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Abstract: Examining the efficacy of current assessment methodologies for forest conservation and
restoration initiatives to align with global and national agendas to combat deforestation and facilitate
restoration efforts is necessary to identify efficient and robust approaches. The objective of this study
is to understand forest dynamics (1996–2021) and assess restoration implementations at the Urra’s
supplying basin hydroelectric reservoir in Colombia. The processing approach integrates optical
and radar Earth Observation (EO) data from Sentinel-2 and Landsat for forest mapping and multi-
temporal forest change assessment (1996–2021), and a Sentinel-1 backscatter time-series analysis
is conducted to assess the state of forest restoration implementations. The processing chain was
scaled in a cloud-based environment using the Nebari and SEPPO software and the Python language.
The results demonstrate an overall substantial decrease in forested areas in the 1996–2000 period
(37,763 ha). An accuracy assessment of multi-temporal forest change maps showed a high precision
in detecting deforestation events, while improvements are necessary for accurately representing non-
forested areas. The forest restoration assessment suggests that the majority of the 270 evaluated plots
are in the intermediate growth state (82.96%) compared to the reference data. This study underscores
the need for robust and continuous monitoring systems that integrate ground truth data with EO
techniques for enhanced accuracy and effectiveness in forest restoration and conservation endeavors.

Keywords: forest management; forest restoration; Sentinel-1; Sentinel-2; Landsat; time series;
cloud computing

1. Introduction

In the context of the scientific and technical progresses in remote sensing, Colombia is
taking advantage of the agreements made by the United Nations Framework Convention
on Climate Change (UNFCCC) during the Conferences of the Parties in 2009 and 2010
(COP 15 and 16, respectively), and recently in Warsaw (COP 19), which require developing
countries to establish national forest monitoring systems that allow for the quantification of
greenhouse gas emissions and absorptions and changes in the extension of forests and forest
carbon stocks. For this purpose, forest cover in Colombia was defined as “Land occupied
mainly by trees that may contain shrubs, palms, guaduas, herbs and lianas, in which tree
cover predominates with a minimum canopy density of 30%, a minimum canopy height
(in situ) of 5 m at the time of identification, and a minimum area of 1.0 ha” [1]. The tree
cover of commercial forest plantations, palm plantations, and trees planted for agricultural
production are excluded. Deforestation is defined as “the direct and/or induced conversion
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of forest cover to another type of land cover in a given period of time”, and restoration is
defined as “the recovery of forest cover in areas where it was not present in the past” [1].
These definitions are consistent with the criteria defined by the UNFCCC in its 11/COP 7
decision (FAO, Terms and definitions FRA 2020. 2020) and with the definition adopted by
Colombia under the Kyoto Protocol.

Thus, in 2011, the governmental Colombian Forest and Carbon Monitoring System
(SMByC) evaluated different remote sensing data processing techniques for the detection
of forest cover and its respective changes over time, generating, as a result, the “Protocol
for digital image processing for the quantification of deforestation in Colombia at the
national level—coarse and fine scale” [1] which has been the methodological approach for
the historical quantification of deforestation at the national level, e.g., for the 1990–2000,
2000–2005, and 2005–2010 periods and annually in the past decade from 2011 to 2022. These
guidelines have become the Colombian standard for the evaluation of spatiotemporal
forested and deforested dynamics, which is applied in the case of national regulations for
companies that must report their effectiveness in protecting forests.

Since the first missions that integrated sensors on satellites to generate Earth Observa-
tion data, e.g., Landsat in 1972, a large number of orbiting missions have been launched
for environmental applications with different characteristics, providing information that
can be integrated into multiple applications to interpret land surface patterns and monitor
changes in land use and land cover [2]. Satellite-based remote sensing has been proposed
as an especially cost-effective way to provide reliable data on forest change dynamics [3–5].
Multiple methods have been developed based on satellite Earth Observation; neverthe-
less, there are limitations associated with each approach, including how to balance the
integration of multiple sensors and the available resources for their implementation [6].
Some of these challenges are related to complex patterns and rapid changes associated
with land cover trajectories [7–10], inconsistencies in Earth Observation data series among
different missions [11], and, specifically in tropical areas, the continuous presence of clouds,
which generate uncertainties in mapping tasks. The first launch of a global pathfinder
optical mission with advanced observation strategies (i.e., Landsat) has been providing
consistent EO data; however, it has the limitation of cloud interference. Recently, Synthetic
Aperture Radar (SAR) sensors (e.g., ALOS-1 PALSAR-1 and Sentinel-1) have provided
persistent data with the advantage of cloud-free EO data, which allow multiple challenges
to be resolved in time series analyses to detect and quantify forest trajectories. In fact,
the use of SAR sensors to generate EO imagery has increased in recent years in tropical
regions, where radars provide day/night imagery without interference from atmospheric
conditions [12–14]. This impulse has started in the past decade, mainly with the staging of
ALOS-1 PALSAR-1, ALOS-2 PALSAR-2, and Sentinel-1 sensors, which can obtain EO data
with a high acquisition frequency in the same area of interest when multiple missions are
integrated in the analysis.

In Colombia, with respect to the increasing use of EO data from SAR sensors, most of
the research has been focused on wetlands and flooding mapping [1,15–17], land use/land
cover mapping (LULC) [18–20], and forest mapping and deforestation monitoring [21–24].
The growing application of EO data to monitor restoration has proven that this is a cost-
effective means to select restoration sites and observe their progress over time [25], evaluate
success and understand restoration recovery trajectories [26], generate specific restoration
metrics [26] while monitoring vegetation structure trajectory to guide adaptive manage-
ment [27], and determine specific spatial and temporal changes associated with degradation
and recovery [28]. Nevertheless, with the increasing application of standardized protocols
and methodologies based on remote EO data for restoration and forest monitoring, it
is necessary to assess the level of uncertainty and their applicability in diverse regions
facing multiple challenges, such as the Colombian Andes, which is characterized by almost
permanent cloud cover and complex topographies, which may limit the application of
EO data. The implementation of forest restoration initiatives is considered as one of the
most promising climate actions to rapidly remove CO2 from the atmosphere, especially in
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tropical regions [29]; thus, analytical approaches based on remote sensing to monitor and
assess forest restoration initiatives need to be improved.

