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Abstract: Plant-based foods may enhance the prevention of cancer. The present investigation aimed
to assess the antigenotoxic effects of chitosan nanoparticles (CNPs) when loaded with the ethanol
extract of C. cartilaginea (CNPs/Cc). Synthesis of CNPs and CNPs/Cc and their characterization
were carried out using TEM, EDS, DSC, and Zeta potential. For in vivo experiments, animal groups
were treated in the following groups: negative control, ethyl methanesulfonate (EMS) (240 mg/kg),
CNPs (350 mg/kg), high and low doses of CNPs/Cc, CNPs plus EMS, high dose of CNPs/Cc plus
EMS, and low dose of CNPs/Cc plus EMS. Bone marrow chromosomal aberrations and sperm shape
abnormalities were examined. TEM results showed that CNPs and CNPs/Cc are spherical particles.
CNPs’ physical stability was observed to be lower than that of CNPs/Cc due to the presence of more
positive charges on CNPs/Cc. EMS significantly enhanced chromosomal abnormalities and sperm
shape abnormalities. CNPs showed powerful antigenotoxic properties. For the first time, it could be
concluded that loading chitosan nanoparticles with C. cartilaginea extract significantly promotes its
protective properties.

Keywords: chitosan; nanoparticles; Capparis cartilaginea; genotoxicity; sperm

1. Introduction

Cancer is the second leading cause of death worldwide [1,2]. Environmental and
dietary chemicals can induce endogenous and exogenous DNA damage, which is the first
step in the process of carcinogenesis [3]. Given the relationship between food, nutrition,
and cancer, plant-based diets have been reported to decrease overall cancer risk [4].

Medicinal plants with preventive and therapeutic properties play a vital role in
healthcare systems. Capparaceae comprises a medium-sized family of about 45 genera and
700–900 species, whose members exhibit considerable variation in their habitat [5]. Capparis
is the largest genus of Capparidaceae, comprising about 250–400 species of shrubs, trees, and
woody climbers [6], represented by four species in Saudi Arabia. Capparis C. cartilaginea
Decne is used in traditional medicine for treatment of various illnesses. These plants
have shown different biological effects, including antioxidant, antihyperglycemic, hypolipi-
demic, and analgesic effects [7,8]. There is a growing body of literature that recognizes the
immunostimulant, antitumoral, antidiabetic, antisclerotic, antimicrobial, anti-inflammatory,
immunomodulatory, and antiviral activities of the Capparis species [9].

Currently, the development of new therapeutic drugs with improved efficiency is
gaining much interest in the field of plant-based medicines. Nanoscale systems for drug
delivery reduce the drug particles into the sub-micron range, thus enhancing the solubility,
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permeability, absorption, and bioavailability of their active ingredients [10]. One such
system uses nanoparticles formed from chitosan, which is the second most abundant natural
polymer after cellulose. Chitosan is a nontoxic, biocompatible, biodegradable, and cationic
polysaccharide, which can be easily crosslinked with tripolyphosphate (TPP polyanions)
under mild conditions to form nanoparticles [11,12]. The use of chitosan nanoparticles,
with a tunable size and the possibility of surface modification, is a very promising and
versatile strategy to overcome the bioavailability and stability issues of diverse natural
active ingredients [13]. Chitosan-based nanosystems are among the most important and
advanced drug delivery systems due to their remarkable physicochemical and biological
characteristics. Thus, it has been widely used in the medical and pharmaceutical fields, and
its potential as a drug carrier has been considered [14].

Ethyl methanesulfonate (EMS) is a dangerous chemical substance: it is mutagenic,
teratogenic, and carcinogenic, and neither occurs naturally nor has any commercial uses.
However, EMS is a known trace impurity in medications made of mesylate salts. Thus, it is
regarded as an impurity rather than a contamination. EMS can cause gene mutations and
chromosomal abnormalities through nucleotide substitution, especially through G:C-to-A:T
transitions brought on by guanine alkylation [15–17]. In biochemical and medical research,
EMS is generally utilized as a model alkylating agent, particularly in studies of DNA repair
mechanisms. Usually, the mutations are severe loss-of-function or null alleles. Deletions or
other chromosomal rearrangements account for around 13% of the EMS lesions [18].

