tunnels and boreholes,
it becomes necessary to mesh-encrypt the local borehole model. However, a significant
size discrepancy between the tunnel and the borehole results in an excessively large grid
volume, making simulation impractical.

To streamline the simulation process, the model consists only of boreholes, while the
stress changes resulting from tunnel excavation are simplified by applying disturbance
stress loading, as depicted in Figure 1. The dimensions of the model are 4 m in the x-
direction, 2 m in the y-direction, and 4 m in the z-direction. To calculate the stress using
the double-layer medium calculation model described in Section 2.2, the strain gauge is
assumed to be affixed to the wall within the grouting body. The test hole has a diameter of
36 mm, while the grouting body has a diameter of 168 mm [28]. The y-axis corresponds
to the axial direction of the borehole, and the stress testing area spans from y = 1.0 m to
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1.5 m, covering a length of 0.5 m. The rock material is modeled as elastic–plastic material to
simulate the damage occurring in deep hard rock [29].
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Figure 1. Numerical model of disturbance stress test.

The disturbance stress test consists of the following steps:

(a) Model establishment: The model is created, and the material parameters and initial
stress conditions of the surrounding rock are assigned.

(b) Borehole drilling: A borehole is drilled to the depth of y = 1.5 m, indicating that the
drilling has reached the desired testing position.

(c) Sensor installation: The displacement and velocity of the model are reset to zero,
representing the initial state of the sensor upon installation into the borehole.

(d) Grouting body activation: The grouting body at y = 1.0–1.5 m is activated, and the
material parameters for the grouting body are assigned.

(e) Loading disturbance stress: Disturbance stress conditions are applied at the bound-
aries of the model, and the equilibrium is solved.

(f) Stress calculation: The strain at the monitoring point is extracted, and the stress is
calculated using the stress calculation method in the next section.

2.2. Disturbance Stress Simulation Test Method

To monitor the strain changes in the test holes, three monitoring points labeled A, B,
and C are positioned at 120◦ intervals within the middle of the model at y = 1.25 m, as
illustrated in Figure 2.
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Subsequently, the strain increment in the Cartesian coordinate system (o-xyz) is con-
verted to the cylindrical coordinate system (o-ryθ) according to Equation (1) [8]:

εθ = sin2 θ·εx − sin 2θ·εxz + cos2 θ·εz
εθy = sin θ·εxy − cos θ·εyz

, (1)

where θ is the angle of the monitoring points. For points A, B, and C, they are 90◦, 330◦,
and 210◦, respectively.

εφ = sin2 φ·εy + sin 2φ·εθy + cos2 φ·εθ , (2)

Subsequently, the normal strain in three directions (φ = 90◦, 45◦, 0◦) is calculated
using Equation (2), where φ is the angle between the testing and circumferential direction.
The simulated strain increments of the borehole wall in nine directions are obtained and
presented in Table 1.

Table 1. Strain measurement position.

k 1 2 3 4 5 6 7 8 9

θ 90◦ 90◦ 90◦ 210◦ 210◦ 210◦ 330◦ 330◦ 330◦

φ 90◦ 45◦ 0◦ 90◦ 45◦ 0◦ 90◦ 45◦ 0◦

In the application of stress relief test method, the calculation of stress in the double-
layer medium, including rock and grout, requires assuming that the two layers are bonded
together and cannot be separated. In practical engineering, the connection between two
different materials may pose problems and lead to errors in stress estimation. However,
the purpose of this paper is to study the promoting effect of grouting on the accuracy
of disturbed stress testing in damaged surrounding rock. Considering the potential in-
terference caused by the consideration of a non-tightly connected double-layer medium,
we simplified the grouting effect, assuming that the two layers of medium can be tightly
connected after grouting.

In the stress relief test method application, calculating stress in a double-layer medium
comprising rock and grout necessitates the assumption that the two layers are tightly
bonded and inseparable. In practical engineering, the connection between disparate materi-
als may present challenges and introduce inaccuracies in stress estimation. Acknowledging
the potential interference from a non-tightly connected double-layer medium, the grouting
effect is simplified by assuming that the two layers of the medium can tightly connect
after grouting. Thus, for a model containing double layers of elastic media, the equation
between stress and strain is as follows [30]:

ERεk = Ak1σx + Ak2σy + Ak3σz + Ak4τxy + Ak5τyz + Ak6τzx k = 1 ∼ 9, (3)

where
Ak1 =

[
K1 + µR − 2

(
1 − µR

2)K2 cos 2θ
]

sin2 φ − µR
Ak2 =

[
K1 + µR + 2

(
1 − µR

2)K2 cos 2θ
]

sin2 φ − µR
Ak3 = 1 − (1 + µRK4) sin2 φ

Ak4 = −4
(
1 − µR

2)K2 sin 2θ sin2 φ
Ak5 = 2(1 + µR)K3 cos θ sin 2φ
Ak6 = −2(1 + µR)K3 sin θ sin 2φ

, (4)
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where εk are the simulated normal strains at different orientations, ER and µR are the elastic
modulus and Poisson’s ratio of the rock, respectively, where

K1 = d1(1 − µRµc)(1 − 2µc + r2/ϱ2) + µRµc
K2 = (1 − µR)d2r2 + d3 + d4µc/r2 + d5/r4

K3 = d6
(
1 + r2/ϱ2)

K4 = −
(
1 − 2µc + r2/ϱ2)(µc − µR)

(
1 − 2µc + r2/ϱ2)d1/µR + µc/µR

, (5)

where
d1 = 1/

[
1 − 2µc + m2 + ξ(1 − m2)

]
d2 = 12(1 − ξ)m2(1 − m2)/r2D
d3 =

[
m4(4m2 − 3)(1 − ξ) + κ1 + ξ

]
/D

d4 = −4r2[m6(1 − ξ) + κ1 + ξ
]
/D

d5 = 3r4[m4(1 − ξ) + κ1 + ξ
]
/D

d6 = 1/
[
1 + m2 + ξ(1 − m2)

]
D = (1 + κξ)

[
κ1 + ξ + (1 − ξ)

(
3m2 − 6m4 + 4m6)]

+(κ1 − κξ)m2[(1 − ξ)m6 + κ1 + ξ
]

ξ = Ec(1 + µR)/ER(1 + µc), m = r/R, κ = 3 − 4µR, κ1 = 3 − 4µc

, (6)

where Ec and µc are the elastic modulus and Poisson’s ratio of the grouting body, r is the
radius of the testing borehole, R is the radius of the grouting body, and ϱ is the depth of
the monitoring position. The monitoring points are arranged on the surface of the test
borehole in the numerical simulation; thus, ϱ = r. The elastic modulus of the rock ER is set
as 20 GPa, Poisson’s ratio µR is set as 0.25, the elastic modulus of the grouting body Ec is
set as 14 GPa, and Poisson’s ratio µc is set as 0.30. According to Equations (5) and (6), the
K-values are calculated as K1 = 1.265, K2 = 1.165, K3 = 1.185, and K4 = 0.943, respectively.
By substituting the K-values into Equation (4), and subsequently into Equation (3), the
stress–strain equation can be derived to calculate the six stress components.

Finally, in order to assess the accuracy of the stress simulation test results, the Euclidean
distance between the simulated test value σm and the loading value σd is obtained as the
error function [31]:

Error =

√(
σm

x − σd
x
)2

+
(

σm
y − σd

y

)2
+

(
σm

z − σd
z
)2, (7)

where σm
x , σm

y , and σm
z are calculated stress components by strain, and σd

x , σd
y , and σd

z are
the loading stress components.

3. Influence of Grouting Repair on Disturbance Stress Test Accuracy
3.1. Borehole Damage Distribution under Initial Stress and Disturbance Stress

To achieve various initial damage depths after drilling, the surrounding rock materials
are defined for 13 different models, as presented in Table 2, following the stress testing
simulation steps. Different depths of rock damage were formed after drilling for different
models under the initial stress σ0

x = −30 MPa, σ0
y = −30 MPa, σ0

z = −30 MPa. It is evident
that as the strength of the rock decreases, the depth of damage around the borehole
progressively increases. Subsequently, the grouting body at y = 1.0–1.5 m is activated. To
mitigate the influence of grouting body failure on the accuracy of stress testing, the grouting
body is considered as an elastic material. Finally, disturbance stress σA

d (σd
x = −20 MPa,

σd
y = −20 MPa, σd

z = −20 MPa) and σB
d (σd

x = −40 MPa, σd
y = −40 MPa, σd

z = −40 MPa)
are loaded at the boundary of the model, respectively. Under the disturbance stress σA

d ,
stress change ∆σ is 10 MPa, indicating tensile stress. Under the disturbance stress σB

d , stress
change ∆σ is −10 MPa, indicating compressive stress.
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Table 2. Rock failure depth at different strength parameters.