The objectives of this work are as follows: (i) to detect forest change dynamics in a
25-year timeframe (the 1996–2000–2005–2010–2015–2021 period) based on optical sensors in
area of influence of the hydroelectric dam (Colombia) based on national standards for forest
and deforestation monitoring and (ii) to design a methodological approach to assess the
status of forest restoration plots implemented as environmental offsets to compensate for
impacts generated by the construction of the hydroelectric dam using a 5-year time series
analysis of Sentinel-1 C-SAR imagery. Thus, this study proposes an operational monitoring
and assessment approach for initiatives aimed to preserve forests, reduce deforestation,
and restore forests by applying scalable and cost-effective technologies and methods.

2. Materials and Methods
2.1. Study Area

The study area, covering almost 89.000 ha, is located in the northwestern sector of
Colombia, between 8◦8′ N 7◦47′ N and 76◦27′ to 76◦05′ W. It is characterized by an altitude
ranging between 0 and 1250 m above sea level. Annual rainfall varies between 1.500 and
4.000 mm, with a dry season running from December to the end of March. The mean
annual temperature fluctuates between 21.1 ◦C and 28 ◦C, with a warm semi-humid regime
climate [30]. Within this region, three major biomes are identified: (i) The tropical wet
zone biome covers 88% of the area and is the largest one, corresponding to areas where a
humid rainforest predominates at elevations below 800 m above sea level (a.s.l.). (ii) The
pedobiome of the tropical wet zone biome corresponds to areas where vegetation and
flora types are determined by soil and humidity conditions [26]. This region is mainly
represented by the Urra reservoir area, covering 9.3% of the region. (iii) The sub-Andean
orobiome corresponds to an altitude range between 800 and 1800 m a.s.l., where a temperate
climatic zone predominates along with the following humidity provinces: humid, semi-
humid, and super humid [30].

The study area includes 90 villages within the municipalities of Tierralta and Valencia
in the department of Córdoba and within Turbo, Apartadó, Carepa, and San Pedro de
Urabá in the department of Antioquia. In 1996, the construction of the Urra hydropower
facility, which collects the water of the Sinú river, began in the region, and the operations
began in 2000 (Figure 1).
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2.2. EO from Passive (Landsat and Sentinel-2) and Active (Sentinel-1) Sensors

A 25-year (1996–2000–2005–2010–2015–2021) forest change analysis was performed
based on the long-term availability of EO data from optical sensors (Landsat and Sentinel-
2). The Landsat program has been providing continuous observations with 8- or 9-day
repeat intervals for about 50 years [31], and it provides key advantages for long-term
monitoring tasks, such as temporal and radiometric consistency throughout multiple
Landsat programs [32]. To ensure a complete assessment from 1996 to 2021 could be
conducted, multiple Landsat mission products were used, e.g., Landsat 5 TM, Landsat 7
ETM+, and Landsat 8 OLI, with a 30 m spatial resolution for visible and infrared bands.
ESA Sentinel-2 MSI Level2A imagery was also included for the year 2021; imagery from
this sensor was included to increase data availability by densifying the temporal coverage.
Thus, revisit frequency can be improved from 8 or 9 days (based on Landsat) to 2.9 days
(integrating Sentinel-2) [33], which contributes to this study by reducing spatial gaps caused
by cloud cover, a major problem in Colombia. Also, Sentinel-2 imagery was integrated into
the analysis to increase and improve the spatial resolution of thematic products through
the generation of the 2021 forested/non-forested baseline, achieving a minimum mapping
area between 0.25 and 0.5 ha, which was required to be decreased to a 1:50,000 scale for
this study.

Landsat (Collection 2 Level-2) and Sentinel-2 (Level 2A) imagery was accessed through
the Microsoft Planetary Computer platform (https://planetarycomputer.microsoft.com,
accessed on 23 August 2023). All available imagery for each year with less than 50%
cloud cover was transferred to the project’s cloud-based storage infrastructure (AWS S3
bucket in the us-east-1 region). Based on all available imagery for each year, each band
associated with a single acquisition was stacked to generate a multispectral multi-band
image (Figure 2A). Cloud and shadow masking procedures were performed for each single
acquisition scene from every dry season to generate a cloud-free mosaic for each year,
avoiding atmospheric interference, especially during the rainy season [34]. Every pixel
from the last acquisition of the corresponding year with the presence of clouds or mountain
shadows was discarded and replaced by the closest cloud and shadow-free pixel to generate
a yearly last pixel mosaic. The “last pixel” corresponds to the latest pixel acquired without
cloud interference near the end of the year (31 December) for the corresponding year.
Orthorectification and co-registration procedures were performed for the stacked images to
obtain accurate georeferenced information (Figure 2A). To detect changes in the time series,
it is key that the images are accurately co-registered and orthorectified so that the images
acquired from different sensors and dates can be directly compared and processed; for the
construction of the time series, it is essential to have an accurate pixel-level co-registration
among all acquired images for each scene. This adjustment was performed by measuring
the difference between pixels and re-projecting the coordinate of the displaced image ends
in this same magnitude (considering that the downloaded images are in a projection system
with metric units). The UTM projected reference system was maintained during the whole
process until the final products to prevent the loss of co-registration between pixels when
applying the geometric adjustments of the cartographic re-projection models.

https://planetarycomputer.microsoft.com
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Precise reflectance and geometric image rectifications are necessary to generate quality
data and to ensure the delivery of consistent products [35], and it is necessary to avoid
measurement differences and false detections, i.e., due to geometric distortions or sensor
calibrations. An adjustment to the radiometric signals of the images was thus performed
to ensure consistency with each other (Figure 2A), i.e., through radiometric calibration,
where digital numbers are transformed to surface reflectance, which, in the case of a
tropical forest, is driven by species composition and vegetation structure characteristics [36].
Relative normalization was applied under the assumption that the relationship between
the radiances recorded by the sensor on two different dates is spatially homogeneous
(Figure 2A). In order to detect deforestation changes in multi-temporal forest dynamics
analysis, a multivariate alteration detection algorithm, based on canonical correlation [37],
was implemented, where the 2021 image was taken as baseline, and the rest of the images
(1996, 2000, 2005, 2010, and 2015) were normalized with respect to this one. Quality control
was carried out to ensure that the scenes were correctly co-registered and that they would
allow effective multi-temporal analysis. This process guaranteed the use of different sensors
and spatial resolutions so that they could be used in a homogeneous analysis.

Pan-sharpening techniques were employed on multi-year Landsat imagery (level 1)
with spatial resolutions ranging from 15 to 30 m to facilitate fusion with Sentinel-2 data,
which offer a higher spatial resolution at 10 m. Pan sharpening is a crucial preprocessing
step aimed at enhancing the spatial details of lower-resolution multispectral imagery
by integrating them with higher-resolution panchromatic imagery [38]. Through this
process, we ensured compatibility and consistency between the Landsat and Sentinel-2
datasets, enabling seamless integration for subsequent analysis and interpretation. The
application of pan-sharpening techniques not only preserves the spectral characteristics
of Landsat imagery but also enhances its spatial resolution to match that of Sentinel-2
data, thereby facilitating comprehensive and accurate assessments of landscape dynamics
over time. Pan sharpening was implemented with GDAL Pansharpen library (https:
//gdal.org/programs/gdal_pansharpen.html, accessed 20 August 2023) using the nearest
neighbor resampling algorithm without weights. Procedures were applied to the Landsat-7
imagery due to the failure of the scan line corrector (SLC) [39], resulting in gap strips on
the imagery and leading to 22% of the image being missing. A Phase II approach [39] was
implemented, integrating multiple SLC-off scenes to fill the scan gaps by incorporating
cloud-free pixels from the closest scenes.

The Copernicus Sentinel-1 mission launched by the European Space Agency (ESA) is
based on a constellation of the two satellites, Sentinel-1A (launched in 2014) and Sentinel-
1B (launched in 2016), with a revisit time of 12 days each, carrying a SAR C-band sensor
on board. Sentinel-1 SAR imagery was available from the Alaska Satellite Facility (ASF)
platform, a mirror of the ESA Scientific Sentinel-1 hub. All available data from May 2015 to
June 2022 were accessed through the ASF-DACC data repository, which resides at an AWS
S3 bucket in the us-west-2 region. Figure 2B summarizes the five methodological routines
for preprocessing Sentinel-1 imagery, which allow the Single Look Complex (SLC) images
to be converted into 12 m resolution multi-look geocoded images, radiometrically and
terrain-corrected to generate gamma-naught backscatter intensity (γ0) images, obtained
after pre-processing is performed with the Gamma® software V2.6 [40]. To reduce speckle
effects associated with SAR imagery, an enhanced Lee multitemporal filter was applied
to the VH polarization by means of least squares of the signal intensity in a kernel area of
3 × 3 pixels [41].

2.3. Forest Multi-Temporal Analysis

All surface reflectance imagery processed based on Sentinel-2 and Landsat data were
used to generate annual median and last pixel metrics for the Red, NIR, and SWIR2 spec-
tral bands, which are the most relevant in vegetation change analysis [42] (Figure 2C). A
forested/non-forested map was generated for 2021 as baseline using a pixel-based super-
vised Random Forest machine learning algorithm (MLA) included on the sklearn.ensemble

https://gdal.org/programs/gdal_pansharpen.html
https://gdal.org/programs/gdal_pansharpen.html
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Python module (V 1.4.1) [43] (Figure 2C). The Random Forest (RF) algorithm has been
widely used in classifying remote sensing data [44–47], which generally handles noise and
overfitting of the data well and has high data dimensionality [47]. The RF classifier was
initially parameterized using training samples (250 forested and 275 non-forested point
samples) generated based on the visual inspection of 2021 high-resolution Planet imagery
of Red, NIR, and SWIR surface reflectance metrics (median and last pixel). Once the first
version of the 2021 forested/non-forested map was generated by the RF classifiers, a visual
assessment of the classified map was carried out using Planet imagery as quality control,
validation, and adjustment procedure (Figure 2C). If deforestation accuracy of at least 90%
was not obtained, new samples were generated in regions where misclassifications were
observed. Then, the model was recalculated, and this process was iterated until a 90%
accuracy was obtained (Figure 2C). Sample data and quality control procedures followed
the forest definition from the Colombian Forest and Carbon Monitoring System (SMByC).

