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Abstract: Climate change in the watershed above the reservoir has a direct impact on the quantity of
streamflow that enters the reservoir and the management of water resources. Developing effective
reservoir rule curves helps reduce the risk of future failures of water resource management. The
purpose of this study was to analyze the influence of climate change on the volume of streamflow
entering the Ubolratana Reservoir, Thailand during the years 2020–2049 with climate simulations
from the CIMP5 model under RCP4.5 and RCP8.5 scenarios. SWAT models were used to forecast
future reservoir streamflow quantities. Moreover, suitable reservoir rule curves using the Honey-Bee
Mating Optimization (HBMO) were developed and the effectiveness of the new rule curves was
assessed. According to the research findings, the average yearly streamflow in the future apparently
grew from 32% in the base years (2011–2019) and 65% under the RCP4.5 and RCP8.5 scenarios,
respectively. It was discovered that the average monthly streamflow was higher in the rainy season
than in the dry season. Both of the projected situations have a form compatible with the present rule
curves in the section of the new reservoir rule curves generated with the HBMO. Furthermore, the
newly constructed rule curves may allow the reservoir to keep more water during the rainy season,
thereby assuring that there will be adequate water during the following dry season. Additionally,
during the dry season, the reservoir was able to release more water that would be able to reduce the
water shortage, indicating that it was able to effectively reduce the amount of water shortage and
average overflow under RCP4.5 and RCP8.5 situations.

Keywords: climate change; streamflow; Honey-Bee Mating Optimization; reservoir rule curves

1. Introduction

Uncertainty has a direct influence on the understanding of hydrology and water
resource cycles caused by global climate change, as well as the growing frequency and
intensity of droughts and floods throughout the world; these events are jeopardizing the
management and development of water resources to meet global demands in all industries,
making management more complex and difficult. For the past two decades, climate change
has had a global impact on water resource management. Several study groups have sought
to create ways for controlling water at its sources in order to deal with the fluctuation
of supply sides and demand sides. The majority of such studies have evaluated the
consequences of future climate change based on prediction findings from climate models
combined with hydrological models to analyze impacts on water allocation efficiency for
consumption [1], irrigation [2,3] hydroelectric power generation [4], and procurement of
new reservoirs in the future [5].

In Thailand after the Great Flood of 2011, numerous watershed areas experienced
drought between 2012 and 2019. The primary reason for this is that rainfall was below
normal [6]. Many rivers’ average discharge was lower than usual [7]. Government agencies
must implement campaign initiatives to encourage consumers and farmers to consume

Sustainability 2022, 14, 8599. https://doi.org/10.3390/su14148599 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su14148599
https://doi.org/10.3390/su14148599
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0003-2575-264X
https://doi.org/10.3390/su14148599
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su14148599?type=check_update&version=1


Sustainability 2022, 14, 8599 2 of 17

water most efficiently and cost-effectively as possible. The northeastern area of Thailand
comprises more than 60% agricultural land and is mostly dependent on seasonal rainfall in
off-season cultivation, especially for rice cultivation, as it requires water from irrigation
systems which rely on the cost of water from reservoirs. Meanwhile, the demand for water
downstream in various sectors tends to increase. Many large and medium-sized reservoirs
are unable to allocate water to meet the needs of all sectors effectively. In addition, the
development of water resource management through efficient tools and methodology,
alongside the consideration of the conditions of complex and nonlinear problems in all
dimensions, is required especially for the management of reservoir water resources in
situations of global climate change volatility [5]. It is, therefore, necessary to make an
urgent adjustment.

Over the past decade, climate and streamflow were included in future hydrological
models. These two factors have been used in combination with reservoir management.
It is an approach that has been widely used in studies across the world. In Thailand, the
Hydro-Informatics Institute created and released the Coupled Model Intercomparison
Project Phase 5 (CMIP5) family of global climate models. This model has undergone bias
correction using a Gamma-Gamma (GG) transformation optimization approach [8] to make
future computation results more dependable. The products from CMIP5 have been used
to analyze the effects of climate change in Thailand’s watershed areas [9], hydrological
systems in Southeast Asia [10], and many other places across the world [11,12].

A hydrological model is used to forecast future streamflow. In this study, a semi-diffuse
hydrological model was investigated. The SWAT [13] is the world’s most popularly used
climate model, because of its integration of geographic information (GIS) data and regional
climatic data in watershed areas of every size. As a result, the analysis is trustworthy.
SWAT has been used in Thailand to examine and analyze the quantity of streamflow in
various scenarios [14,15], and for the future management [16,17] of water resources in
watersheds and reservoirs [18]. The precision of SWAT calculation results could improve
when compared to the real measurements and this was accomplished by employing the
SWAT-CUP model and the SUFI-2 approach [19] to choose the most appropriate sensitivity
variables for analyzing the studied watershed regions. Therefore, based on the strengths of
the CMIP5-derived products, once they were imported into SWAT, the results were expected
to be future streamflow that differ from the new projection of greenhouse gas emissions.
The Representative Concentration Pathway (RCP) as defined in the fifth Assessment Report
(AR5) by the IPCC [20] provides cost information for appropriate reservoir management to
situations of future hydrological variation.

There have already been some studies on applying optimization techniques to reservoir
management, particularly in the development of suitable reservoir rule curves. Mathe-
maticians have created evolutionary optimization approaches throughout the last decade.
Appropriate reservoir rule curves were created using metaheuristic optimization techniques.
Several approaches are popular in Thailand and across the world, such as Genetic Algo-
rithm (GA) [18,21–23] Ant Colony Optimization (ACO) [24], Firefly Algorithm (FA) [25],
Grey Wolf Optimization (GWO) [26], Tabu Search Algorithm (TSA) [27,28], and Particle
Swarm Optimization (PSO) [21,22]. However, a new kind of evolutionary technique has
been created, which is a natural-inspired approach to solving problems and finding answers
in engineering. It is the Honey-Bee Mating Optimization (HBMO) algorithm [29], a process
for optimization by imitating bee swarm behavior.

However, the solution to reservoir water allocation challenges caused by climate
change affects future streamflow volumes. It was discovered that there were not many
studies in the northeastern part of Thailand, along with forecasts of the variance in wa-
ter demand from diverse activities in the downstream areas, especially for reservoirs in
remote places where functionality is essential. Ubolratana Reservoir is the first significant
multi-purpose reservoir in Thailand’s northeast that provides hydroelectric electricity by
combining irrigation and rainwater harvesting to reduce floods during the wet season.
However, in the last ten years, dry-season water resource management has encountered a
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water insufficiency problem. Water intake to reservoirs has been lower than the average
amount. In contracts, in certain years, the volume of water flowing into the reservoir
surpasses the storage capacity during the rainy season. The water must be drained onto the
downstream side, causing floods in residential and agricultural regions. As a result, when
Ubolratana Reservoir has to develop suitable and efficient water distribution criteria, taking
into account the diversity of hydrological circumstances in the past, present, and future to-
gether with the application of evolutionary optimization techniques to create more efficient
rule curves. This would be expected to be of great benefit for water resource management.

In the past, the consideration of improving the reservoir rule curves of Ubolratana
Reservoir, and the other reservoirs in Northeastern Thailand was a case study based on
climate change forecasting from the AR4 models [18,30]. This research draws on climate
forecasting data from the CMIP5 model based on the RCP4.5 and RCP8.5 scenarios that use
bias correction to be more accurate, including there are various types and different model
resolutions. The integration of SWAT hydrological models into the analysis of streamflow
conditions has not been previously studied, and the same applies to experiments that link
these models to the development of the optimal reservoir rule curves with the HBMO
technique. Consequently, the expected outcome of the study is the optimal rule curves,
appropriate outcome for the climate change situation and the variation on streamflow in
many cases.

The purpose of this research was to use the CMIP5 and SWAT models to examine
how global climate change affects the quantity of streamflow input into the Ubolratana
Reservoir, as well as to improve the reservoir rule curves by employing the approach of the
HBMO and considering the objective function, which is to minimize the quantity of water
that is scarce and the amount of water that overflows the reservoir, respectively. The results
of this study were predicted to be useful in predicting water scarcity and extreme water
circumstances for flexible water management, provided as decision-support information
for stakeholders to use as information for climate change policy planning and evaluation
of water allocation guidelines to assist future activities.

2. Materials and Methods
2.1. Research Area

The research site was Ubolratana Reservoir in Ubolratana District, Khon Kaen Province.
The study focused on five watershed areas; Lam Pha Niang, Lam Nam Phue, Upper Lam
Nam Phong, Lam Nam Choen, and Lam Nam Phrom, all of which are tributaries of the
Chi River Basin in northeast Thailand (Figure 1), with a total water intake area of around
12,000 square kilometers. The reservoir is a rock-fill dam with a clay core with a height of
2 m. The dam crest is 185.00 m above sea level. The basin receives an average of 2470 MCM
of water each year. The normal water storage capacity is 2431.3 MCM, with a reservoir area
of 370 square kilometers. The main functions of the reservoir are for generating electricity
with an annual power generation capacity of approximately 56.1 million kilowatt-hours,
irrigation covering an area of approximately 480 square kilometers, flood relief, fisheries,
and intercity transportation travel.
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2.2. World Climate Models
2.2.1. CMIP5 Model

GCMs (General Circulation Models) are useful for describing and forecasting future
climate change patterns. The World Meteorological Organization’s Global Climate Research
Program is now collecting data on current global climate change under the acronym Cou-
pled Model Intercomparison Project Phase 5 (CMIP5) [31]. For this study, 10 CMIP5 models
were selected by the investigators: MIROC_ESM, BNU, CanESM, MIROC5, FGOALS_g2,
CESM1_CAM5, GFDL, EC_EARTH, CCSM4, and FGOALS_s2 [32,33]. The data used in the
global climate change analysis were supported by the Hydro-Informatics Institute (HII)
(Public Organization), which revealed that there are a wide variety of models that can
be applied (more than 15 models). However, when comparing the model’s data with the
measurement stations in the study area, (especially rainfall data) and ranked based on
the lowest tolerance. It was found that the models used in this study were among the
10 models with the lowest inaccuracies and were used in this study. Then, in the streamflow
analysis, only the climate data from five of the best models were selected. For ease of use,
the HII, which has downscaled the data model to a 5 × 5 square kilometer grid. Base year
climate data in the study areas used the data for 9 years between 2011–2019, and climate
forecasting data from 30-year models between 2020–2049.

2.2.2. Data Bias Correction

The Gamma-Gamma transformation approach was used in this study to correct for
rainfall inaccuracy from the GCM. For this study, climate data, particularly precipitation
data, courtesy of the Hydro-Informatics Institute (HII), is the agency that produces and
distributes data for use in climate change studies in Thailand. This agency has identified
the Gamma-Gamma transformation method to mitigate discrepancies in rainfall data. In
addition, HII has published a study that applied this method to study the impact of climate
change in Thailand on agricultural water demand [34]. In addition, Sharma (2015) has also
chosen this method to study rainfall in western Thailand, which found that the Gamma-
Gamma transformation was more effective in improving rainfall frequency and intensity
compared to other methods [35]. The concept of this method is to correct for discrepancies
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caused by frequency and rainfall between GCM and measurement stations in the base
year by creating a cumulative distribution function (CDF). This leads to the creation of
appropriate Gamma parameters, with the functionalities and key parameters as shown in
Equations (1)–(4).

F(x; α, β) =
1

βαΓ(α)
xα−1exp

(
x
β

)
; x ≥ xTrunc (1)

F(x; α, β) =
∫ x

xTrunc

f (t)dt (2)

F(xGCM; α, β|GCM)⇒ F(xHis; α, β|His) (3)

x′GCM = F−1{F(xHis; α, β|His)} (4)

where α is the shape and β is the size of the data from the GCM and base year monitoring
stations at the selected locations to be gamma distribution. xTrunc is the amount of rainfall
from CDF treated with the Gamma parameters, which are developed in Equation (2) for
Equation (3). The α and β values were calculated by applying the maximum likelihood
estimation method to calculate the daily precipitation from the inverse-adjusted GCM as
shown in Equation (4).

2.3. SWAT Hydrological Model

The SWAT (Soil and Water Assessment Tool) model was created to aid in the manage-
ment of water resources, and it was utilized in the evaluations for estimating the impact
of water resource management and water pollution in watersheds and large basins [36],
the quantity of streamflow that has changed, the amount of sediment and water quality
in streams affected by changes in land use and climate in both past, present and future
projections [37], which could be divided into distinct stages of watershed processing. For
example, in the main watershed, sub-watershed zones are being created. Calculations that
demonstrate outcomes daily and at extended intervals are also included. This considers
variables from hydrological processes with the water balance equation as in Equation (5).

SWt = SW0 +
t

∑
i=1

(
Rday −Qsurf − Ea −Wseep −Qgw

)
(5)

where SWt is the final soil water content; SW0 is the initial soil water content, t is the time
(days), Rday is the precipitation (mm) on the day i, Qsurf is the surface water content on the
day I, Ea is the evaporative transpiration amount on the day I, Wseep is the amount of water
seeping into the basement on the day i, and Qgw is the amount of groundwater returning
to the stream on the day i.

2.3.1. Data Input

In the implementation process, the SWAT method requires the import of basic physical
data, including a digital elevation model (DEM) with elevation values between 90 to 1596 m
(MSL). The watershed area has a slope from the west (mainly mountains and upstream
forests) to the eastern lowland area where the Ubolratana Reservoir is located (see Figure 1).
As for the soil type map (Figure 2a), it indicates that more than 50% of the soil is clay, which
is in the eastern lowland, followed by clay loam soil, which is mainly in the eastern lowland
of the study area. The types of land use in the study area were mostly agricultural areas.
It was found that the use of land for rice farming which is most distributed in the eastern
lowland area, combined with sugarcane and cassava plantation in the central area of the
basin. In the west, most areas are watershed forests. The land use spatial distribution map
is illustrated in Figure 2b.
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Daily climate data includes rainfall, temperature, humidity, wind speed, and solar
intensity. Daily rainfall data were collected from 9 rain gauge stations distributed in the
study area and 1 climate station (Khon Kaen station) located in the southeastern part of
the watershed, as shown in Figure 1. There are 4 stations of streamflow and sediment
data, of which 3 stations are located in the watershed areas above the Ubolratana Reservoir,
are Station E68A (Lam Pha Niang Basin), E29 Station (Upper Phong Basin), and E85
Station (Lam Chuan River). Basin). These data are from 2011–2019 supported by the Royal
Irrigation Department of Thailand. The data used for evaluating the effectiveness of the
SWAT-computed results for the different types, intervals, scales, and data sources used in
this study are summarized and shown in Table 1.

Table 1. Basic data to be used in the SWAT model.

Data Type Period Scale Source

DEM 2015 30 × 30 m

Land Development Department, ThailandSoil type map 2015 1:50,000
River map 2020 1:50,000

Land use map 2015 30 × 30 m
Climate 2011–2019 Daily Thai Meteorological Department, Thailand

Observed inflow 2011–2019 Daily Royal Irrigation Department, Thailand;
Electricity Generating Authority, Thailand

2.3.2. Model Performance Evaluation Using SWAT-CUP

SWAT-CUP (SWAT Calibration and Uncertainty Procedure) is a SWAT-compatible
model. When compared to the old approach of manual correction by trial and error, the
SWAT model’s sensitive variable analysis, calibration, and validation procedures have more
flexibility and take less time. The outcome of altering the sensitivity variable will serve
as a guide for the best calibration and adjustment of the solution(s) between the SWAT
generated results and the station data. The following are five approaches for determining
the proper values: (1) Generalized Likelihood Uncertainty Estimation (GLUE), (2) Particle
Swarm Optimization (PSO), (3) Parameter Solution (Parasol), (4) Mark Chain Monte Carlo
(MCMC), and (5) Sequential Uncertainty Fitting (SUFI-2) [38]. For this study, the use of
the SUFI-2 technique was selected to apply in the operation. The SUFI-2 technique is
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uncertainty analysis consisting of predictive P-factors representing the actual measured
values that appear in the simulation results for 95% of the uncertainty of the simulation.
The prediction (95% prediction uncertainty; 95PPU) and R-factor are calculated as the
ratio of the mean amplitude range of the 95PPU to the standard variance of the actual
data. The calculated 95PPU values were positioned at 2.5% and 97.5% of the cumulative
probability distribution of the variables considered. Using Latin hypercube sampling [38]
as this technique requires the least number of sensitivity variables but can produce the best
results compared to other methods [39]. Eight parameters from the most vulnerable model
types were chosen for examination in this study. Eight parameters from the most vulnerable
model types were chosen for examination in this study. The results of the modification
of the parameters that calculated streamflow from the model closest to the data from the
measurement station are shown in Table 2.

Table 2. Adjusted Model Sensitivity Parameters.

No. Parameter Range Adjusted Values

1 ALPHA_BF.gw 0–1 0.367
2 GW_DELAY.gw 0–500 19.500
3 GWQMN.gw 0–500 179.500
4 ESCO.hru 0–1 0.881
5 GW_REVAP.gw 0–500 129.500
6 SOL_AWC.sol 0–1 0.393
7 CN2.mgt −0.2–0.2 −0.104
8 EPCO.hru 0–1 0.819

Then, the results were compared with the data from the measurement station, and the
efficiency was assessed using two statistical indices to check the accuracy of the results [40],
which showed the level of accuracy of the monthly streamflow comparison results. It is
divided into four levels as shown in Table 3 [41].

Table 3. Typical performance level for accepted statistics in monthly time step.

Level R2 NSE

Very good 0.80 < R2 ≤ 1.00 0.75 < NSE ≤ 1.00
Good 0.70 < R2 ≤ 0.80 0.65 < NSE ≤ 0.75

Satisfactory 0.60 < R2 ≤ 0.70 0.50 < NSE ≤ 0.65
Unsatisfactory R2 ≤ 0.60 NSE ≤ 0.50

1. The Coefficient of Determination (R2), as shown in Equation (6), is between 0–1,
with values greater than 0.6 indicating that the two data are correlated at a level
of reliability.

2. The Nash Sutcliffe efficiency (NSE) coefficient, as shown in Equation (7), is between
−∞ and 1, with values greater than 0.5 indicating that the two data are correlated at a
level of reliability.

R2 =

 ∑n
i=1(Qoi −Qoa)(Qsi −Qsa)√

∑n
i=1 (Qoi −Qoa)

2
√

∑n
i=1 (Qsi −Qsa)

2

2

(6)

Ens = 1−
(

∑n
i=1(Qo −Qs)

2

∑n
i=1(Qo −Qsa)

2

)
(7)

where n is the total number of data. Qoi is the i-order value, Qoa is the mean from all
measurements, Qsi is the i-order model, Qsa is the i-order value from all models, Qs is the
calculated value from the model, and Qo is the measurement value.
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2.4. Application of HBMO Algorithm for Reservoir Rule Curves Generation
2.4.1. HBMO Algorithm

The HBMO Algorithm is a hybrid search algorithm based on bee mating behavior.
The biological bee breeding process is transformed into a mathematical modeling program.
As a result, the phases in the adjustment process were properly outlined. Mating is the
first step in algorithm development. Every queen bee makes a flight based on her power
and speed throughout each mating flight. Equation (8) determines the likelihood of mating
between individual male bees and queen bees. The likelihood of mating is high during
the start of the mating flight when the queen bee’s velocity is high, or when a male bee is
sufficiently numerous to mate, the probability of mating is high.

After the movement of the queen bees or after mating, energy, and speed decrease
according to Equations (9) and (10). When all queen bees have completed a pairing flight,
they begin to breed to achieve the required number of embryos. The queen bees are
selected in proportion to the queen bee’s fitness and are artificially inseminated with sperm
randomly selected from the queen bee’s sperm sac. The worker bees would be selected in
proportion to their fitness to be used to improve larval outcomes. After the embryos were
born, they would be sorted according to their fitness. The best larvae replace the worst
queen bees until there are no better embryos than any queen bees. The remaining larvae
are then killed and new matings begin until there is a perfect mating. All predetermined
will be completed or meet converging criteria [42].

Prob (Q, D) = e−
∆( f )
S(t) (8)

where Prob (Q, D) is the probability of mating between the male bee D and the queen bee
Q or the probability of successful mating; ∆( f ) is the difference between the male bee’s
fitness (f (D)) and the fitness of the queen bee (f (Q)); S(t) is the speed of the queen bee at
the time.

E(t + 1) = E(t)− γ (9)

S(t + 1) = α× S(t) (10)

where E(t) is the queen’s energy; S(t) is the queen’s speed; α is a factor ∈ [0, 1] and γ is the
amount of energy reduction after each transition.

2.4.2. Water Equilibrium Simulation Model

The models HEC-3, HEC-5, and HEC-RAS were used in a simulation study of the
reservoir system in each watershed [43]. Water balance principles were used. In this study,
a simulation model of the reservoir system was created by using the same principles as
in the above model, to facilitate connection with the Honey Bee Mating Optimization and
begin calculating the water balance of each reservoir. To begin calculating the water balance
of each reservoir from the rule curves, the initial storage volume of the reservoir was set
at full capacity or the maximum storage level; the discharge volume could be calculated
following the Standard Operating Rule as shown in Figure 3 and Equation (11). Then,
the available water cost of the reservoir could be calculated for the next month with the
principles of the water balance equation as shown in Equation (12).

Rν,τ =


Dτ + Wν,τ − yτ , f or Wν,τ ≥ yτ + Dτ

Dτ , f or xτ ≤Wν,τ < yτ + Dτ

Dτ + Wν,τ − xτ , f or xτ − Dτ ≤Wν,τ < xτ

0, otherwise

(11)

where Rυ ,τ is the amount of water discharged from the reservoir during the year υ in the
month τ (τ is 1 to 12 referring to January to December); Dτ is the demand for water at the
bottom of the basin during month τ; xτ is the lower boundary of the rule curves of the
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month τ; yτ the upper boundary of the rule curves of the month τ; and Wυ ,τ is the amount
of original water level available in the basin of the month τ.

Wν,τ+1 = Sν,τ + Qν,τ − Rν,τ − Eτ − DS (12)

where Sυ ,τ is the amount of water stored in the reservoir at the end of the month τ; Qυ ,τ is
the average streamflow in the month τ; Eτ is the evaporation loss in the month τ; and DS
(dead storage) is unused storage volume.
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The reservoir rule curves were generated using the HBMO Algorithm Optimal Solution
in this study. In the instance of shortage frequency, the target function for determining the
solution was the least average shortage, as illustrated in Equation (13).

Min(AverSh) =
1
n

n

∑
v=1

Shv (13)

where n is the length of the original water quantity data set; Shv is the amount of water
shortage in the year v (The amount of water released is less than the water demand target).

2.4.3. Reservoir Rule Curves Efficiency Evaluation

By analyzing the frequency of occurrence of an incident, the rule curves assessment
was set to evaluate two parts: water scarcity and excess release water with mean and
maximum values of Magnitude and Duration through the performances of the test rule
curves with future monthly streamflow scenarios from 2020 to 2049. Changes in greenhouse
gas emissions are RCP4.5 and RCP8.5, which are two different types of RCP.

3. Results and Discussion
3.1. Streamflow Analysis Using the SWAT Model
3.1.1. Model Performance Assessment

Evaluation of model performance assessed the accuracy between the calculation of
streamflow from the SWAT model calculated from the average monthly streamflow volume
during 2011–2019 and the streamflow data from 4 measurement stations in the study areas,
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namely E68A Station (Lam Pha Niang River Basin), E29 Station (Upper Phong River Basin),
Ubolratana Dam Station, and E85 Station (Lam Nam Choen River Basin) in the same period.
The model’s performance was evaluated using an index of R2 ranging from 0.62–0.88 and
NSE between 0.50–0.81, which were both within the acceptable accuracy range as shown in
Table 4.

Table 4. Index values for evaluating the accuracy of SWAT calculation results comparing streamflow
volumes from measurement stations.

Assessment Index R2 NSE

E68A Station (Lam Pha Niang River Basin) 0.82 0.52
E29 Station (Upper Phong River Basin) 0.79 0.76

Ubolratana Dam Station 0.88 0.81
E85 Station (Lam Nam Choen River Basin) 0.62 0.50

Comparative results of streamflow volumes from the SWAT model and streamflow
data from Ubolratana Dam Station are shown in Figure 4. The average annual stream-
flow from the SWAT model is 5147.34 MCM and that of the measurement station is
2385.56 MCM.
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3.1.2. Forecasting of Future Streamflow Volumes

Forecasted future streamflow from 2020 to 2049 were expected to be impacted by
climate change based on the CIMP5 model under the RCP4.5 projection case. In total, there
was a 32% increase in the average annual streamflow in the future. With the MIROC_ESM
model, the streamflow volume was likely to increase to a maximum of 4734.97 MCM
(98.49%), and with the MIROC5 model, it was expected to rise by 3889.10 MCM (63.03%).
In the BNU model, it increased to 2905.53 MCM (21.80%), and in the CanESM model,
it increased to 2758.80 MCM (15.65%). However, the FGOALS_g2 model indicated that
the average annual streamflow in the future was expected to decrease by 1528.95 MCM
(−35.91%) (Figure 5). It was found that, overall, the average monthly streamflow volume
increased during the rainy season, accounting for 2930.95 MCM (29.82%), and in the dry
season, it accounted for 232.53 MCM (81.82%). When considering each model, there were
4 models, MIROC_ESM, BNU, CanESM, and MIROC5. There was an increase in the average
monthly streamflow during the rainy season between 2516.67–4479.10 MCM (11.47–98.40%),
and the monthly average streamflow volume would increase significantly during the dry
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season, especially in October showing a significantly higher proportion (Figure 6). The
highest increase in the MIROC5 model was 356.00 MCM (178.36%). However, the study
from the FGOALS_g2 model expressed a trend of lower average monthly streamflow in
both rainy and dry seasons which were 1467.22 MCM (−35.01%) and 61.73 MCM (−51.73%)
respectively. The results were in line with the average annual streamflow (Table 5).

Climate change was projected to influence future streamflow levels between 2020 and
2049, according to the CIMP5 model under the RCP8.5 forecast. The results showed that
the average annual streamflow across all models tended to increase. The MIROC5 model
rose by 5828.46 MCM (144.32%), the BNU model climbed by 3704.05 MCM (55.27%), and
the CanESM model increased by 3704.05 MCM (55.27%) (55.27%). Model FGOALS_g2
grew to 2854.40 MCM (19.65%) and 3419.62 MCM (43.35%) (Figure 7). Looking at the
seasonal average monthly streamflow volumes, the trend of change in average monthly
water volume was similar under the RCP4.5 projection case but had a greater proportion
of increase. Overall, the average monthly streamflow volume increased during the rainy
season by 3551.80 MCM (57.32%) and by 401.32 MCM (213.81%) in the dry season. The
increase was significant in both the rainy and dry seasons compared to the other models
(Table 5), with a significant increase in percentage in October (Figure 8).

Table 5. Average monthly base year streamflow and seasonal forecasts.

Period RCP GCM

May–November
(Wet Season)

(MCM)

December–April
(Dry Season)

(MCM)

Average Difference
(%) Average Difference

(%)

Baseline
(2011–2019) 2257.67 127.89

2020–2049

RCP4.5

Overall 2930.95 29.82 232.53 81.82
MIROC_ESM 4479.10 98.40 255.87 100.07

BNU 2658.62 17.76 246.90 93.06
CanESM 2516.67 11.47 242.13 89.33
MIROC5 3533.11 56.49 356.00 178.36

FGOALS_g2 1467.22 −35.01 61.73 −51.73

RCP8.5

Overall 3551.80 57.32 401.32 213.81
MIROC_ESM 4902.41 117.14 926.05 624.11

BNU 3409.38 51.01 294.67 130.41
CanESM 3126.56 38.49 293.06 129.15
MIROC5 3654.94 61.89 304.12 137.80

FGOALS_g2 2665.69 18.07 188.71 47.56
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3.2. Optimal Reservoir Rule Curves with HBMO Algorithm Technique
3.2.1. Optimal Reservoir Rule Curves by HBMO Algorithm

The findings of the Ubolratana Reservoir rule curves generated with the HBMO
Algorithm approach based on the CIMP5 climate change impacts of 5 models under RCP4.5
and RCP8.5 projection cases were compared to the present Ubolratana Reservoir rule curves.
The rule curves in both predicted situations were discovered to be identical to the existing
rule curves. However, from July to September, the newly developed upper rule curves were
higher than the current rule curves. This effected an increase in the amount of water stored
in the reservoir, resulting in a sufficient water supply for the next dry season. In the upper
rule curves of the two forecast cases, the shape corresponded to the current rule curves, but
the lower rule curves developed lower than the current ones during the dry season from
December to April. This means that the reservoir can release more water than with the
current rule curves. It can reduce water scarcity, making it possible to respond to water
users in irrigated areas (Figures 9 and 10). According to recent study, applying the Harris
Hawks Optimization (HHO) technique for searching in the Ubolratana reservoir, Thailand,
the optimal rule curves with the HHO technique was similar to the current rule curves.
The upper rule curves developed were higher than the current rule curves throughout the
rainy season, allowing for additional water storage at the end of the rainy season [44].
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3.2.2. Reservoir Rule Curves Efficiency Evaluation

The purpose of evaluating the efficiency of reservoir rule curves is to test the functions
of the rule curves in order to know the results that could support the changing water
situations due to various uncertainties, whether in past periods or for scenarios that may
occur in the future. The assessment of rule curves had two parts, namely, water shortage
and excess release water by assessing the frequency of occurrence of an incident through
mean and maximum values of Magnitude and Duration.

We evaluated the efficiency of the current reservoir rule curves and the reservoir rule
curves obtained from future streamflow during 2020–2049, which yielded five CIMP5
models of climate change under the RCP4.5 scenario. In all models except the MIROC5
model, the reservoir rule curves were able to lower the mean water deficit and mean
overflow when compared to the present rule curves. Under the RCP4.5 scenario, the
reservoir rule curves from the MIROC_ESM model were the most efficient ones in reducing
mean water deficit and mean overflow when compared to the reservoir rule curves in
other models (Table 6). Under the RCP8.5 scenario, the results showed that the reservoir
rule curves in all models were able to reduce the average water shortage compared to the
current rule curves. Moreover, the reservoir rule curves from the MIROC5 model could
also help reduce the over-average water flow. The efficiency evaluation indicated that
the reservoir rule curves from the MIROC5 model were able to reduce the average water
shortage and average overflow the best when compared to the reservoir rule curves of all
models (Table 7).

Table 6. Estimated results of water shortage and overflow events of the Ubolratana reservoir rule
curves from the MIROC_ESM model under the RCP4.5 projection case.

Situations Rule Curves
Frequency

(Times/Year)

Magnitude
(MCM/Year) Duration (Year)

Average Maximum Average Maximum

Water
shortage

Existing 0.2 23.43 478.00 1.7 2.0
MIROC_ESM 0.1 10.93 215.00 1.5 2.0

BNU 0.1 14.87 264.00 2.0 2.0
CanESM 0.1 14.17 295.00 1.5 2.0
MIROC5 0.1 21.90 351.00 1.3 2.0

FGOALS_g2 0.1 13.97 268.00 2.0 2.0

Excess water
release

Existing 1.0 3235.04 8570.84 14.5 19.0
MIROC_ESM 1.0 3181.27 8213.26 14.5 26.0

BNU 1.0 3187.92 8124.91 14.5 26.0
CanESM 1.0 3204.33 8284.15 14.5 19.0
MIROC5 1.0 3216.58 8551.56 30.0 30.0

FGOALS_g2 1.0 3207.96 8585.07 14.5 26.0

Table 7. Estimated water shortage and overflow events of the Ubolratana reservoir rule curves from
the MIROC5 model under the RCP8.5 projection case.

Situations Rule Curves
Frequency

(Times/Year)

Magnitude
(MCM/Year) Duration (Year)

Average Maximum Average Maximum

Water
shortage

Existing 0.23 36.67 449.00 1.40 2.00
MIROC_ESM 0.17 13.90 233.00 1.67 2.00

BNU 0.07 7.77 195.00 2.00 2.00
CanESM 0.13 12.77 259.00 2.00 2.00
MIROC5 0.10 7.13 169.00 1.50 2.00

FGOALS_g2 0.17 16.00 250.00 1.67 2.00
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Table 7. Cont.

Situations Rule Curves
Frequency

(Times/Year)

Magnitude
(MCM/Year) Duration (Year)

Average Maximum Average Maximum

Excess water
release

Existing 0.97 2460.08 6281.34 14.5 21
MIROC_ESM 0.93 2460.26 5983.39 14 20

BNU 0.87 2441.62 6165.43 8.667 15
CanESM 0.93 2466.88 6055.38 9.333 15
MIROC5 0.87 2424.31 6436.28 8.667 15

FGOALS_g2 0.93 2452.14 6098.75 14 20

4. Conclusions

There were two primary objectives of this research. The first was to investigate how
global climate change has affected the quantity of streamflow that flows into the Ubolratana
Reservoir in the years 2020–2592. Second, these modifications will be utilized as data for
improving the suitable reservoir rule curves using the HBMO algorithm approach, as well
as evaluating the effectiveness of the newly designed reservoir rule curves.

The results of this study showed that future streamflow data are based on the SWAT
model. The forecast years 2020–2049 were projected to be influenced by climate change
from the CIMP5 model, according to the findings of this study. Both RCP4.5 and RCP8.5
were expected to rise under the anticipated conditions. Under RCP4.5 and RCP8.5, the
future overall average annual streamflow will rise by 32% and 65%, respectively. The
MIROC_ESM model had the highest average annual streamflow compared to other models.
However, there is a different study (FGOALS_g2 model, under the RCP4.5 forecast case),
which indicates that the future annual mean streamflow tends to decline. When we
considered the average monthly streamflow volume in the future according to seasons, it
was found that the trend of change in streamflow volume was consistent with both under
the forecasting cases. The average monthly streamflow volume was expected to increase
markedly during the wet season (August to November) and at the beginning of the dry
season (December).

Then, the Ubolratana Reservoir rule curves developed by HBMO Algorithm was
created. There were five CIMP5 climate models under the RCP4.5 and 8.5 forecast cases, for
which the developed rule curves were shaped in accordance with the current rule curves.
Moreover, the developed rule curves could also allow the reservoir to hold more water
during the rainy season. This should ensure that there will be enough water in the next dry
season. In addition, during the dry season, reservoirs will be able to release more water,
thereby reducing water scarcity. Finally, the future rule curves in the reservoir as a result of
the climate change examined in this study would be able to answer the objective functions,
which is to acquire the least average water scarcity amount. The rule curves will also be
rated for their efficiency in reducing water scarcity and overflow compared to the current
rule curves.

Author Contributions: Conceptualization, S.S. and A.K.; methodology, S.S. and A.K.; validation,
S.S. and A.K.; formal analysis, S.S. and A.K.; investigation, S.S. and A.K.; writing—original draft
preparation, S.S. and A.K.; writing—review and editing, S.S. and A.K.; supervision, S.S. and A.K. All
authors have read and agreed to the published version of the manuscript.

Funding: This research project was financially supported by Mahasarakham University.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: This study did not report any data.



Sustainability 2022, 14, 8599 16 of 17

Acknowledgments: The authors would like to acknowledge the Hydro–Informatics Institute, the
Land Development Department, the Thai Meteorological Department, the Royal Irrigation Depart-
ment and the Electricity Generating Authority, Thailand for supporting data in this study. The
authors would like to thank the editor and the anonymous reviewers for their comments that helped
in improving the quality of the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ehsani, N.; Vörösmarty, C.J.; Fekete, B.M.; Stakhiv, E.Z. Reservoir operations under climate change: Storage capacity options to

mitigate risk. J. Hydrol. 2017, 555, 435–446. [CrossRef]
2. Ehteram, M.; Mousavi, S.F.; Karami, H.; Farzin, S.; Singh, V.P.; Chau, K.W.; El-Shafie, A. Reservoir operation based on evolutionary

algorithms and multi-criteria decision-making under climate change and uncertainty. J. Hydroinform. 2018, 20, 332–355. [CrossRef]
3. Gorguner, M.; Kavvas, M.L. Modeling impacts of future climate change on reservoir storages and irrigation water demands in a

Mediterranean basin. Sci. Total Environ. 2020, 748, 141246. [CrossRef] [PubMed]
4. Abera, F.F.; Asfaw, D.H.; Engida, A.N.; Melesse, A.M. Optimal operation of hydropower reservoirs under climate change: The

case of Tekeze reservoir, Eastern Nile. Water 2018, 10, 273. [CrossRef]
5. Carvalho-Santos, C.; Monteiro, A.T.; Azevedo, J.C.; Honrado, J.P.; Nunes, J.P. Climate change impacts on water resources and

reservoir management: Uncertainty and adaptation for a mountain catchment in northeast Portugal. Water Resour Manag. 2017,
31, 3355–3370. [CrossRef]

6. Moazzam, M.F.; Lee, B.G.; Rahman, G.; Waqas, T. Spatial Rainfall Variability and an Increasing Threat of Drought, According to
Climate Change in Uttaradit Province, Thailand. Atmos. Clim. Sci. 2020, 10, 357. [CrossRef]

7. Tebakari, T.; Dotani, K.; Kato, T. Historical change in the flow duration curve for the upper nan River Watershed, Northern
Thailand. J. Jpn. Soc. Hydrol. Water Resour. 2018, 31, 17–24. [CrossRef]

8. Sharma, D.; Babel, M.S. Assessing hydrological impacts of climate change using bias-corrected downscaled precipitation in Mae
Klong basin of Thailand. Meteorol. Appl. 2018, 25, 384–393. [CrossRef]

9. Petpongpan, C.; Ekkawatpanit, C.; Kositgittiwong, D. Climate change impact on surface water and groundwater recharge in
Northern Thailand. Water 2020, 12, 1029. [CrossRef]

10. Kamworapan, S.; Surussavadee, C. Evaluation of CMIP5 global climate models for simulating climatological temperature and
precipitation for Southeast Asia. Adv. Meteorol. 2019, 2019, 1067365. [CrossRef]

11. Bhatta, B.; Shrestha, S.; Shrestha, P.K.; Talchabhadel, R. Evaluation and application of a SWAT model to assess the climate change
impact on the hydrology of the Himalayan River Basin. Catena 2019, 181, 104082. [CrossRef]

12. Azari, M.; Oliaye, A.; Nearing, M.A. Expected climate change impacts on rainfall erosivity over Iran based on CMIP5 climate
models. J. Hydrol. 2021, 593, 125826. [CrossRef]

13. Saharia, A.M.; Sarma, A.K. Future climate change impact evaluation on hydrologic processes in the Bharalu and Basistha basins
using SWAT model. Nat. Hazards 2018, 92, 1463–1488. [CrossRef]

14. Chuenchooklin, S.; Pangnakorn, U. Hydrological Study Using SWAT and Global Weather, a Case Study in the Huai Khun Kaeo
Watershed in Thailand. Int. J. Environ. Prot. Pol. 2018, 6, 36. [CrossRef]

15. Prasanchum, H.; