o ege 4
<@ sustainability ﬂw\p\py

Article

Determining Soil Hydraulic Properties Using
Infiltrometer Techniques: An Assessment of
Temporal Variability in a Long-Term Experiment
under Minimum- and No-Tillage Soil Management

Mirko Castellini 1'*©0, Alessandro Vittorio Vonella !, Domenico Ventrella 170, Michele Rinaldi 2
and Giorgio Baiamonte 3-*

1 Council for Agricultural Research and Economics-Agriculture and Environment Research

Center (CREA-AA), Via Celso Ulpiani 5, 70125 Bari, Italy; vittorio.vonella@crea.gov.it (A.V.V.);
domenico.ventrella@crea.gov.it (D.V.)

Council for Agricultural Research and Economics-Research Centre for Cereal and Industrial
Crops (CREA-CI), 71121 Foggia, Italy; michele.rinaldi@crea.gov.it

Department of Agricultural Food and Forest Sciences, University of Palermo, Viale delle Scienze,
90128 Palermo, Italy

Correspondence: mirko.castellini@crea.gov.it (M.C.); giorgio.baiamonte@unipa.it (G.B.);

Tel.: +39-080-5475039 (M.C.); +39-091-23897054 (G.B.)

check for
Received: 29 April 2020; Accepted: 16 June 2020; Published: 19 June 2020 updates

Abstract: Conservation agriculture is increasingly accepted by farmers, but the modeling studies on
agro-environmental processes that characterize these agricultural systems require accurate information
on the temporal variability of the soil’s main physical and hydraulic properties. Therefore, specific
investigations carried out in long-term experiments can increase our knowledge on the pros and cons
of different measurement techniques. In this work, the simplified falling head (SFH) technique and
the Beerkan Estimation of Soil Transfer (BEST) procedure were applied to investigate the temporal
variability of some main soil physical and hydraulic properties, including bulk density (BD), field
saturated hydraulic conductivity (Kg), macroporosity (Ppac), air capacity (AC), plant available water
capacity (PAWC), and relative field capacity (RFC). For this purpose, a long-term experiment was
selected, and the experimental information obtained was used to verify the long-term impact (fifteen
years) determined by two alternative forms of soil management, minimum tillage (MT) and no tillage
(NT), for the cultivation of durum wheat. The main results of the comparison between MT and NT
showed: (i) A comparable temporal variability in K¢ values when SFH was considered, given that
in 75% of considered cases, the same result (i.e., significant or not significant) was obtained; (ii) a
comparable temporal variability in K¢ values under MT (but not under NT) when both SFH and BEST
were used, as a result of a possible K¢, spy overestimation under NT; (iii) differences in K¢ estimations
by a factor of 6 or 7 (Kgs s,y > K pest) when comparable soil conditions (moisture and soil density)
were considered; (iv) a comparable temporal variability when other soil indicators (BD, Py, AC,
PAWC, and RFC) were simultaneously considered. After about fifteen years of field experiments
characterized by continuous soil management and conducted with the methodological rigor typical
of experimental farms, the SFH- and BEST-derived experimental information showed a substantial
equivalence between MT and NT for the fine-textured soil investigated.

Keywords: BEST procedure; SFH technique; soil hydraulic properties; saturated hydraulic
conductivity
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1. Introduction

The soil hydraulic properties (i.e., water retention and hydraulic conductivity) are key information
in many fields of agro-environmental research works, since they are necessary, for example, for
simulating a few agro-environmental processes [1-3], for establishing agronomic adaptation strategies
under climate change [4-6], and for quantifying economic and environmental impacts of alternative
soil management [7-10].

Many techniques are available in the literature for obtaining the hydraulic soil properties that
differ in accuracy, specific skills for their application, and experimental efforts (costs and execution
times). Some techniques provide discrete values of soil properties, e.g., soil water retention at field
capacity or saturated hydraulic conductivity, while other techniques can generate continuous hydraulic
property data. For instance, the evaporation method is widely used because it provides accurate
estimations of soil hydraulic properties [11], but requires sampling of undisturbed soil cores and
relatively laborious and time-consuming lab procedures. Consequently, the use of simplified and
expeditious methods is increasingly frequent, and the choice of the most appropriate one depends on
specific experimental needs and economic availability.

The simplified falling head (SFH) technique by Bagarello et al. [12] allows the estimation of the
field saturated hydraulic conductivity (Ks) in a sufficiently accurate and repeatable way with relatively
limited experimental effort. For these potentialities, it has been widely used to obtain K in specific
agro-environmental investigations on both herbaceous [13] and arboreal [14] agronomic crops. A
literature review also revealed that the SFH technique was successfully applied to investigate the
influence of soil compaction on water infiltration rate due to cattle hooves or tractors [15], to assess soil
hydraulic quality factors and develop a comprehensive soil quality index under different cropping
systems [16], to study the soil physical quality response to sugarcane expansion in Brazil [17], and to
investigate the impact of herbicide glyphosate on compost-amended soils [18].