To derive multitemporal forest change products and estimate deforestation extent
between for the 1996–2000, 2000–2005, 2005–2010, and 2015–2021 periods, a semi-automated
RF approach was used (Figure 2C). For the change class, training points between 2015 and
2021 were generated based on a visual interpretation of deforested areas from Sentinel-
2, Landsat, and Planet imagery. Red, NIR, and SWIR bands from 2021 and 2015 were
combined into principal component bands within a single image (Figure 2C) and integrated
as predictive variables in the RF model to identify highly and lowly correlated areas.
Principal component analysis has been demonstrated to capture maximum variances
in a finite number of orthogonal components based on eigenvector analysis from the
correlation matrix, providing a robust and simple approach to generate input variables for
change detection analysis [48]. The principal component bands generated based on two
different years are highly correlated between unchanged areas (forested and non-forested
stable areas), while a low correlation between significantly changed areas is expected
(e.g., deforestation). The RF classifier was configured with the following parameters:
n_estimators set to 100, representing the number of trees in the forest; criterion set to
“gini” to measure the quality of a split based on Gini impurity; max_depth set to none
to expand nodes until all leaves are pure or contain less than the specified minimum
samples for splitting; and min_samples_split set to 2, indicating the minimum number
of samples required for node splitting, with the option to set it as a fraction of the total
number of samples. No weight was assigned to trees or predictable bands, and iterations
continued until an output error of 5% was achieved. Once the first version of the 2015–2021
deforestation map was derived using the RF classifiers, a visual verification was performed
by iterating validation, generating new training points and a new model until accuracies
higher or equal than 90% for the deforestation class were obtained (Figure 2C). An accuracy
threshold of 90% for the deforestation category was defined for the producer and user
accuracy estimator to reduce the under and overestimation of deforested area. Once the
expected accuracy was achieved, the forested/non-forested map of the following year
(2015) and the change map (2015–2021) were updated. This process was repeated for each
change period analyzed.

Sample-Based Estimation of Area and Accuracy

Due the importance of estimating forest, non-forest, and deforestation extent based
on the thematic maps generated and the need for reproducible protocols for forest and
deforestation mapping, an accuracy quantification is needed for reporting areas associ-
ated with each class of thematic maps [49]. A quantitative accuracy assessment for each
class of thematic products was carried out to estimate and understand uncertainties on
area estimation-based bias attributable to omission and commission classification errors.
Olofsson et al.’s approach [50] was implemented for assessing and estimating land change
product accuracy, since it is a well-accepted standard for land change accuracy assess-
ment besides the national standard in Colombia implemented by the SMByC [42]. The
initial validation sample size (n) was determined by setting the expected standard error
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to Si = 0.01, the area proportions were mapped for each class, and theoretical validation
user accuracy was defined by the SMByC standards for each class, i.e., 99 validation points
were estimated for forested areas, 6 for deforested areas, and 129 for non-forested areas.
Nevertheless, the final validation size per category was balanced to a total of 100 points for
each class due to the low numbers obtained for deforestation class explained by the pro-
portion area of this category. The spatial distribution of validation points was determined
by an automated stratified random seed to ensure no bias due to the spatial distribution
of validation points. Target user accuracy (U_i) was set to 0.9 for both stable forest and
non-stable forest covers, since these classes are usually considered to have a high accuracy,
while for the deforestation class, Ui = 0.8 was assigned.

2.4. Forest Restoration Status Assessment

Time series analysis using Sentinel-1 imagery was carried out to study vegetation
seasonal variations and to assess the status of areas where restoration initiatives were imple-
mented since 2014. The boundaries of the implementation areas of restoration by the Urra
company were integrated (Figure 2D) and overlapped to the forested/non-forested areas of
the thematic map for 2021 (Figure 2C). The masking process filters the non-forested areas
within the intervention plots to perform a restoration status evaluation analysis (Figure 2D).
For many biomes, seasonal stratification of the time series will improve the detection of
change events, for example, when dry/wet season conditions introduce significant changes
in backscatter due the presence of surface water or phenology variations [51]. In this sense,
to minimize the influence of seasonal variation in the assessment of structural trajectories
of restoration areas, a seasonal trend analysis was introduced in the assessment. Therefore,
the first step was to subset the time series data by identifying the dry season to minimize
the precipitation effects on backscatter levels. Dry season months were identified within
the time series backscatter from Sentinel-1 from the years prior to 2021 (2017–2020); dry
season (December to March) corresponds to yearly consistent low backscatter values that
were validated with precipitation data [52]. Imagery from December to March was selected
to be included in the analysis as the dry season period (Figure 3).
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Figure 3. Sentinel-1 VH cross-polarization backscatter time series profile for assessed plot (blue line)
with implementation year 2018 (vertical red line) contrasted with forest reference time series (green
line) and pasture reference time series (yellow line). Dry season was defined as December to March
(grey areas).

To assess the current state of the restoration process and determine if the current state
of the vegetation structure is more similar to the reference coverages of well-preserved
natural forests or, on the contrary, has a greater affinity with the backscatter response
of the pastures, a comparative analysis of the dynamics of the vegetation structure from
plots undergoing restoration was performed based on available Sentinel-1 time series data
(Figure 2B). The assessment was based on a Kolmogorov–Smirnov test, which allows the
distributions of the backscatter of the implementations to be compared with forest and
pasture reference data, where the following hypotheses were proposed:

H0. The sample of the radar signal backscatter of the regeneration plot and the sample from the
reference data belong to the same distribution.
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H1. The sample of the radar signal backscatter of the regeneration plot and the sample from the
reference data DO NOT belong to the same distribution.

A total of 270 polygons of intervened plots, which have different years of implementa-
tion of reforested and/or revegetated measures (2004–2010 and 2012–2018), were analyzed
through a comparative analysis of the dynamics in the vegetation structure in plots under-
going restoration with respect to two types of reference areas: pasture and forest (Figure 4).
Reference data were generated based on the visual inspection of multi-year optical imagery
products from Landsat, Sentinel-2, and Planet (1996, 2000, 2005, 2010, 2015, and 2021).
Forest reference data were defined as consistent forested areas identified in all years, and
pasture reference data were defined as consistent pasture areas from 2005 to 2021.
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Figure 4. Optical imagery for multiple years was used to generate reference data for forest (red) and
pasture (blue) polygons. Landsat and Sentinel-2 imagery correspond to the annual median values
combined on NIR (red), SWIR (green), and Red (blue) bands. Planet Scope for December 2021 was
obtained from the Visual Biannual Archive.

The cross-polarization VH backscatter values from the Sentinel -1 SAR sensor for the
most recent dry period (2022) were used as proxies for the measurement of the structure
of aboveground vegetation (i.e., tree height and canopy size). Multiple studies indicate
that SAR cross-polarization (VH in the case of Sentinel-1 or HV in the case of ALOS-
PALSAR) shows a higher correlation with biomass compared with co-polarization (VV in
the case of Sentinel-1 or HH in the case of ALOS-PALSAR) to detect vegetation structure
changes [53–57]. Backscatter from co-polarization is usually sensible to surface scattering
components [57], and it is frequently applied to detect surface water [56].

A 95% confidence interval was chosen; therefore, if the p-value is less than 0.05 (or
5%), it provides sufficient evidence to reject the null hypothesis in favor of the alternative.
This determines the status of the forest restoration implementation based on the following
rules: (i) if it is in an incipient state, it has a greater similarity to pasture; (ii) if it is in an
intermediate state, it has no similarity to pasture nor forest; and (iii) if it is in an advanced
state, it has a greater similarity to forest (Figure 2D).

2.5. Computing Infrastructure

The Nebari open-source data science platform (https://www.nebari.dev/, v2023.5.1,
accessed on 12 August 2023) was used to develop and implement Python routines for
restoration assessment, integrating the Sentinel-1 time series backscatter generated us-

https://www.nebari.dev/
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ing the proprietary software for Earth Big Data Processing, Prediction, Modeling, and
Organization (SEPPO v5.0.0) to access the cloud Sentinel-1 imagery and perform all pre-
processing procedures necessary to generate useful time series EO data for future anal-
ysis. The Nebari platform was configured by Earth Science Information Partners (ESIP;
https://www.esipfed.org/ accessed on 12 August 2023), through the Earth Big Data LLC
partnership, to run XLarge Instances (8CPU/32 GB), implementing a parallel computing
auto-scaling approach with a maximum of 20 workers (CPU).

3. Results
3.1. Optical and Radar Imagery Processing

The images correspond to those available in the second half of the year corresponding
to the analysis date. For example, for the analysis of the year 2010, imagery from 1 July to
31 December 2010 was selected to obtain a composite for this year from the historical series
of images, metrics, and statistics. A total of 63 images were obtained for the 1996–2021
period to generate the yearly median and last pixel partially cloud-free mosaics for the Red,
NIR, and SWIR bands (Figure 5); some pixels for specific years consistently presented the
presence of clouds.
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Figure 5. Optical pre-processing results for Sentinel-2 (2021) and Landsat (1996, 2000, 2005, 2010,
2015, and 2021) imagery. The mosaics generated correspond to annual median values combined on
NIR (red), SWIR (green), and Red (blue) bands.

A total of 285 Sentinel-1 radiometric and terrain-corrected images were used for the
2014–2022 period, of which 136 correspond to Sentinel-1A and 149 correspond Sentinel-
1B, providing Earth’s surface observations every six days (Figure 6). All images, with a
final spatial resolution of 12 m, were stacked in Zarr files, a Python library for chunked,

https://www.esipfed.org/
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compressed, and parallelized N-dimensional arrays (Figure 6), providing a flexible and
scalable approach to store large datasets in a compressed format, allowing for the efficient
storage and retrieval of data in a cloud-based computing environment.
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Figure 6. Sentinel-1 radiometric and terrain products obtained from pre-processed imagery from
both satellites (S-1A and S-1B). Single images were stacked in multidimensional time series array of
earth observations.

3.2. Forested and Deforested Spatiotemporal Dynamics Using Optical Sensors

Based on the analysis of the forested/non-forested maps for the year of 1996, it
was found that the initial baseline for forested areas covered a significant portion of the
study area, corresponding to 45,186.9 hectares, which represents 50.7% of the total area.
The remaining 49.3% of the area is represented by non-forested areas. However, when
examining the dynamics of forest coverage change from 1996 to 2021 (Figure 7), a noticeable
decreasing trend in forested areas was found.
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Through the analyzed period, the reported forested area experienced a decline, de-
creasing from 43,350 ha in the 1996–2000 period to 37,763 ha in the 2015–2021 period.
Concurrently, the extent of deforestation increased from 1837 ha in the 1996–2000 period to
2178 ha in the 2015–2021 period. In contrast, non-forested areas expanded, growing from
44,004 ha in the 1996–2000 period to 49,223 ha in the 2015–2021 period (Figure 8).
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Notably, the analysis also identified reforested and/or revegetated areas, which were
first reported in the last two analysis periods. A total of 583 hectares were recorded by
the year 2015, and an additional 27 hectares were identified by the year 2021, representing
restored forested areas. By the year 2021, forests constituted 42.4% of the study area,
covering a total of 37,789 hectares. The remaining 57.63% of the area consisted of non-forest
coverages, accounting for 51,401 hectares (Figure 8).

Validation of Forest Change Dynamics for 1991–2021 Products

Table 1 shows the locations of the 300 points that served as samples for the validation
of the forest surface change maps for the analyzed study periods. These points were
spatially randomly generated for each of the classes: forest, non-forest, and forest loss. No
validation points were integrated in the accuracy assessment approach for the reforestation
category, as these areas represented a minimal percentage of the study area, and the areas
were concentrated in specific sites that were completely visually inspected.