Multiple phenotypes, metabolic byproducts, and biotic/abiotic stress tolerance are
displayed in the EMS-induced mutants [19]. Guruprasad [20] observed that Brahmarasayana
significantly reduced Ethylmethanesulfonate induced chromosomal aberrations in mouse
bone marrow cells. The genotoxicity of EMS in mammals like mouse and rats was accom-
plished with changes in sperm morphology and limb defects in the embryos of pregnant
rats [21].

Therefore, the present study aims to synthesize and characterize chitosan nanopar-
ticles loaded with C. cartilaginea leaf extract and to establish whether loading chitosan
nanoparticles with C. cartilaginea extract improves antigenotoxic activity against ethyl
methanesulfonate (EMS)-induced genotoxicity in mice.

2. Materials and Methods
2.1. Materials

The leaves of C. cartilaginea were gathered in December 2021 from Al-Hada, Saudi
Arabia, and were identified according to Chaudhary [22]. The chemicals used in this study
were of analytical grade and used without further purification. Chemicals were purchased
from the Saudi Chemical Company (PanReac AppliChem, Ar Riyad, Saudi Arabia).

2.1.1. Preparation of C. cartilaginea Leaf Extract

A total of 1031.0 g of C. cartilaginea leaves were cleaned and air-dried in the shade, then
ground using a suitable grinder. The powdered leaves were soaked in absolute ethanol for
72 h. The extract was filtered, then evaporated using a rotary evaporator (IKA RV 8 Basic
V-C, Leicestershire, UK). The leaf extract was lyophilized using a freeze-drying lyophilizer
until complete dryness was achieved and preserved at −20 ◦C. The residue yield was 8.2%
of C. cartilaginea.

2.1.2. C. cartilaginea Characterization

The characterization of C. cartilaginea was performed via Fourier-transform infrared
spectroscopy (FTIR) using a Thermo Fisher Nicolet IS10 (Waltham, MA, USA) spectrometer.

GC–MS Analysis

The method of GC–MS analysis was used on the plant according to Rautela et al. [23].
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2.2. Synthesis and Optimization Process of CNPs/Cc
2.2.1. Synthesis of CNPs

Chitosan was obtained from Sigma-Aldrich. The ionic gelation of CNPs was conducted
as described by Masarudin et al. [24]. Three grams of chitosan (medium molecular weight)
was mixed with 10 mL of 1.0% acetic acid, and then 990 mL of distilled water was added
to the mixture. The solution was stirred using a magnetic stirrer for 2 h to dissolve the
chitosan. For the cross-linker, 1 g of TPP was dissolved in 1 L of distilled water at pH 5.0.
This was added to the chitosan solution and stirred continuously with a magnetic stirrer
until complete dissolution. The mixture was centrifuged at 5000× g for 20 min, washed,
and then lyophilized until complete dryness (Figure 1).
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2.2.2. Synthesis of CNPs/Cc

CNPs and CNPs/Cc were synthesized according to Masarudin et al. [24]. Three grams
of chitosan (medium molecular weight) was dissolved in 10 mL of 1.0% acetic acid, then
990 mL of distilled water was added. The chitosan solution was stirred using a magnetic
stirrer for two hours to guarantee complete dissolution. The plant extract (3 g) was dis-
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solved in 100 mL of dimethyl sulfoxide (DMSO, purity ≥ 99.5%), using a magnetic stirrer
to ensure that the plant extract was completely dissolved. For the cross-linker, 1 g of TPP
was dissolved in 900 mL of distilled water at pH 5.0. TPP solution and plant extract were
mixed and added drop-by-drop to the dissolved chitosan, then stirred for two hours. The
mixture was refined by centrifugation for 20 min at 5000 rpm, then washed three times
with distilled water, followed by lyophilization until it was completely dry (Figure 2). This
extract was used for pharmacological testing.
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2.2.3. Characterization of CNPs and CNPs/Cc