Model Cohesion
/c (MPa)

Friction Angle
/φ (deg)

Failure Depth under
σ0/d1 (m)

Failure Depth under
σA

d /d2 (m)
Failure Depth under

σB
d /d3 (m)

1 22 20 0.000 0.000 0.000
2 20 20 0.001 0.002 0.001
3 18 20 0.004 0.004 0.004
4 16 20 0.007 0.013 0.007
5 14 20 0.012 0.019 0.012
6 12 20 0.019 0.027 0.019
7 10 20 0.028 0.038 0.028
8 8 20 0.042 0.056 0.042
9 6 20 0.066 0.083 0.066

10 4 20 0.108 0.134 0.108
11 2 20 0.221 0.267 0.221
12 2 15 0.391 0.433 0.391
13 2 10 0.714 0.805 0.714

The damage resulting from the initial stress is referred to as the initial rock damage
d1. Upon applying disturbance stress, the depth of rock damage around the borehole may
further increase; this is also known as secondary damage d2 or d3. Figure 3 shows the rock
failure of the borehole under initial stress σ0 and disturbance stress σA

d and σB
d . It can be

seen that under the compressive disturbance stress, due to the increase in hydrostatic stress,
the bearing capacity of the rock increases, so the secondary damage depth of the drilling
hole does not continue to increase, d1 = d3. However, under tensile disturbance stress,
the bearing capacity of the rock decreases due to the decrease in hydrostatic stress; thus,
the secondary damage depth of borehole d2 is greater than the primary damage depth d1.
Considering model 10 as an example, under initial stress σ0, a failure depth of d1 = 0.108 m
was formed around the borehole (area a in Figure 3). Under tensile disturbance stress σA

d ,
the failure depth became larger, d2 = 0.134 m. Meanwhile, under compressive disturbance
stress σB

d , the damage to the rock did not increase any further.
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3.2. Disturbance Stress Test Error under Different Borehole Damage Conditions

The strain increments at the monitoring points were determined, and subsequently,
the stress change ∆σ was calculated using Equations (1)–(6). The accuracy of the stress
simulation test results was calculated according to Equation (7). Figure 4 illustrates the error
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between the simulated test values and loading values of disturbance stress for different
failure depths d1. As observed, when the stress change is tensile, the testing error increases
logarithmically as the failure depth increases. When the stress change is compressive, the
testing error remains relatively small if the failure depth of the borehole is less than 0.066 m.
When the damage depth is greater than 0.108 m, the testing error increases logarithmically
with an increase in the failure depth.
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The numerical simulation results show that the measurement error of tensile stress
disturbance stress is much larger than that of compressive stress at the same initial damage
depth. In addition, the larger the borehole damage depth, the greater the testing error in
stress change measurement. Thus, the accuracy of the disturbance stress test is primarily
influenced by two key factors: the initial damage depth of the borehole and the tension-
compressive characteristics of the disturbance stress.

3.3. Influence of Grouting Repair on the Disturbance Stress Test Accuracy

The accuracy of disturbance stress testing tends to decrease as the degree of rock
damage increases. Therefore, if the initial damage of the surrounding rock can be reduced
through grouting repair, the accuracy of stress testing can be improved. Grouting is
currently considered an important method for repairing fractured rock mass and enhancing
its strength [24–26]. Considering the repair effect of grouting on the surrounding rock, it is
assumed that after grouting is performed in the borehole (area c in Figure 3), the cement
will diffuse and form a repair zone of a certain depth. In the numerical simulation, it is
assumed that the repaired surrounding rock will transition from a damaged state to an
elastic state to simulate the repairing effect of grouting. The depth of the surrounding rock
repaired by grouting is set as 0 R; 0.5 R; and 1.0 R, 1.5 R, and 2 R, respectively, as shown in
Figure 5. R is the radius of the borehole, and R = 0.084 m. The initial stress and disturbance
stress loading conditions remain the same as in Section 3.1.

In Figure 6, the error between the simulated test values and loading values of distur-
bance stress is shown under different repairing depths. It is observed that as the depth of
surrounding rock repair increases, the testing error of stress gradually decreases. Under
disturbance stress σA

d , the damage depth of the borehole increases due to the decrease
in hydrostatic pressure (d2 = 1.6 R). When the repair depth reaches 1.5 R, the impact of
the borehole damage on the stress testing error is eliminated. Under disturbance stress
σB

d , the increase in hydrostatic pressure results in a relatively small damage depth of the
borehole (d3 = 1.3 R). When the grouting repair depth reaches 0.5 R, which means that not
all damaged areas are repaired, the stress testing error has been eliminated.
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Figure 6. Influence of grouting repair depth on stress test accuracy.

Based on the numerical simulation results, it can be concluded that if grouting is able
to restore the surrounding rock from a damaged state to an elastic state, the stress testing
error will decrease with the increase in the repair depth. The results indicate that after the
initial damage area of the borehole is repaired, the testing error of stress can be completely
eliminated. However, it should be noted that in practical engineering, grouting may not
be able to fully restore the damaged surrounding rock to an elastic state. Nonetheless,
it can be inferred that grouting repair will increase the strength of the rock and reduce
the degree of damage to the surrounding rock. The lower the degree of rock damage,
the higher the accuracy of stress testing. Therefore, the repair effect of grouting on the
surrounding rock is expected to contribute to improving the accuracy of stress testing in
practical engineering scenarios.

4. Discussion

In deep hard rock engineering construction, frequent occurrences of engineering disas-
ters such as rock bursts and slabbing are often attributed to high geostress. Understanding
the variations in disturbance stress during the construction process through stress change
monitoring can provide an effective means of predicting engineering disasters. When
measuring disturbance stress in deep hard rock engineering, the relaxation failure of sur-
rounding rock can lead to a decrease in the accuracy of stress estimation. Specifically, there
is a contradiction between the elastic assumptions of stress testing techniques and the
non-elastic behavior of the rock mass after excavation in deep hard rock.

To address this issue, considering the repairing effect of cement grouting on damaged
surrounding rock, cement slurry is used as a coupling medium to connect the rock mass
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and the hollow inclusion strain sensor during disturbance stress testing in deep engineering
projects. Building upon this technique, this study investigates the influence of grouting
repair on the accuracy of disturbance stress testing. Ultimately, considering the influence of
grouting repair on stress testing accuracy in damaged rock, a stress subsection test (SST)
method suitable for deep hard rock engineering is proposed. This section will introduce
the SST method and discuss its effectiveness. It is important to note that this study is based
on two fundamental assumptions: (1) The stress relief method requires rocks to be elastic
or approximately elastic media, hence applicable to homogeneous hard, brittle rocks such
as granite and marble; (2) after grouting repair, the damaged surrounding rock can restore
to an elastic state. The conclusions of this study are also based on these two assumptions.

4.1. Analysis of Disturbance Stress in a Circular Opening

In deep, high-stress environments, excavation of underground hard rock engineer-
ing leads to the redistribution of stress around the tunnel. When the disturbance stress
exceeds the strength of the rock mass, rock damage occurs around the tunnel, resulting in a
relaxation zone of a certain depth, as shown in Figure 7. When testing disturbance stress
within the relaxation zone, the damage to the rock violates the assumption of rock elasticity
required by the stress relief method. Therefore, conducting stress tests may lead to highly
inaccurate estimation results.
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Taking a circular tunnel as an example, after excavation, the initial in situ stress within
the surrounding rock transforms into secondary stresses (Fairhurst, 2003 [3]), as shown in
Figure 8. The analytical solution of disturbance stress in a circular opening is provided by
Fama and Pender [32]:

σR = σx+σz
2 (1 − R2

D2 ) +
σx−σz

2 (1 + 3R4

D4 − 4R2

D2 ) cos 2θ

σθ = σx+σz
2 (1 + R2

D2 )− σx−σz
2 (1 + 3R4

D4 ) cos 2θ

σy = −2µ(σx − σz)
R2

D2 cos 2θ+ σy

, (8)

where D is the depth of the measuring point, R is the radius of the circular opening, θ is
the angle between the measuring point orientation and the x-axis, and counterclockwise is
positive. σx, σy, and σz are three initial normal stresses parallel to the coordinate axes x, y,
and z, respectively. σR, σθ, and σy are secondary stresses along the radial, tangential, and
axial directions of the tunnel, respectively.
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Subsequently, a borehole with a radius of r is drilled parallel to the tunnel axis,
resulting in the formation of a tertiary stress environment around the borehole. As shown
in Figure 8, since the size of the borehole is relatively small compared to the tunnel, the
secondary stress following tunnel excavation is approximately uniformly distributed in the
vicinity of the borehole. Thus, the three normal stresses in the local coordinate axis system
o-xdydzd around the borehole are as follows:

σd
x = σθ, σd

y = σy, σd
z = σR, (9)

Substituting Equation (9) into Equation (8) to obtain the tertiary stress around the borehole,

σr =
σθ+σR

2 (1 − r2

d2 ) +
σθ−σR

2 (1 + 3r4

d4 − 4r2

d2 ) cos 2φ

σφ = σθ+σR
2 (1 + r2

d2 )− σθ−σR
2 (1 + 3r4

d4 ) cos 2φ

σyd
= −2µ(σθ − σR)

r2

d2 cos 2φ + σy

, (10)

where d is the depth of the measuring points around the borehole, φ is the angle between
the measuring points and the azimuth xd, and counterclockwise is positive. σr, σφ, and
σyd

are the radial, tangential, and axial stresses around the borehole, respectively.
According to Equation (8), the disturbance stress at the tunnel wall under the initial

stress environment is (D = R):

σR = 0
σθ = σx(1 − 2 cos 2θ) + σz(1 + 2 cos 2θ)
σy = −2µ(σx − σz) cos 2θ+ σy

, (11)

According to Equation (10), the disturbance stress at the borehole wall under the
secondary stress environment is

σr = 0
σφ = ασx − βσz
σyd

= −µ[(1 − α)σx + (1 + β)σz] + σy

, (12)

where

α = 2 cos 2φ cos 2θ
(

1 + 3R4

d4

)
− 2 cos 2φR2/d2 − 2 cos 2θ(1 + 2 cos 2φ)R2

d2 + 1

β = 2 cos 2φ cos 2θ
(

1 + 3R4

d4

)
+ 2 cos 2φR2/d2 − 2 cos 2θ(1 + 2 cos 2φ)R2

d2 − 1
, (13)

According to Equations (11) and (12), the minimum principal stress at the tunnel wall
and borehole wall are σR and σr, respectively. The maximum principal stress at the tunnel
wall and the borehole wall are σθ and σφ, respectively. If the rock failure complies with
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the M–C criterion [33], when the maximum principal stress σ1 exceeds the rock strength
under a certain minimum principal stress σ3, the rock will be damaged.

σ1 = σ3
1 + sin φ

1 − sin φ
+ σc (14)

where σc is the uniaxial compressive strength of the rock, and φ is the friction angle.
According to Equations (11)–(14), the maximum principal stresses σφ and σθ at the

tunnel and borehole wall under different initial stresses (σx, σz) are calculated and com-
pared with the uniaxial compressive strength σc. As shown in Figure 9, when σx = σa

x in
zone A, the maximum principal stress σφ on the borehole wall is less than the uniaxial
compressive strength σc. Therefore, the rock is not damaged under both initial and dis-
turbance stress. Zone A stress prevails in shallow-buried engineering. When σx = σb

x in
zone B, σc < σφ, the borehole wall is damaged after drilling. However, at deeper depths
approaching the initial stress, the maximum principal stress on the borehole wall is close
to σθ and less than σc; thus, the borehole wall is not damaged. In short, rocks remain
undamaged during excavation in the initial stress environment but incur damage in the
disturbance stress environment. Zone B stress prevails in deep-buried engineering. When
σx = σc

x in zone C, σc < σθ, the borehole wall is damaged under the initial stress. The stress
in zone C prevails in deep-buried engineering in high-stress environments.
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4.2. SST Method for Disturbance Stress Testing under High-Stress Environments

The stress relief method, including the overcoring technique, is commonly used to
measure disturbance stress in deep rock engineering. The analytical solution reveals that
rock damage occurs during the measurement of disturbance stress in deep, high-stress
environments, leading to inaccurate stress test results [34]. If the testing error is substantial
and the method is deemed unsuccessful, the feasibility of stress measurement depends on
whether damage will occur at the testing location under the current stress environment.
According to the stress environment zoning in Figure 9, three scenarios can be identified:
(1) In Zone A, both the initial and disturbance stress can be tested; (2) in Zone B, the initial
stress can be tested while disturbance stress cannot; (3) in Zone C, neither the initial nor the
disturbance stress can be tested. Therefore, to reduce the error in stress testing, the key lies
in controlling the degree of rock damage.

For the stress environment in Zone B, the rock remains undamaged during excavation
under the initial in situ stress but incurs damage under disturbance stress. Figure 10a
illustrates the stress path during the measurement of disturbance stress using the overcoring
stress relief method under the stress environment in Zone B. In stage I, the initial stress σ0
at the testing location changes to disturbance stress σd after tunnel excavation. In stage II,
when drilling the borehole at the testing location, the secondary stress σd at the borehole
wall transforms into tertiary stress σdt. The magnitude of the tertiary stress σdt exceeds the
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strength envelope of the rock, causing the rock to be damaged. Therefore, when applying
the overcoring stress relief method in stage III to measure disturbance stress, the stress
testing error will increase with the degree of rock damage.
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To mitigate the testing error of disturbance stress, one approach is to minimize the
degree of rock damage at the test location by reducing the stress level. Figure 10b presents
an alternative process for disturbance stress testing called the SST method, which aims
to achieve more accurate stress measurements. The method involves decomposing the
disturbance stress into two components: initial stress σ0 and stress change ∆σ for testing.
The first step is to utilize the overcoring stress relief method before tunnel excavation to
measure the initial stress σ0. This is achieved by drilling boreholes from adjacent excavated
tunnels. In stage I, the initial stress of the borehole wall transforms into secondary stress
σ0t after drilling. The rock remains undamaged during excavation under the initial in situ
stress for the stress environment in Zone B. Therefore, the overcoring stress relief method
can accurately determine the initial stress (σ0) in stage II. The second step involves placing
a stress sensor in the borehole and coupling it with the surrounding rock through grouting.
In stage III, after tunnel excavation, the stress around the grouting body becomes ∆σ. Under
the stress change ∆σ, the secondary stress ∆σt at the borehole wall remains within the
elastic range and does not exceed the strength envelope. Consequently, the stress change
∆σ can be accurately determined.

By adjusting the testing process of disturbance stress, this method effectively reduces
the stress level at the test location. As a result, the disturbance stress no longer exceeds
the strength envelope, avoiding the associated testing errors. This approach, known as the
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SST method, enables more accurate stress measurements by decomposing the disturbance
stress into the initial stress and stress change components.

However, in the stress environment of Zone C, rock sustains damage during excavation
under both initial stress and disturbance stress. Consequently, the borehole experiences
initial damage, and when employing stress relief methods to test the initial stress, the
testing error cannot be eliminated. However, when testing stress change, as indicated in
Section 3.3, considering the reparative effect of grouting on the borehole demonstrates that
the error in stress variation testing decreases with an increase in repair depth. If the initial
damage zone is completely repaired, there will be no error in the results of stress variation
testing. At this point, the SST method remains effective.

4.3. The Effect of SST Perturbation Stress Measurement Method

To assess the effectiveness of the SST method in improving the accuracy of disturbance
stress testing in deep high-stress environments, 35 different disturbance stress conditions
were conducted using both the SST method and the overcoring stress relief method, as
described in Figure 10. The results are presented in Table 3, and the testing accuracy is
shown in Figure 11.

Table 3. Stress loading conditions.

Loading Case
Initial Stress Disturbance Stress

Stress Zoning
σo

x (MPa) σo
y (MPa) σo

z (MPa) σd
x (MPa) σd

y (MPa) σd
z (MPa)

1 10 10 10 20 20 20 B
2 20 10 10 30 20 20 B
3 20 20 10 30 30 20 B
4 20 20 20 30 30 30 B
5 30 10 10 40 20 20 B
6 30 20 10 40 30 20 B
7 30 20 20 40 30 30 B
8 30 30 10 40 40 20 B
9 30 30 20 40 40 30 B
10 30 30 30 40 40 40 B
11 40 10 10 50 20 20 C
12 40 20 10 50 30 20 C
13 40 20 20 50 30 30 C
14 40 30 10 50 40 20 C
15 40 30 20 50 40 30 C
16 40 30 30 50 40 40 C
17 40 40 10 50 50 20 C
18 40 40 20 50 50 30 C
19 40 40 30 50 50 40 C
20 40 40 40 50 50 50 C
21 50 10 10 60 20 20 C
22 50 20 10 60 30 20 C
23 50 20 20 60 30 30 C
24 50 30 10 60 40 20 C
25 50 30 20 60 40 30 C
26 50 30 30 60 40 40 C
27 50 40 10 60 50 20 C
28 50 40 20 60 50 30 C
29 50 40 30 60 50 40 C
30 50 40 40 60 50 50 C
31 50 50 10 60 60 20 C
32 50 50 20 60 60 30 C
33 50 50 30 60 60 40 C
34 50 50 40 60 60 50 C
35 50 50 50 60 60 60 C
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In Figure 11, it can be observed that under the stress conditions in Zone B, the SST
method significantly reduces testing errors compared to the overcoring stress relief method.
This indicates the effectiveness of the SST method in enhancing stress testing accuracy.
However, in the stress conditions of Zone C, the existence of initial damage in the borehole
leads to relatively high stress testing errors. There are instances where the testing error
remains significant even under the SST method, reaching as high as 16.40 MPa in case 27.
By taking into account the reparative impact of grouting on the initial damage of the drilling
hole, as outlined in Section 3.3, the accuracy of stress testing for significant conditions can
be enhanced. Figure 11 illustrates that by taking into account the grouting repair effect, the
stress testing error is completely eliminated. Therefore, repairing the initial rock damage
can further eradicate testing errors and enhance the accuracy of stress testing.

5. Conclusions

The stress redistribution in the surrounding rock mass occurs during the excavation of
deep tunnels, transitioning from initial stress to disturbance stress. Evaluating the safety
of deep engineering projects relies on accurately assessing disturbance stress. Currently,
the stress relief method is the sole approach for continuous monitoring of disturbance
stress variations. However, the presence of rock damage during stress relief testing can
compromise the reliability of results. Hence, enhancing the accuracy of testing disturbed
stress in damaged surrounding rock is a crucial concern. Grouting offers a means to repair
damaged rocks and enhance their mechanical properties. This study employs numerical
simulation to investigate the impact of rock damage and grouting repair on the accuracy of
disturbance stress testing. The key findings are as follows:

(1) Excavation or drilling in deep, high-stress environments can result in rock damage,
which affects the accuracy of disturbance stress testing using the stress relief method.
The testing error increases with the depth of the damaged zone.

(2) The repair effect of grouting on the surrounding rock will help improve the accuracy
of stress testing, and the error of stress testing will decrease with the increase in
repair depth.

(3) Taking into account the restorative properties of grouting in rock formations, a seg-
mented testing approach for disturbance stress is introduced. This method entails
conducting separate tests to measure the initial stress and stress changes, effectively
lowering the internal stress levels within the rock. By reducing the extent of rock
damage, this approach enhances the precision of disturbance stress testing.

(4) During the practical implementation of disturbance stress testing, it is recommended
to utilize high-strength and well-repaired grouting materials. This serves a dual
purpose: firstly, it facilitates the repair of initial damage within the borehole; secondly,
it safeguards the grouting body against damage within the disturbance stress environ-
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ment. By adhering to these guidelines, the reliability of stress testing results can be
significantly enhanced.
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