The classification accuracy assessment revealed variations in the performance of the
maps across different time periods (Table 1). Table 1 shows that during the 1996–2000
period, the overall accuracy of the forest change map was 89%, the user’s accuracy for the
forest class was 78%, and the producer’s accuracy for the forest class was 96%. Conversely,
the non-forest class achieved a user’s accuracy of 100% and a producer’s accuracy of 80%.
The deforestation class exhibited a user’s accuracy of 90% and a producer’s accuracy of 95%.
In the subsequent period, spanning 2000–2005, the overall accuracy of the map improved
to 96% compared with the change map for the 1996–2000 period. The user’s accuracy
for the forest class was 93%, indicating a high percentage of correctly classified forest
pixels. Additionally, the producer’s accuracy for the forest class was 98%, suggesting that
the map accurately represented the distribution of forested areas. The deforestation class
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presented a user’s accuracy of 95% and a producer’s accuracy of 99%, indicating the map’s
effectiveness in detecting and representing deforestation events. The non-forest class user’s
accuracy was 98%, and the producer’s accuracy was 90%, indicating a slight overestimation
of non-forested areas in the map. These results demonstrate the improved accuracy and
reliability of the map in capturing land cover changes during this specific period compared
to the 1996–2000 period.

Table 1. An accuracy assessment sample for the 1996–2000, 2005–2010, 2010–2015, and 2015–2021
periods’ forested/deforested/non-forested maps for the area of influence of Urra’s hydropower
facility. The map categories are rows, while the reference categories are columns. The accuracy
measures are presented with a 95% confidence interval.

Class Forested Deforested Non-Forested Total Wi (%) User’s Producer’s Overall

1996–2000

Forested 78 4 18 100 0.38 0.78 ± 0.4 0.96 ± 0.3 0.89
Deforested 3 90 7 100 0.2 0.90 ± 0.02 0.95 ± 0.04

Non-Forested 0 0 100 100 0.42 1 ± 0.4 0.8 ± 0.5
Total 81 94 125 300 1

2000–2005

Forested 93 1 6 100 0.48 0.93 ± 0.4 0.98 ± 0.4 0.96
Deforested 0 95 5 100 0.01 0.95 ± 0.01 0.99 ± 0.01

Non-Forested 2 0 98 100 0.51 0.98 ± 0.5 0.9 ± 0.5
Total 95 96 109 300 1

2005–2010

Forested 92 0 8 100 0.46 0.92 ± 0.4 0.99 ± 0.4 0.95
Deforested 0 99 1 100 0.02 0.99 ± 0.01 0.98 ± 0.02

Non-Forested 1 0 97 100 0.52 0.97 ±0.5 0.92 ± 0.5
Total 93 101 106 300

2010–2015

Forested 92 1 7 100 0.45 0.92 ± 0.4 0.97 ± 0.4 0.95
Deforested 0 95 5 100 0.2 0.95 ± 0.1 0.99 ± 0.02

Non-Forested 3 0 97 100 0.53 0.97 ± 0.5 0.89 ± 0.5
Total 95 96 109 300

2015–2021

Forested 92 1 7 100 0.43 0.94 ± 0.4 0.97 ± 0.4 0.96
Deforested 0 95 5 100 0.2 0.94 ± 0.02 1 ± 0.02

Non-Forested 3 0 97 100 0.55 0.97 ± 0.5 0.89 ± 0.5
Total 95 96 109 300

For the 2005–2010 period, the overall accuracy of the map remained consistently high
at 95%. The user’s accuracy for the forest class was 92%, indicating a high level of agreement
between the map classification and the actual forested areas. The producer’s accuracy for
the forest class was 99%, suggesting that the map accurately represented the distribution of
forest pixels. The deforestation class’s user’s accuracy was 99% with a producer’s accuracy
of 98%, indicating the map’s effectiveness in detecting and representing deforestation
events with a high level of precision. The non-forest class showed a user’s accuracy of 97%
and a producer’s accuracy of 92%, suggesting a slight overestimation of non-forested areas
in the map. These results highlight the accuracy and reliability of the map in capturing
land cover changes during this specific time period.

From 2010 to 2015, the overall accuracy of the map remained consistently high at 95%.
The user’s accuracy for the forest class was 92%, indicating a high percentage of correctly
classified forested pixels. The producer’s accuracy for the forest class was 97%, indicating
that the map accurately represented the distribution of forested areas. The deforestation
class achieved a user’s accuracy of 95% and a producer’s accuracy of 99%, demonstrating
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the map’s effectiveness in identifying and representing deforestation events. The non-forest
class demonstrated a user’s accuracy of 97% and a producer’s accuracy of 89%, suggesting
a slight underestimation of non-forested areas in the map.

In the most recent time period analyzed, spanning 2015–2021, the overall accuracy of
the map remained consistently high at 94.7%. The user’s accuracy for the forest class was
92%, indicating a high percentage of correctly classified forested pixels. The producer’s
accuracy for the forest class was 97%, suggesting that the map accurately represented the
distribution of forested areas. The deforestation class achieved a user’s accuracy of 95%
and a producer’s accuracy of 100%, demonstrating the map’s effectiveness in detecting
and representing deforestation events. The non-forest class showed a user’s accuracy of
97% and a producer’s accuracy of 89%, indicating a slight underestimation of non-forested
areas in the map.

3.3. Restoration Implementation Assessment Using Sentinel-1

The previous analysis of the forested/non-forested dynamics showed that three of the
implementation plots were found to reach a completed forest succession state, indicating
that, as of the analysis cutoff date in March 2022, these specific plots exhibited forest
coverage in accordance with the definition provided by the SMByC.

Based on the time series analysis performed using VH polarization from Sentinel-1,
cumulative distributions derived for each of the 270 implementation areas were contrasted
to forest and pasture reference data (Figure 9). The two-sample Kolgomorov–Smirnov test
revealed that 16 plots (5.93%) demonstrated an incipient restoration state, as evidenced by
the vegetation structure estimates that displayed a greater resemblance to grassland areas
compared to forests (Figure 10 provides an incipient example). Among the intervened
plots subjected to evaluation (totaling 224), a significant majority of 82.96% (Table 2) was
found to be in an intermediate state of the restoration process. These plots did not exhibit
significant differences when compared to the two reference coverages: grasslands and
forests (Figure 10 exemplifies the intermediate state). Furthermore, 27 of the evaluated plots,
accounting for 10% of the total (as outlined in Table 2), displayed significant differences
compared to the grassland reference data, but they did not exhibit significant differences in
comparison to forests. Consequently, these plots were classified as being in an advanced
state of reforestation (Figure 10).

Table 2. Results of restoration state assessment for 2022 dry season for 270 implementation plots
evaluated based on Sentinel-1 VH backscatter.

Regeneration State Number of Implementations

Incipient 16
Intermediate 224

Advanced 27
Completed 3

When the number and state of restoration were inspected in relation to the implemen-
tation years, some years showed a higher number of implementation plots in an advanced
state of restoration. The years 2018, 2016, 2013, and 2014 demonstrated a substantial pres-
ence of seven, five, five, and four plots in the advanced state, respectively. Additionally, the
year 2008 showed two plots in the advanced implementation state, while for the years 2009,
2012, 2015, and 2017, each one had a single plot in this state (Supplementary Figure S1 and
Table S1).

No implementation plots from the years 2004, 2005, 2006, 2007, and 2010 were observed
to achieve an advanced state in the restoration process. Instead, most plots from these
years exhibited intermediate states within the reforestation process, indicating ongoing
progress towards full restoration. To explore the relationship between the restoration state
and the implementation year, a Chi-squared test was performed. The results of the test
indicated that there is no statistically significant association between the restoration state
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and the implementation year (Chi-squared statistic: 44.2823; degrees of freedom: 39; and
p-value: 0.2586), suggesting that the restoration state is independent of the specific year
of implementation.
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Figure 9. The Synthetic Aperture Radar (SAR) time series mean cross-polarized (VH) backscatter
values (top) and cumulative distributions (middle and bottom) associated with reference areas, forest
(green) and pasture (orange) areas, and assessed implementation plots (blue). This implementation
was classified as being in an advanced state of restoration where the cumulative distribution is closer
to the forest distribution. The implementation of the restoration date (red) and dry season period
(December, January, February, and March) (grey) are included.
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Figure 10. An assessment of three implementation plots based on the backscatter cumulative distribu-
tions and reference data for the 2022 dry season. The 42-2016 plot (green polygon) exhibited similarity
to the forest reference (green backscatter distribution). The R18-2018 plot (blue polygon) indicated an
intermediate restoration state due to differences in the backscatter distribution (blue) compared to
forest (green backscatter distribution) and pasture (orange backscatter distribution). The R32-2016
plot (orange polygon) exhibited similarity to the pasture reference (orange backscatter distribution).
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4. Discussion
4.1. Forested and Deforested Spatiotemporal Dynamics Using Optical Sensors

The results demonstrate that the proposed method allows for an efficient identifica-
tion of forest loss within the study area. The developed method enables the detection
of changes occurring within forest coverage, providing a quantitative measure and the
spatial locations of the observed change events. This is achieved through the creation of
composite images that reduce areas without information and extract pixels to generate
information-rich images, removing the gaps generated by clouds and sensor malfunc-
tions [30,49]. In accordance with a national [1] deforestation spatiotemporal trend analysis,
this research reveals the highest deforestation trend during the period from 1996 to 2000.
The initial baseline in 1996 showed that forests covered a significant portion of the study
area, accounting for 50.7% of the total area. However, over the analyzed period, there
was a noticeable decrease in forested areas, with a corresponding increase in non-forested
areas. Deforestation played a significant role in this trend, as forested areas declined from
43,350 hectares in the 1996–2000 period to 37,763 hectares in the 2015–2021 period, while
non-forested areas expanded from 44,004 hectares to 49,223 hectares during the same period.
By 2021, forests constituted 42.4% of the study area, resulting in a loss of approximately
7397 hectares, which corresponds to 8.3% of the total area. Deforestation has primarily
concentrated in the western part of the study area. The effects of deforestation are par-
ticularly evident near rural areas located far from the water reservoir. This indicates that
there are actors and actions (especially related to land use) that influence the study area
besides the hydropower reservoir. Consequently, the ten closest most affected rural areas
in terms of forest loss area are Nain, Murmullo Alto, Maria de Jesus, Casajales, Kilometro
14, Zumbona, Chispas, La Osa, Alto Quimary, and Angostura (Figure 7). Evidence of forest
recovery is observed in areas that are not associated with or adjacent to the intervention
plots carried out by the company. This finding suggests the presence of ecological processes,
e.g., natural succession, that are promoting restoration. It is important to note that, although
the largest areas of forest recovery were detected in the year 2015, this does not necessarily
imply that the recovery occurred specifically between 2010 and 2015. The visual inspection,
which identified pastures in 1996, indicates that the recovery could have started before the
previous period.

An accuracy assessment of the forest change map revealed variations in its perfor-
mance across different time periods. The overall accuracy of the map consistently remained
high for most of the periods, except in the 1996–2000 period, which had the lowest overall
user’s and producers’ accuracies. This could be attributed to the Landsat 7 mission having
a less frequent revisit rate compared to subsequent missions [5] and SLC-off malfunc-
tion [38,39]. As a result, it becomes challenging to produce cloud-free mosaics in tropical
regions based on optical sensors, demonstrating the limitations of using optical sensors
in tropical areas with high cloud cover [30] and the need to integrate active sensors for
cloud-free EO data generation [5,10,14,15]. With the arrival of future missions, such as
Landsat-8 and Landsat-9, the frequency of revisits increases, enhancing the probability of
generating cloud-free mosaics. However, along with the information gaps caused by the
SLC-off effect [38], these gaps in the data can be observed in mosaic generation with cloud
and banding for the years 1996, 2000, 2005, and 2010; this can represent a limitation in the
application of optic sensors to generate EO data for forest and deforestation monitoring
in tropical and mountainous regions with a high frequency of clouds, especially during
the rainy season. This was evident in the 1996 and 2000 mosaics, where certain areas
lacked cloud-free pixels. Furthermore, since the first Landsat missions in 1972, several
enhancements were made to improve the spatial, radiometric, and spectral resolutions [5].
These improvements can have varying effects on the final products, such as mosaics, which,
in turn, can influence the accuracy assessment. The user’s accuracy for the forest class
also remained consistently high, ranging from 78% to 92%, indicating a high percentage of
correctly classified forested pixels. The producer’s accuracy for the forest class ranged from
96% to 100%, suggesting that the map accurately represented the distribution of forested
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areas. Notably, the map showed a high level of effectiveness in detecting and representing
deforestation events, with user’s accuracies ranging from 90% to 99% and producer’s
accuracies ranging from 95% to 100% for the deforestation class. However, there were slight
discrepancies in the representation of non-forested areas, with user’s accuracies ranging
from 97% to 100% and producer’s accuracies ranging from 89% to 92%. These results
demonstrate the overall high accuracy and reliability of the map in capturing land cover
changes, particularly in detecting deforestation events. Nevertheless, there is room for
improvement in accurately representing non-forested areas. Overall, the findings highlight
the importance of regularly updating and refining classification methods to enhance the
accuracy and precision of forest change maps.

The analysis of forested/non-forested dynamics and the time series analysis of the
implementation plots revealed that three implementation plots reached a completed state,
indicating successful forest restoration according to the provided definition. Furthermore,
a small percentage (5.93%) of plots demonstrated an incipient restoration state, resembling
grassland areas more than forests. Most evaluated plots (82.96%) were in an intermediate
state, showing no significant differences compared to both grassland and forest refer-
ence data. Additionally, 10% of the plots displayed significant differences compared to
grasslands but not forests, indicating an advanced state of reforestation.

4.2. Restoration Implementation Assessment Using Sentinel-1

When examining the implementation years, certain years showed a higher number
of plots in the advanced state, such as 2018, 2016, 2013, and 2014. However, there was no
statistically significant association between the restoration state and the implementation
year, suggesting that the restoration status is not associated with the implementation year.
The integration of additional variables associated with the type of implementations (active
or passive) and species composition, among other factors, in conjunction with continuous
vegetation structure time series provided by SAR data, could generate more insights for
the evaluation of restoration process.

To effectively evaluate the success and impact of restoration strategies, it is crucial
to combine on-the-ground data with remote sensing observations. Integrating these two
sources of information allows for a comprehensive assessment of the restoration process,
including the identification of factors that contribute to successful restoration and the iden-
tification of areas that may require further intervention. Implementing monitoring systems
that integrate ground truth data and EO data enables a more robust and accurate evaluation
of restoration efforts. By continuously assessing the progress and outcomes of restora-
tion strategies, decision makers and stakeholders can make informed decisions regarding
resource allocation, adaptive management, and the refinement of restoration approaches.

5. Conclusions

The proposed method for detecting and quantifying deforestation events using cloud-
based and open-source science platforms proved to be effective in monitoring forest dy-
namics in the study area. The method allowed for the creation of composite images that
facilitated the extraction of information-rich images, enabling the detection of spatially
and quantitatively significant changes in forest coverage. The impacts of deforestation
were particularly evident near rural areas, emphasizing the influence of actors and actions
beyond the scope of the hydropower reservoir. However, this study also highlighted areas
where forest recovery was observed, suggesting that the presence of ecological processes
promote restoration.

The accuracy assessment of the forest change map demonstrated its high performance
in detecting and representing deforestation events, with consistently high user’s and pro-
ducer’s accuracies. While the accuracy for the forest class remained high, there were slight
discrepancies in the representation of non-forested areas, indicating room for improve-
ment. Regular updates and refinements to classification methods are crucial to enhance the
accuracy and precision of forest change maps.
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The analysis of implementation plots revealed that, currently, most of the implemen-
tation plots are in an intermediate state. Certain years showed a higher number of plots
in an advanced state of reforestation, but no statistically significant association was found
between the restoration state and the implementation year. The further integration of
additional variables, such as the implementation type and species composition, along with
continuous time series data from SAR, could provide deeper insights into the evaluation of
the restoration process.

This research emphasizes that the application of these methods can be extended to
tropical regions, and certain techniques can mitigate spatiotemporal gaps to produce annual
mosaics. It is anticipated that integrating Landsat-7 may result in decreased accuracy due
to its infrequent revisits and SLC-off malfunction. However, the reported lower accuracy
estimates do not pose a significant issue when generating yearly mosaics inclusive of dry
seasons. Yet, this limitation becomes pertinent when only imagery from the rainy season is
integrated, necessitating the consideration of seasonality in future analyses.

To effectively evaluate the success and impact of restoration strategies, combining
on-the-ground data with remote sensing observations is crucial. This integrated approach
allows for a comprehensive assessment of the restoration process, aiding in the identifica-
tion of factors contributing to successful restoration and areas requiring further intervention.
By continuously monitoring and evaluating restoration efforts, decision makers and stake-
holders can make informed decisions regarding resource allocation, adaptive management,
and the refinement of restoration approaches.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/f15050754/s1, Figure S1: Number of restoration plots assessed
grouped by implementation state and year of implementation; Table S1: Number of restoration plots
assessed, grouped by implementation state and year if implementation.
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