Characterization of CNPs and CNPs/Cc was accomplished using an FTIR (Waltham,
MA, USA) Spectrometer, Thermo Fisher Nicolet IS10, to produce the FTIR spectrum
(4000 and 400 cm−1). The size and morphology of the nanoparticles at the nanoscale
were characterized by means of transmission electron microscopy (TEM) (JEOL JSM-
6510/v, Tokyo, Japan). The chemical contents of nanoparticles were determined via energy-
dispersive spectroscopy (EDS) (JEOL JSM-6510/v, Tokyo, Japan), and a Zeta potential
analyzer was used to determine the surface charge and stability [25] (Malvern Zeta size
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Nano-Zs90, Malvern, PA, USA). Thermographic analysis was performed via differential
scanning calorimetry (DSC) testing of 5–10 mg using a DSC131 EVO (Lyon, France).

2.3. In Vivo Antigenotoxicity
2.3.1. Experimental Animals

Male SWR mice (9–12 weeks old, 25–27 g each) were obtained from the Animal House
Colony at King Fahad Medical Research Centre. Animals were kept in plastic cages under
normal conditions of a night–day cycle (12/12 h). Food and water were supplied ad libitum.

Animals were kept in artificially illuminated (12 h dark/light cycle) and thermally
controlled (25 ± 1 ◦C) conditions. Humane care was applied to all animal groups in
compliance with the guidelines of the Animal Care and Use Committee of the University
of Jeddah (Approval # UJ-21-DR-41).

2.3.2. Experimental Design

Animals were divided into the groups listed in Table 1.

Table 1. Experimental design and animal groups.

Groups Treatment and Doses Treatment Day(s)

Control Control (negative)

1

EMS: intraperitoneal single injection with 240 mg/kg b.w
CNPs: oral administration with 350 mg/kg b.w. of chitosan nanoparticle
HD of CNPs/Cc: oral administration with 700 mg/kg b.w. of CNPs loaded with C. cartilaginea
LD of CNPs/Cc: oral administration with 350 mg/kg b.w. of CNPs loaded with C. cartilaginea
CNPs + EMS CNPs (350 mg/kg b.w.) + EMS (single injection with 240 mg/kg b.w)
HD of CNPs/Cc +EMS (single injection with 240 mg/kg b.w)
LD of CNPs/Cc + EMS (single injection with 240 mg/kg b.w)

Control Control (negative)

7

EMS: intraperitoneal single injection with 240 mg/kg b.w, 24 h before the
experiment.

CNPs: oral administration with 350 mg/kg b.w. of chitosan nanoparticle
HD of CNPs/Cc: oral administration with 700 mg/kg b.w. of CNPs loaded with C. cartilaginea
LD of CNPs/Cc: oral administration with 350 mg/kg b.w. of CNPs loaded with C. cartilaginea
CNPs + EMS CNPs (350 mg/kg b.w.) + EMS (single injection with 240 mg/kg b.w)
HD of CNPs/Cc +EMS (single injection with 240 mg/kg b.w)
LD of CNPs/Cc + EMS (single injection with 240 mg/kg b.w)

2.3.3. Chromosome Abnormalities Assay

Chromosomal aberration was assessed as described by Moore et al. [26]. For this,
animals were injected i.p. with colchicine, 2 h before sacrifice. The method of Yosida
and Amano [27] was applied in bone marrow chromosome preparations. One hundred
metaphases were examined per animal, and the metaphases with aberrations such as gaps,
chromosome or chromatid breakage, and fragments were recognized.

2.3.4. Sperm Morphology Assay

Rasgele’s sperm morphology testing was carried out [28]. Cauda epididymides were
crushed in an isotonic sodium citrate solution. Sperms were smeared on slides, fixed, and
stained with Eosin Y. In total, 1000 sperms were examined per animal. The head and tail
abnormalities of sperm were detected.