The Beerkan Estimation of Soil Transfer (BEST) parameters procedure by Lassabateére et al. [19]
is an attractive, easy, robust, and inexpensive way for a “complete” soil hydraulic characterization,
since it allows the simultaneous determination of the water retention curve, h(8), and the hydraulic
conductivity function, K(6) [20]. The BEST method has shown reliability and robustness based on
several theoretical and experimental evaluations; consequently, in recent years, it was applied for
soil property estimation in agro-environmental sustainability investigations [21-25]. For instance,
BEST was applied by Yang et al. [21] in a karst landscape of southern China to investigate the effects
of Napier grass management on soil hydrological functions and to identify reasonable strategies for
maintaining optimal soil hydraulic functions. Yang et al. [22] used this method to establish the impact
of different vegetation restoration types on K¢ within a large global ecological restoration engineering
project. Likewise, the impact of native, spontaneous, or exotic vegetation on soil hydraulic properties
was assessed by BEST in areas of France [23] and Brazil [24]. Di Prima et al. [25] applied BEST to
investigate the soil physical quality of a Spanish orchard under three different soil management types,
i.e., no-tillage using herbicides, conventional tillage under chemical farming, and no-tillage under
organic farming. The results showed that independent and BEST-derived indicators (i.e., soil bulk
density, total organic carbon, and structure stability index, in conjunction with plant available water,
relative field capacity, and saturated hydraulic conductivity) yielded similar information, suggesting
their ability to distinguish soil qualities among contrasting soil management types.

Soil hydraulic properties are highly variable in space and time [26-28], and several sampling times
are needed to investigate the seasonal, or temporal, variability during a crop cycle, or between sampling
dates of different cropping years [29]. Overall, there is a wide literature on the temporal variability
of soil physical and hydraulic properties, as well as on the effects induced by the practices applied
in agriculture. For instance, Castellini et al. [29] investigated the seasonal variability of the water
retention curve and the relative field capacity of the soil under different soil management types (i.e.,
no-tillage, minimum tillage, and incorporation into the soil of wheat straw). The results showed that
there was no seasonal variability from about February until June, suggesting that four or five months
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are the minimum times required after the last soil disturbance to reach near-optimal physical quality
of the soil. Kreiselmeier et al. [28] studied the temporal changes of soil hydraulic conductivity (both
saturated and unsaturated) under conventional and conservation tillage. The findings showed a high
temporal variability of K in tilled soils (lower under unsaturated soil condition) and a greater stability
of K¢ in untilled soils, confirming the susceptibility of tilled soils to variations, also in the short term.
However, to the best of our knowledge, although the literature on this topic is very extensive, specific
investigations aimed at comparing the temporal variability estimated by two different infiltrometric
techniques have not yet been carried out. Therefore, the two cited techniques (SFH and BEST) could be
applied simultaneously to investigate the seasonal (or temporal) variability of specific soil management
and to evaluate the respective pros and cons.

The no-tillage of the soil, as compared with traditional plowing or various options of minimum
tillage, has received growing interest in cereal cropping systems in southern Italy. This is true especially
for wheat cultivation, since no tillage is increasingly considered as a real alternative to soil tillage [30].
However, according to a hydrological perspective aimed at assessing the impact of these two soil
management systems on soil hydrology and water conservation, appropriate case studies should be
shared in order to generalize, to a certain extent, the information obtained [28,31,32].

Long-term field experiments, carried out in the experimental farms of the research institutes or
universities, represent important research tools to assess, for example, the temporal variability of
selected soil properties given that (i) relatively stable conditions can be expected in these soils and
(ii) the cultivation operations are carried out with scientific rigor [31,33,34]. Consequently, these factors
provide the basis to obtain robust experimental information.

The general objective of this investigation was to assess the temporal variability of physical and
hydraulic properties of a fine-textured soil in a long-term experiment (about fifteen years) for durum
wheat cultivation under minimum tillage (MT) and no tillage (NT). The specific objectives were to:
(i) Apply the SFH and BEST methods to obtain the main physical and hydraulic properties of the
soil (i.e., bulk density, saturated hydraulic conductivity, macroporosity, air capacity, plant available
water capacity, relative field capacity); (ii) investigate the temporal variability obtained by the selected
methods; (iii) compare the estimations obtained by SFH and BEST; (iv) use the acquired experimental
information to assess the agro-environmental sustainability of MT and NT from the perspective of soil
physical and hydraulic properties.

2. Materials and Methods

2.1. Experimental Site

The study was carried out in the two-year period of 2016-2017 at the experimental farm of the
Council for Agricultural Research and Economics, CREA-AA, Foggia (41°27’03” N, 15°30’06” E), in a
long-term field experiment performed on a monoculture of durum wheat (Triticum durum, Desf.). The
study, started in 2002, aims at comparing the effects of tillage (minimum tillage, MT) and sod-seeding
(no tillage, NT) on grain yield and quality. The experimental design is a completely randomized block
design with three replicates and unit plots of 500 m? size (Figure 1a). Straw was chopped into 10-15 cm
lengths and spread back on the plot in September (first week); this resulted in about 40-50 g/ha of
organic matter returned to the soil (Figure 1b). A two-layer tillage (field cultivator with rotary tiller)
was carried out in the MT plots (late October—early November). For the NT plot, chemical weed control
and direct sowing were carried out. Sowing was performed in early November. According to the USDA
classification, the soil texture is that of clay, with 42.7% and 27.7% of clay and silt, respectively [32]. As
an example, an image of the experimental site is shown in Figure 1.
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a)
No-Tillage (NT)

Figure 1. View of the experimental site for hydraulic property determination under minimum-tillage
(MT) and no-tillage (NT) soil management (a); detail of the layer thickness of the wheat straw (NT) in
November (b); detail of Beerkan infiltration experiments (c); detail of the simplified falling head (SFH)
technique (d) in April.

2.2. Simplified Falling Head (SFH) Technique

The SFH technique [12] consists of quickly pouring a known volume of water, V (L?), onto the
soil confined inside a ring inserted at a fixed depth into the soil, d (L), and measuring the time, t, (T),
necessary for the poured volume, A0 (equal to the volume of water obtained by difference between the
soil water content at saturation, 0;, and that at the time of the experiment, 0;), to fully seep through
to the surface area, A (L?). In other words, given a value of the water content at the beginning of
the experiment, A0 represents the amount of water needed to saturate the soil porosity estimated at
the time of sampling. The Kg; values were determined by a one-dimensional, transient, falling-head
infiltration process, based on the analysis by Philip [35]:

Koo __(80) | D (D+%) (1-A6)D
Jost T (1= 20)1, | (80) ~ (1-80) | (a0)(D+ 1)

)

where D = V/A (L) is the depth of water corresponding to V, and «* (L™1) is a soil texture/structure
parameter. According to the procedure reported by Bagarello et al. [12], two undisturbed soil cores
(5 cm in height by 5 cm in diameter) were collected near the ring at the 0 to 5 and 5 to 10 cm depth
about 24 h before the measurements to determine the dry soil bulk density, BD (g cm®), and the soil
water content at the time of sampling, 0; (cm3 cm_3), in the laboratory. The saturated soil water content,
0s, was estimated using the measured BD and considering a mean value of soil particle density of
2.65 g cm~3, as is usual for this procedure [12,36]. A choice of the most suitable o* parameter can
be made following the guidelines of Elrick and Reynolds [37]. However, according to previous
experimental investigations carried out on investigated soil [38], a value of the o* equal to 0.012 cm™!
was used to calculate K.

The SFH technique was applied in two consecutive years (growing season 2015-2016 and
2016-2017) to determine the field saturated soil hydraulic conductivity, Kg spy. In particular, the SFH
tests started about five months after pipe insertion; this made it possible to exclude (or attenuate)
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the possible compaction during cylinder insertion. Five sampling dates were considered in 2016 and
another three in 2017 (Figure 2). For each considered agronomic treatment (MT and NT), ten PVC pipes
of 30 cm in inner diameter and 30 cm in height (with relatively sharp edges) were inserted into the soil
(in mid-November) at a depth d = 15 cm. Using the bucket loader of a tractor, the insertion of the PVC
pipe was conducted step by step, ensuring that the upper rim of the pipe remained horizontal. A spirit
level was used to check the horizontality of the cylinder. To obtain a flat infiltration surface, the small
depressions of the cylinder’s inner area were filled with soil collected in situ. The PVC pipes were
always removed immediately before the start of the next crop cycle (at the beginning of November).

TIMELINE OF FIELD MEASUREMENTS

1 2 34 5) 6 7 8
SFH
e o ( 1} L ® ® L
Apr- May- Jun- Jul-16 Aug- Sep- Oct- Nov- Dec- Jan- Feb- Mar- Apr- May- Jun- Jul-17 Aug- Sep-
16 16 16 16 16 16 16 16 17 17 17 17 17 17 17 17
] BEST . -

3 B Zpk % T In) T
LA S

Figure 2. Timeline of field measurements carried out under MT and NT using the SFH technique and
Beerkan Estimation of Soil Transfer (BEST) procedure (eight and three sampling dates, respectively).
At the bottom, the time intervals (days) between two successive SFH (a) and BEST (b) measurements
are also reported inside the arrows.

2.3. Beerkan Estimation of Soil Transfer (BEST) Parameters Procedure

The BEST procedure [19] was applied to simultaneously determine the water retention curve,
h(6), and the soil hydraulic conductivity function, K(6), of the soil. BEST focuses specifically on
the van Genuchten [39] relationship with the Burdine [40] condition for the water retention curve
(Equation (2a)) and the Brook and Corey [41] relationship for hydraulic conductivity (Equation (3a)):

0-0, n\'T"
= @
1
K(0) ( 6-06, )’7
= 3a
Kfspest \0s — 0O (32)
2
=" +2+p (3b)

where 6 (L3L73) is the volumetric soil water content, / (L) is the soil water pressure head, K (L T-1)is the
unsaturated soil hydraulic conductivity, n (>2), m, and 1) are shape parameters, p is a tortuosity parameter
set equal to 1 following Burdine’s [40] condition, and kg (L), Os (field saturated soil water content;
L3L73), 0, (residual soil water content; L3L3), and Kf pest (field saturated hydraulic conductivity;
LT!) are scale parameters. In BEST, 0, is assumed to be equal to zero. Shape parameters, which are
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texture-dependent, are estimated from particle size analysis and soil bulk density measurement by
assuming a shape similarity between the particle size distribution and the water retention curve [42].

To obtain the shape parameters of soil hydraulic functions, the particle size distribution (PSD) of
the soil is fitted to the following equations:

-M

D \N
2
M=1-%, (4b)

where F(D) is the fraction by mass of particles passing a particular diameter, D (L), M and N are two
shape parameters, and Dy (L) is a scale parameter.

The fitting of Equation (4a) provides an estimation of parameters M, N, and Dg. The shape index
of the medium, p;,, can be obtained from M and N:

pm=pu(1+x)7" (5a)

mn
P = T m (5b)

MN
PM =10 (5¢)

where the coefficient « is equal to:
. 251 ©)
~ 25(1-35)’

in which s is the fractal dimension of the medium, defined as the root of the following equation:

(1-fr+fF=1 @)

The m parameter is derived from the values of p;; considering the positive root of Equation (5b):

m:pi(m_l). (®)

m

To estimate the field saturated hydraulic conductivity, Kgpesr, experimental data from
Beerkan infiltrations and the approximations of the quasi-exact implicit infiltration model by
Haverkamp et al. [26,43] were used. Specifically, when an infiltration experiment with a
zero-water-pressure head on a circular surface of radius r (L) is performed under homogenous
conditions of 6; (L3 L73), the 3D cumulative infiltration, I (L), and the infiltration rate, I (LT~'), can
be approached by the following explicit transient (Equation (9a,b)) and steady-state (Equation (9¢,d))
relationships [26,43]:

I(t) = SVE+ (AS? + BK; )t (9a)

. S

i(t) = i +(AS? + BK;) (9b)
) 5

I(t) = (AS* + K )t + Cx (9¢)

S

is(t) = AS® + K, (9d)
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where I; and i; are respectively the asymptotic models for I and i for large times, ¢ is the time (T), and A
(L™1), B, and C are constants that, for the Brooks and Corey model [41] model, may be obtained as:

Y
2-p 0i\"l , (6
1 1
c= nf 5. (109
20-p)1-(§)] 7 C

where $ and vy are coefficients that are usually set equal to 0.6 and 0.75, respectively, when ; < 0.25
05 [26,43].
The scale parameter for the van Genuchten water retention curve, he [L], is estimated by the
following relationship:
SZ
cp(05 = 0;)[1 - (g_;)n]Kfs,BEST

where S (LT?) is the soil sorptivity and c, is a coefficient dependent on 7, m, and 6 according to
Equation (6b) by Lassabatere et al. [19].

Three alternative algorithms were developed to analyze field infiltration data, i.e., BEST-slope [19],
BEST-intercept [44], and BEST-steady [26]. The BEST-slope by Lassabatere et al. [19] makes use of the
following relationships for both K gpst and cumulative infiltration, I(f):

hg = (11)

Ko pest = is — AS? (12a)

I(t) = SVi+[A(1- B)S* + Bi 1, (12b)

where i; is estimated by linear regression of the last data points describing steady-state conditions
on the I vs. ¢ plot and corresponds to the slope of the regression line. Equation (12b) is fitted to the
experimental data to estimate soil sorptivity, S. According to Yilmaz et al. [44], the BEST-slope may
lead to erroneous saturated hydraulic conductivity values when is ~ AS?. Therefore, these authors [44]
proposed the BEST-intercept and suggested using the asymptotic expansion I + oo(t) [26,44] to estimate
the saturated hydraulic conductivity and the cumulative infiltration by the following relationship:

52
Kfspest = C4- (13a)
S
SZ
I(t) = SV + (A82 + BCb—)t, (13b)
S

where b; [L] is the intercept of the asymptotic expansion in Equation (9c). Both the slope and the
intercept values are required by BEST-steady [26], which does not need data fitting for the transient
stage of the run, but relies solely on the steady-state condition. Consequently, for the purpose of
comparing BEST and SFH, only the BEST-slope and BEST-intercept were considered, while BEST-steady
was not used in this investigation.

BEST was applied on three sampling dates (Figure 2). For each soil management (MT, NT) and
sampling date (1, 6, 7), twelve BEST experiments were carried out to obtain a complete hydraulic
characterization of the soil, with the exception of the sampling date at the end of March (MT6-NT6,
Figure 2), for which the sample size was five. Therefore, a total of fifty-eight BEST experiments were
carried out in this investigation. Following a procedure commonly used for BEST experiments, two
undisturbed soil cores (0.05 m in height by 0.05 m in diameter) were collected at the 0 to 5 and 5
to 10 cm depth at each randomly selected sampling point. These soil cores were used to obtain the
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dry soil bulk density, BD, as well as to obtain the soil water content at the time of sampling, 6;. The
field saturated soil water content, 85, was assumed to coincide with soil porosity, ¢ [26], which was
calculated from the BD data, assuming a soil particle density of 2650 kg m~3. Moreover, the default
parameters of the infiltration constants, i.e., = 0.6 and y = 0.75, were used to estimate soil hydraulic
functions [19,20]. An updated version of the workbook by Di Prima [45], which considers all the
available algorithms, was used to analyze the cumulative experimental infiltrations, I(t), using the two
considered BEST-algorithms (slope and intercept).

Finally, the water retention curve estimated by BEST was used to calculate (i) macroporosity (Piuac;
em™2), (ii) air capacity (AC; cm? em™3), (iii) plant available water capacity (PAWC; em?® em™3), and
(iv) relative field capacity (RFC; dimensionless) of the soil [29]. Specifically, for each estimated soil
water retention curve, the above capacitive indicators were calculated as follows:

CIT[l3

Pyuac = Os — Oy (14)
AC = 6, — Opc (15)
PAWC = Opc — Opwp (16)
RrecC = 9F¢. (17)

Os

where 0;, 0., Orc, and Opyp are the volumetric water contents corresponding to a pressure head of 0,
10, 100, and 15,300 cm, respectively [29]. According to Reynolds et al. [46], the aforementioned water
pressure head value (i.e., 100 cm) was considered to obtain the field capacity of several clay soils in
agricultural [47,48] and forest [49] environments.

2.4. Data Analysis and Comparisons

For each main variable considered in this investigation (BD, 6;, Kfs, Pimac, AC, PAWC, RFC), a
given dataset was summarized by calculating the mean and the associated coefficient of variation.
Arithmetic means were always calculated with the exception of K¢ because a log-normal distribution
and, therefore, a geometric mean and associated coefficient of variation are generally suggested for
these soil properties [50].

Temporal variability was evaluated for each variable (i.e., BD, K¢, Priac, AC, PAWC, RFC) by
comparing the mean values obtained from Tukey’s Honestly Significant Difference (THSD) test [51],
whereas the statistical significance between NT and MT was evaluated according to a two-tailed ¢-test.
A probability level of p = 0.05 was assumed.

3. Results

3.1. Temporal Variability of Soil Properties Using the SFH Technique

The results of soil bulk density (BD) and volumetric soil water content at the time of SFH
experiments (0;) under MT and NT are reported in Figures 3 and 4, respectively. Overall, higher
BD values were observed under NT than MT, as, on average, they varied in the range (min-max) of
0.98-1.19 g cm =3 under MT and 1.19-1.32 g cm~3 under NT. On five of the eight sampling dates, BD
values under NT were significantly higher than under MT (Figure 3). A lack of temporal variability
was observed for BD because significant differences were identified only under MT between sampling
dates 2 and 3 (i.e., between the beginning of May and July). Overall, detecting some discrepancies of
BD values at the beginning of the crop cycle is quite expected as a result of the residual effects of the last
soil tillage; however, a comparison with bulk densities of April 2016 suggests possible underestimation
in May under MT due to unknown factors that make them difficult to assess. Soil water contents were
higher under NT (0.28-0.41 cm?® em™3) than under MT (0.19-0.37 cm® cm™3) (Figure 4). Specifically, 6;
values showed significant differences between MT and NT on four dates (i.e., 3, 5, 7, and 8), namely
between the end of spring and the beginning of autumn (Figure 4). Moreover, compared to BD, a
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relatively higher temporal variability was identified because the 0; value of sampling date 7 was
significantly lower than those of other dates, i.e., 1, 2, 4 and 5. This suggests that under MT/NT alters
0; more than BD over time due to the different soil management.

1.50

» M Minimum tillage ® No-tillage

1.40 T

*

1.30

1.20

1.10

BD (g cm?)

1.00
0.90

0.80
1 2 3 4 5 6 7 8
Sampling date

Figure 3. Soil bulk density (BD) at the time of the SFH experiments. For a given sampling date, mean
values of minimum tillage or no tillage marked with an asterisk were statistically different according
to a t-test (p = 0.05). For a given soil management type, only values of sampling date marked with a
different lowercase letter (i.e., ab) were statistically different according to Tukey’s Honestly Significant
Difference (THSD)-test (p = 0.05).

0.60

B Minimum tillage ™ No-tillage

0.00

1 2 3 4 5 6 7 8
Sampling date

Figure 4. Volumetric soil water content (6;) at the time of the SFH experiments. For a given sampling
date, mean values of minimum tillage or no tillage marked with an asterisk were statistically different
based on a t-test (p = 0.05). For a given soil management type, only values of sampling date marked
with a different lowercase letter (i.e., ab) were statistically different based on a THSD-test (p = 0.05).

Field saturated hydraulic conductivity (Kg spr) changed over time within two or three orders of
magnitude when the minimum-maximum interval or the geometric mean was considered, respectively
(Table 1). K sy was generally higher under MT than under NT (by a factor of 1.2-3.0); however, NT
was higher on two occasions (sampling dates 1 and 5) by a factor of 1.2-3.8 (Table 1). According to a
two-tailed t-test, the differences between MT and NT were significant in the first two and the last two
sampling dates (Table 1). According to the THSD-test, which provides comparisons across all sampling
dates (i.e., 28 possible combinations), the results of the temporal variability showed that K¢ s,y was



Sustainability 2020, 12, 5019 10 of 18

significantly different according to the different sampling dates in 60% of the considered cases (i.e., 17
of the 28 cases) under MT and 64% (18/28) under NT (Table 2). This confirms a relatively high temporal
variability of field saturated hydraulic conductivity. The temporal dynamics of K¢ sppy between MT
and NT were quite similar because the results of the THSD-test were simultaneously significant or not
significant in 75% of the cases (i.e., 21 out of 28 cases) (Table 2). However, although 0; values were
generally comparable under MT and NT and their ratio was close to one (i.e., 0.9), discrepancies in K
values were detected according to the soil use, as only 3-5 sampling dates (2, 3, 6, 7, and 8) showed a
ratio of K¢ sy values close to 1. A further deepening about the similarities among the aforementioned
sampling dates (i.e., applying a cluster analysis) suggests three main groups (namely 4, 1 and 5, and all
the remaining groups), but no link to the month of the year was found.

Table 1. Minimum (Min), maximum (Max), geometric mean (GM), and associated geometric coefficient
of variation (CV) of field saturated hydraulic conductivity (mm h™1) carried out under MT and NT
during each sampling date with the SFH technique.

Minimum Tillage (MT)

Sampling date 1 2 3 4 5 6 7 8
Min 3 2 1520 131 23 1617 258 930
Max 837 718 3800 1028 295 2606 2158 2349
GM 66a* 45a 2240 a 322a 93a 2210 a 799 a 1389 a
CV (%) 732 375 28 72 117 13 67 33
No-Tillage (NT)
Sampling date 1 2 3 4 5 6 7 8
Min 8 3 1074 33 195 801 182 529
Max 351 271 2050 384 659 1896 1476 2023
GM 81b 28b 1487 a 108 a 357 a 1474 a 590 b 1155 b
CV (%) 211 297 22 89 42 25 75 48

* For a given sampling date, mean values of soil management (i.e., MT and NT) followed by the same letter are not
statistically different according to a two-tailed t-test (p = 0.05).

Table 2. Results of Tukey’s Honestly Significant Difference (THSD)-test (p = 0.05) on mean values
of field saturated hydraulic conductivity measurements carried out with the SFH technique under
minimum tillage (a) and no tillage (b) for each sampling date (from 1 to 8). Note that discrepancies in
temporal variability between soil management are highlighted in yellow.

(@) 1 2 3 4 5 6 7 (b) 1 2 3 4 5 6 7

2 NS 2 NS

3 X X 3 X X

4 X X X 4 NS X X

5 NS NS X NS 5 X X X X

6 X X NS X X 6 X X NS X X

7 X X NS NS X NS 7 X X NS X NS NS

8 X X NS X X NS NS 8 X X NS X NS NS NS

NS = not significant difference; X = significant difference.

3.2. Temporal Variability of Soil Properties Using the BEST Procedure

Between the selected algorithms, only the BEST-intercept provided an adequate number of
positive outcomes (i.e., 100% of the reps were analyzable and provided a complete soil hydraulic
characterization), as the BEST-slope returned a K¢ pesr estimation only in less than 20% (12/58) of
the cases. The failures were due to the inability to correctly estimate the soil sorptivity, and negative
estimations of K¢ pest were obtained. With the exception of two infiltration tests for which the two
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calculation algorithms provided discrepancies greater than one order of magnitude (i.e., a factor of 16
or 22), for ten of the twelve estimates obtained, K pgst differed at most by a factor of 3 or 4. Therefore,
since only the BEST-intercept provided an adequate sample size, this algorithm was used to investigate
the temporal variability of estimated soil properties and to establish the comparison in terms of K
between the BEST and SFH techniques.

The results of K¢ gest are reported in Table 3. Overall, relatively higher discrepancies between
minimum and maximum values were detected under NT (within a factor of 4-34) than under MT
(factor of 5-13); consequently, the associated variability was about double under NT (Table 3). Similarly
to the results obtained by SFH, higher K, pest values were always detected, on average, under MT than
NT, with differences equal to a factor of 15.8, 3.5, or 1.2 in the sampling dates 1, 6, and 7, respectively.
According to a two-tailed t-test, the differences were significant only for sampling date 1. Moreover,
due to the relatively high K¢ gest value for MT-1, temporal changes were detected only under MT
(Table 3).

Table 3. Minimum (Min), maximum (Max), geometric mean (GM), and associated geometric coefficient
of variation (CV) of field saturated hydraulic conductivity (mm h~1) carried out under MT and NT
during each sampling date with the BEST-intercept.

Minimum Tillage (MT)

Sampling date 1 6 7
Min 202.9 105.0 99.5
Max 2512.2 1412.4 503.5
GM 11185a,A* 507.7 a,B 176.9 a,B
CV (%) 77.7 146.4 53.8
No-Tillage (NT)
Sampling date 1 6 7
Min 16.9 18.8 56.5
Max 360.6 486.8 1906.0
GM 70.8b,A 1153 a,A 148.9 a,A
CV (%) 124.7 224.4 123.2

* For a given sampling date, mean values of alternative soil management types (i.e., MT and NT) followed by
the same lowercase letter are not statistically different according to a two-tailed t-test (p = 0.05). For a given soil
management type, mean values of different sampling dates (i.e., 1, 6, and 7) followed by the same capital letter are
not statistically different according to a THSD-test (p = 0.05).

The BEST-derived soil water retentions are depicted in Figure 5a. Differences between MT and
NT or between sampling dates were mainly located near to soil saturation, while they were relatively
smaller in the unsaturated zone. This was because the BEST procedure considers a starting point of the
water retention curve (i.e., the saturated soil water content) that depends on bulk density measured
at the time of the experiment; also, in this area, the effect of soil structure estimated from Beerkan
infiltration is higher. Consequently, differences in water retention between MT and NT decreased as
soil pressure head increased, changing in the range of about 0.02-0.10 cm® cm~2 at saturation and not
exceeding 0.02 cm® cm ™3 between field capacity and wilting point (Figure 5b). For a given sampling
date, a sensitivity analysis performed by running the BEST-intercept again with the same mean BD
value for MT and NT (i.e., they differed only in the Beerkan infiltration) suggested that the effects of soil
structure, as compared to soil texture, should be relevant (structure >> texture) until the field capacity;
beyond this threshold, the effect of soil texture should become proportionally increasingly relevant
(structure << texture). Furthermore, this suggests that the temporal variation in plant available water
may have been negligible (Figure 5b).
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Figure 5. Soil water retention curves under minimum tillage and no tillage (MT and NT, respectively) in
the three sampling dates considered (first, sixth, and seventh) (a), and corresponding differences in soil
water retention (A0) as a function of soil pressure head () (b). Dotted lines represent 6 values at field
capacity and the permanent wilting point, and the dashed line represents an estimated mean threshold
value corresponding to a mean value of bulk density between different soil management types.

The temporal variabilities of macroporosity (Pyu,c), air capacity (AC), plant available water capacity
(PAWC), and relative field capacity (RFC) under MT and NT are shown in Figure 6. Overall, with
the exception of PAWC, which was quite constant between sampling dates (about 0.25 cm® cm™3),
mean values of Py and AC varied in the ranges of 0.01-0.07 and 0.15-0.28 cm3 ecm™3, respectively,
whereas RFC was in the range of 0.59-0.72 (Figure 6). In addition, MT always showed the highest
average soil porosity (i.e., lower RFC values indicate greater air capacity), whereas NT always showed
the lowest one (similarly, higher RFC values indicate higher soil compaction). Among indicators
and management of the soil considered in this investigation, relatively greater discrepancies between
dates were generally detected for AC, whereas the smaller discrepancies were for PAWC. Moreover,
depending on the considered soil management type, the results showed a temporal variability that
was (i) equal between P, and RFC and (ii) opposite between AC and PAWC (Figure 6). Specifically,
MT has always shown significant differences between sampling dates (7/12 or 58% cases), with the
exception of PAWC (were never significant) or for P, and RFC between MT6 and MT7; NT showed
significant differences in fewer cases (4/12 or 33% cases), always involving the first sampling date
(Figure 6). Finally, according to the reference values of the literature [29,46], the mean values of soil
indicators suggest a worsening of soil physical quality moving from the sampling dates 1 to 6 to 7.
Regardless of statistical significance, however, this general trend over time (i.e., decreasing for Py,
and AC or increasing for RFC) was more evident under NT, since MT showed some inconsistencies.

3.3. Comparison between the BEST and SFH Techniques

The results of saturated hydraulic conductivity obtained by SFH and BEST were described by the
ratio Kg; spy/Kgs pest, which showed differences within a factor of 0.1-12.8 (Figure 7). Specifically, the
aforementioned ratio was higher than one (K¢ sppy > K pest) for four out of six considered cases, while
it was substantially lower than one or equal to one (K¢ spy < Kgs est) in the remaining cases. According
to the latter, however, a ratio K¢ sry/Kg est of less than one was also found in a recent study [52],
where clayey soils were also considered. Soil disturbance due to ring insertion or anisotropy of K¢
was suggested as the main cause for the underestimation obtained with SFH. For each sampling date,
Figure 7 shows the ratio K srr/Kg sest as a function of the corresponding differences in gravimetric
water content (Figure 7a), or as a function of the corresponding differences in soil bulk density
(Figure 7b). Regardless of the moderate or strong correlation highlighted when U; and BD were
considered, findings from the linearized exponential function suggest that discrepancies in K¢ by a
factor of 6 or 7 may be hypothesized between SFH and BEST when comparable BD or U; values (i.e.,
relative difference equal to 1) were detected in the field (Figure 7). According to a t-test (p = 0.05),
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Kf;,srH estimations were significantly higher, with the exception of NT1-MT1. This result could be
expected because, although using stable cylinders can avoid possible underestimations due to the lack
of soil compaction, K¢ sppy overestimations cannot be excluded during the experiments due to possible
preferential water flow (i.e., subsurface cracks, or along the edge of the cylinder). On the contrary,
these measurement errors can be avoided by BEST because the ring is superficially inserted into the
soil. Therefore, establishing comparisons between methods for field saturated hydraulic conductivity
estimation is crucial for quantifying the accuracy of simplified methodologies. However, both methods
provided the same information on the temporal variability of K5 under MT, although discrepancies in
the temporal variability evaluation were obtained under NT (i.e., a different result was obtained for
two sampling dates, 1 vs. 6 or 7) (Table 3).
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Figure 6. Box plots of macroporosity (a), air capacity (b), plant available water capacity (c), and relative
field capacity (d) carried out for selected sampling dates (1, 6, and 7) under minimum tillage (MT)
and no tillage (NT). The thick red line within each box represents the mean value (the fine black line,
the median); mean values are also reported in red. The gradation of white—green color indicates
the progressive transition of soil indicators from poor (white) towards optimal (green) values. For a
given soil management, inferences of the THSD-test between dates (i.e., X vs. y) are also summarized
(* p < 0.05; ** p < 0.01; n.s. not significant).
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Figure 7. Differences of field saturated hydraulic conductivity, K5, as a function of corresponding
differences in gravimetric soil water content, U; (a), and soil bulk density, BD (b), carried out with SFH
and BEST (i.e., SFH/BEST). Units are given in: mm h1, g g‘l, and g cm™3, respectively for Kfs, U;,
and BD.

4. Discussion

Evaluating the temporal variability of the physical and hydraulic properties of the soil is crucial for
crop modeling and, therefore, to assess the economic and environmental sustainability of specific soil
management practices. In this investigation, the temporal variability of some physical and hydraulic
properties was investigated over two years in a long-term agronomic experiment mainly aimed at
comparing the effects of soil management practices, namely minimum tillage (MT) and no tillage (NT),
by applying the SFH and BEST methods.

Temporal variability of Ky detected by the SFH technique was comparable between MT and NT
given that in 75% of the considered cases (i.e., 21/28 sampling dates), the same result (i.e., significant
or not significant) was obtained (Table 2). On the other hand, when the temporal variability was
investigated by BEST, a lack of significant differences was found (Table 3); this was partly due to a
difference in the number of comparisons made (i.e., eight and three sampling dates, respectively, for
SFH and BEST). However, when a homogeneous comparison between methods was made (considering
the same sampling dates, i.e., 1, 6, and 7; Figure 2), similar results were always obtained for MT (i.e.,
same result in three out of three cases) while only in one out of three cases under NT, suggesting a
higher temporal stability or a more difficult variability to capture under MT and NT, respectively.
Therefore, the two methods could be not considered equivalent to study the temporal variability of K¢
when very heterogeneous soil conditions are sampled. However, a deeper analysis to better interpret
the observed discrepancies under NT suggests a possible SFH overestimation on sampling dates 6
and 7 because: (i) The mean value of Kg spy of sampling date 1 was significantly lower by a factor
of 6 or 7; (ii) the ratio K¢ sru/Kgs pest was equal to a factor of 1, 13, and 4, respectively, on the three
dates compared.

Although the compared methods (SFH and BEST) were very different for geometry of the water
flow (1D or 3D, respectively) and therefore for the corresponding hydraulic modeling (transient or
quasi-steady-state condition of the infiltration process), K¢ discrepancies between methods by a factor
of 6 or 7 may be hypothesized when comparable BD or U; values (i.e., a ratio approximately equal
to one) were detected in the field. It is well known that transient methods could lead to higher Kx
estimates than stationary ones [26], and following a restrictive criterion, differences of Ky obtained with
alternative methods within a factor of 2 or 3 are considered negligible for practical purposes [37,53].
However, since slightly higher discrepancies were obtained in the present study, other factors should
be taken into consideration to better understand SFH overestimation, including the (i) differences in the
run duration, (ii) sampled soil volume, and (iii) possible preferential flow within the soil macropores
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or the soil water content at the time of experiment. In fact, although infiltration measurements were
simultaneous, spatial variability should be considered as different according to the soil management
type (i.e., due to probable local accumulations of organic matter), and Figure 7 confirms this hypothesis.

Studying the temporal variability of soil properties may also imply the accurate evaluation of
some ancillary variables. Under MT, for example, a greater temporal variability of 0; was detected, as
compared with BD, only due to the low soil moisture values in the summer of 2017 (Figure 4).

Compared with SFH, the application of BEST could be considered more demanding in terms of
experimental effort and specific skills for soil properties’ determination and data analysis. However,
it allows the estimation of some main capacity-based soil indicators that are relevant for agronomic
and environmental purposes and, therefore, the evaluation of their temporal changes over time.
The comparison between the months of April 2016 and 2017 showed that there were no significant
differences of Py, PAWC, and RFC under either MT or NT because they differed only in the air capacity
of the soil (Figure 5). Moreover, since discrepancies in temporal variability were detected in only 3
out of 12 considered cases when all dates (and indicators) were considered, we may conclude that
the two investigated soil management practices had a similar temporal variability, as shown by the
capacity-based soil indicators estimated by BEST. This finding is important and not trivial, since it
confirms several literature results emphasizing that long-term NT may show stable soil properties
as compared with MT (among others, [31,32,54]). Results are also plausible because, in the three
aforementioned cases (sampling date 1, Py, and RFC; sampling date 3, AC), only MT changed over
time, whereas NT was stable.

5. Conclusions

In this study, the temporal variability of some hydraulic soil properties was investigated over two
years by applying the SFH and BEST techniques in a long-term field experiment for wheat cultivation
under minimum tillage and no-tillage soil management.

Opverall, the two soil management systems showed a relatively similar temporal variability of soil
hydraulic properties (42% and 37%, respectively, under MT and NT), including bulk density, saturated
hydraulic conductivity, macroporosity, air capacity, plant available water capacity, and relative field
capacity. Although the two applied methods for K¢ estimation were basically different (among those
to be highlighted, confined—unconfined or 1D-3D water flux, sampling volume), they provided similar
information on the temporal variability of K under MT, but not under NT, showing possible K
overestimations when SFH was used under no tillage. Therefore, although the two techniques appear
to be equivalent in the MT system, further investigations are desirable to check these findings, and a
greater number of dates compared would increase the reliability of the estimates.

However, when comparable soil conditions were sampled (i.e., water content and bulk density of
the soil), the two methods differed by less than an order of magnitude (a factor of six or seven) with
Kfs,skn > Kg est- Therefore, if the main aim of the research is to intensively monitor the temporal
variability of K, the use of stable cylinders can be considered an inexpensive and quite accurate
approach. Conversely, if hydraulic soil properties (water retention curve and hydraulic conductivity
functions) are required, applying BEST is a way to estimate useful indicators to investigate, for example,
the sustainability of soil management systems from a hydrological perspective. Although the latter
technique is more complex than SFH, requiring certain extra measurements to run the available BEST
calculation algorithms, their simultaneous use in the field can increase our confidence to quantify the
impact of agronomic practices on soil physical properties.

In this long-term field experiment, characterized by 15 years of continuous soil management
conducted with the methodological rigor typical of experimental farms, the BEST procedure allowed
us to derive useful capacity-based indicators and confirmed a substantial equivalence between MT
and NT for the fine-textured soil investigated.
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