2.4. Statistical Analysis

All data are provided as mean values with standard deviations (SDs) based on five
replicates and probability values (p ≤ 0.05). Tukey’s method and one-way ANOVA
(version 16) were used to evaluate the significance of data.
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3. Results and Discussion
3.1. Fourier-Transform Infrared Spectroscopy (FTIR)

FTIR was performed to compare the functional groups of the C. cartilaginea extract,
the CNPs, and the CNPs/Cc. In total, eight band regions were observed in C. cartilaginea
(3231, 2924, 1598, 1508, 1396, 1267, 1038, and 614), in the CNPs (3335, 2126, 1636, 1558,
1540, 1457, 1096, and 623 cm−1), and in the CNPs/Cc (3346, 2132, 1636, 1540, 1418, 1077,
1011, and 950). The results showed similarity between the chemical structures of CNPs
and CNPs/Cc; the wavenumber 1636 was the peak in the CNPs/Cc, and the CNPs pre-
sented CHO stretching of the carbonyl group, typical saccharide absorption, and a peak of
1540 cm−1, which relates to the amide groups that are present in chitosan (Table 2 and
Figure 3).

Table 2. C. cartilaginea, CNPs, and CNPs/Cc analysis by FTIR.

Wavenumber cm−1 Plant CNP/Cc CNPs Functional Groups Ref.

3346.88 Nd D Nd Hydroxyl groups [29]

3335.45 Nd Nd D Stretching N-H asymmetric [30]

3231.22 D Nd Nd O-H bond stretching [31]

2132.35 Nd D −6 Si–H stretching [29]

1636.33 −38 D D CHO stretching of
carbonyl group [30]

1558.81 Nd Nd D C–C stretch aromatic
rings (phenolic) [32]

1540.41 −22 D D Amide II [30]

1418.53 −21 D +39 Deformation C–H [30]

1267.27 + Nd Nd C-O stretching [33]

1077.43 Nd D +19 C=C bond [34]

1011.96 +17 D Nd C-F groups [28]

950.72 Nd D Nd Amines [35]

614.09 D Nd +9 C–S stretch [36]
D: detected, Nd: not detected, (−): shifted wavenumber by minus, (+): shifted wavenumber by addition.

3.2. GC–MS Analysis of C. cartilaginea Extract

The GC–MS analysis of Capparis cartilaginea showed the presence of 15 compounds
(Figure 4). The prevailing compounds were 9,12,15-octadecatrienoic acid, methyl ester
(14.99%); Hexadecanoic acid, methyl ester (11.79%); D-Pyroglutamic acid (9.03), hydroxy-
bicyclo[3.3.1]n on-2-en-9-one (6.15%); 7-hydroxy-bicyclo[3.3.1]n on-2-en-9-one (4.25%);
octadecanoic acid, methyl ester (3.24%); CIS-5,8,11,14,17-eicosapentaenoic acid (3.22%);
9-octadecenoic acid (z)- hexadecanoic ACID (3.21%); hexadecanoic acid, ethyl ester (3.09%);
2-aminoethanethiol hydrogen sulfate (ester) (2.98%); 9-octadecenoic ACID (Z)- 2-
aminoethanethiol (2.91%); 9,12-Oetadecadienoyl chloride, (Z,Z)- (2.76%); 9-Octadecenoic
acid (Z)-, methyl ester (2.09%); acethydrazide, n2-[1-(2,3-dihydro-6-methyl pyran-2-yl)
ethylideno]- (2.05%); 3,5-Heptadienal and 2-ethylidene-6-methyl (2.00%). All these com-
pounds are bioactive and possess many activities such as antibacterial, anticancer, antiviral,
and antioxidant, as presented in Table 3.
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Table 3. GC–MS analysis of C. cartilaginea extract.

Biological Activity Molecular
Weight

Molecular
Formula Chemical Structure Area % Compound Name RT

Antimicrobial,
Anti-inflammatory,

Antioxidant [37]
152 C9H12O2
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Table 3. Cont.

Biological Activity Molecular
Weight

Molecular
Formula Chemical Structure Area % Compound Name RT

Anti-oxidant,
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cholesterol,
anti-inflammatory

[44]
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3.3. Zeta Potential Characterization

Zeta potential determination is a crucial method for characterizing the surface charge
and comprehending the physical stability of nanosuspensions [50]. The nanoparticles
examined in this investigation had surfaces that were positively charged (Figure 5a,b). The
results showed that the particles generated in this investigation were comparable to those
described in the literature [51–56]. The CNPs/Cc had a zeta potential of about +34.49 mV
(Figure 5a), while the CNPs had a zeta potential of about +52.78 mV (Figure 5b). This
showed the CNPs/Cc’s incipient instability and the CNPs’ moderate stability. The positive
surface charges of chitosan were affected by the addition of bioactive components, altering
the stability of the nanoparticles. If the value of the zeta potential ranges between 0 and
±5 mV, it is an indicator of rapid coagulation; ±10 to ±30 mV indicates incipient instability;
±30 to ±40 mV indicates moderate stability; ±40 to ±60 mV indicates good stability; and
>±61 mV indicates excellent stability [57].
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3.4. TEM Analysis

A TEM micrograph showed the CNPs to have a spherical particle shape (Figure 6a)
and a size range of 9–25 nm [54,56,58], the CNPs/Cc had a spherical shape and a size range
of 18–30.1 nm (Figure 6b). The size difference between the CNPs and the CNPs/Cc may be
due to the effect of the plant extract being loaded with nanoparticles. Using cross-linked
chitosan is necessary to have better control over its shape and size [59]. The TEM image
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showed the aggregation of the chitosan nanoparticles [60]. The chitosan nanoparticles
appeared as tiny and individual spheres, with a diameter ranging from 30 to 40 nm.
Larger particles are caused by the aggregation of single tiny particles that manage to fuse,
producing a larger entity [61,62].
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3.5. Energy-Dispersive Spectroscopy (EDS)

Figure 7a,b depict the EDS analysis of the CNPs and the CNPs/Cc. The EDS of the
CNPs revealed a high-intensity metallic peak of elements such as oxygen (O) with an atomic
weight of 52.72%, 37.82% for carbon (C), 8.37% for phosphate (P), and low-intensity peaks
of aluminum (Al). The EDS of the CNPs/Cc also confirmed the presence of carbon with
an atomic weight of 30.40%, 49.72% for oxygen, 13.83% for nitrogen, 3.91% for phosphate,
and low-intensity peaks of aluminum (Al), sodium (Na), and sulfur (S). It was possible to
observe an increase in the intensities of the C and O signals relative to the other metals’
signals, which was likely caused by the chitosan nanoparticles [28]. EDS was employed to
confirm the presence of TPP as cross-linked junctions in the CS particles, by monitoring
the content of phosphorus in CS-TPP [63]. New signals of Na and P were obtained in the
CNPs/Cc samples, due to the cross-linking of TPP with CS [64].

3.6. Differential Scanning Calorimetry (DSC)

Figure 8 shows the DSC thermogram of the CNPs and the CNPs/Cc. The temperature
ranged from 20 to 600 ◦C. A sharp endothermic peak was observed between 75.60 and
186.73 ◦C, showing the nanoparticles’ potential for heat breakdown. The exothermic peak
of the CNP at 196.82 and 219.39.73 ◦C followed by an exothermic peak at 219.91 and
256.44 ◦C could be due to water evaporation. The CNPs exhibited a sharp endothermic
peak at 45.46 and 163.82, after a tiny endothermic peak at 169.23 and 207.41, while an
exothermic peak was observed at 214.66 and 247.90 ◦C. The result is in agreement with
Yousef et al. [65], whose DSC thermogram of chitosan showed an endothermic peak at
180 ◦C and an exothermic peak at 370 ◦C. Chitosan DSC thermogram showed two peaks.
The loss of water molecules was connected to the first one (endothermic, below 100 ◦C);
the second signal, which was exothermic and occured at a temperature of about 300 ◦C,
was connected to the breakdown of the chitosan pyranose ring [66,67]. The results showed
that exothermic peaks, also known as crystallization peaks, were present throughout the
DSC analyses’ heating scan [25].
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3.7. Chromosomal Aberrations Observed in Bone Marrow Cells

Table 4 presents the number and percent of chromosomal aberrations in control and
treatment animals. Treatment with EMS induced a significant increase in chromosomal
aberrations in the bone marrow cells, reaching 24.4% (p < 0.01). The present results are
in agreement with the findings of Norizadeh Tazehkand et al. [68], who documented that
treatment of mice with 240 mg/kg EMS significantly increased chromosomal aberrations.
There are large and diverse groups of chemicals that can induce DNA damage, and they are
classified as carcinogens. Humans maybe exposed to these substances directly or indirectly
in the environment or through diet. EMS has a potential negative effect, including cancer,
aberrant birth outcomes, and heritable impacts, which are seen as natural consequences of
its genotoxic activity [69]. EMS is an alkylating agent commonly used as a positive agent in
genotoxicity studies [70] with the potential to cause cancer by altering DNA nucleotides,
resulting in point mutations as the initial G:C base pair undergoes a mutation to A:T during
replication base-pair insertions or deletions [71].
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Table 4. Number and mean percentage of the different types of chromosomal aberrations in mouse
bone marrow cells after treatment with different doses of CNPs/Cc and CNPs alone or in combination
with EMS.

Treatment

No. of Metaphases with Aberrations Chromosomal Aberrations

Gap
Frag.

and/or
Break

Gap +
(Frag. or
Break)

Deletion Ring Total No.
Excluding

Gaps Mean
± S.E.

Including
Gaps Mean

± S.E.
Inhibition %

One-day treatments

Control 2 4 0 0 0 6 0.8 ± 0.4 1.2 ± 0.4
EMS 20 62 28 10 2 122 20.4 ± 0.7 a 24.4 ± 0.4 a
CNPs 10 9 5 0 0 24 3.6 ± 0.48 4.8 ± 0.4
HD of CNPs/Cc 12 5 2 2 0 21 4.6 ± 0.2 4.2 ± 0.2
LD of CNPs/Cc 13 3 6 1 0 23 4.2 ± 0.3 4.106 ± 0.4
CNPs + EMS 14 50 33 11 0 108 18.8 ± 0.37 21.6 ± 0.7 a 11.4
HD of CNPs/Cc + EMS 11 61 15 9 1 97 17.2 ± 0.37 19.4 ± 0.6 a 20.49
LD of CNPs/Cc + EMS 22 51 33 0 0 106 16.8 ± 0.6 a 21.2 ± 0.6 a 13.1

Seven-day treatments

Control 2 4 0 0 0 6 0.8 ± 0.4 1.2 ± 0.1
EMS 20 62 28 10 2 122 20.4 ± 0.7 a 24.4 ± 0.4 a
CNPs 12 3 5 2 0 23 2.2 ± 0.2 4.6 ± 0.6
HD of CNPs/Cc 12 5 3 0 0 20 1.6 ± 0.4 4.0 ± 0.1
LD of CNPs/Cc 12 10 0 0 0 22 2.0 ± 0.4 4.4 ± 0.4
CNPs + EMS 20 39 11 12 0 82 12.4 ± 0.6 ab 16.4 ± 0.7 ab 32.7
HD of CNPs/Cc + EMS 12 27 4 7 0 50 7.6 ± 0.5 ab 10 ± 0.8 ab 59.01
LD of CNPs/Cc + EMS 18 24 32 4 0 78 12 ± 0.7 ab 15.6 ± 0.7 ab 36.06

a: Significant at 0.01 level (t-test) compared to control (non-treated). b: Significant at 0.01 level (t-test) compared to
treatment (EMS).
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No significant aberrations were observed in the animal groups treated with CNPs or
CNPs/Cc at their low tested doses. Moreover, pretreatment with CNPs/Cc at two tested
doses for seven days succeeded in reducing (p < 0.01) the EMS-induced abnormalities
significantly in a dose-dependent manner. The percentage of reduction reached 36.06%
and 59.01% after treatment with low and high doses of CNPs/Cc, respectively (Table 4).
Nanocurcumin and nanochitosan have antioxidant and antigenotoxic properties against
the toxicity of potassium dichromate [72]. Salix subserrata bark extract-loaded chitosan
nanoparticles exhibited promising potent neuroprotective and antioxidative efficiencies
against arsenic-induced oxidative threats [73].

3.8. Sperm Shape Abnormalities

As shown in Table 5, male mice exposed to EMS developed defective sperm in a
statistically highly significant (p < 0.01) percentage that reached 14.44%. The most prevalent
anomalies were triangular, amorphous, and lacking hook heads and coiled tails. Chromo-
somal aberrations, testicular DNA alterations, and point mutations may contribute to the
induction of sperm shape abnormalities [28].

The percentage of aberrant sperm was decreased when mice were treated with cCNP
and CNPs simultaneously, reaching 10.02, 9.7, and 7.26% (p < 0.01). Following the treatment
of mice with LD cCNP, HD cCNP and CNPs, the percentage of reduction reached 30.6, and
32.8, 49.7%. A previous study proved that pre-treatment with ZnO-Alg/NCMs for seven
days significantly reduced chromosomal aberrations in somatic cells and spermatocytes
and reduced the percentage of morphological sperm abnormalities [74].

Several studies on the phytochemistry of the genus Capparis have revealed the presence
of terpenoids, flavonoids, alkaloids, glucosinolates, isothiocyanates, sterols, and fatty
acids in various plant sections [9]. The methanol extract of Capparis cartilaginea leaves
contains seven types of antioxidants [75] that could inhibit various human oxidative stress
pathologies and possess DNA-protective attributes [76]. According to Moharram et al. [77],
the anti-inflammatory activity is probably due to the antioxidant active constituents of the
plant such as flavonoids, alkaloids, phenolic, coumarins, and tannin compounds.

Table 5. Number and percentage of different types of sperm shape abnormalities in male mice after
treatment with different doses of CNPs/Cc and CNPs alone or in combination with EMS.

Treatment and
Doses (mg/kg
b.wt.)

Sperm
No.

No. of Sperm with Abnormalities in Abnormal
Sperm

No.

Abnormal
Sperm Mean

% ± S.E.

Inhibition %
Head Tail

Amorphous Tringle Without
Hook Small Big Coiled

Control 5000 29 36 28 0 0 6 99 1.98 ± 0.1
EMS 5000 259 183 47 3 1 229 722 14.4 ± 1.78 a
CNPs 5000 31 25 6 0 0 24 86 1.72 ± 0.24
HD of CNPs/Cc 5000 25 32 5 0 0 21 83 1.66 ± 0.2
LD of CNPs/Cc 5000 32 21 7 0 0 35 95 1.9 ± 0.9
CNPs + EMS 5000 204 109 19 2 0 167 501 10.02 ± 0.98 ab 30.6
HD of CNPs/Cc
+ EMS 5000 158 93 23 7 2 80 363 7.26 ± 0.56 ab 49.7

LD of CNPs/Cc
+ EMS 5000 106 130 30 4 1 214 485 9.7 ± 0.22 ab 32.8

a: Significant at 0.01 level (t-test) compared to control (non-treated). b: Significant at 0.01 level (t-test) compared to
treatment (EMS).

Many recent studies emphasized the utilization of nanoparticles as a phyto-
chemical carrier molecule to improve their solubility, bio-accessibility, and cellular
bioavailability [78,79]. Several studies proved the protective capabilities of chitosan nanopar-
ticles. Abdel-Wahhab et al. [80] demonstrated that chitosan nanoparticles modulate DNA
fragmentation and suppress mycotoxin-induced genotoxicity in rats. The antioxidant and
antigenotoxic properties of chitosan nanoparticles against potassium-dichromate-induced
toxicity in male albino mice were documented by Mohamed et al. [72].
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4. Conclusions

CNPs were synthesized, loaded with C. cartilaginea extract, and investigated via
Fourier-transform infrared spectroscopy. The Zeta potential analyses proved that CNPs/Cc
are more positively charged than CNPs. In vivo experiments illustrated that oral treatment
with CNPs and CNPs/Cc is safe. Moreover, chitosan nanoparticles showed powerful
antigenotoxic properties. Loading the chitosan nanoparticles with C. cartilaginea extract
greatly improved their anticancer properties, mainly due to the plant’s active constituents
and the small nanoparticle size that encouraged its cellular bioavailability.
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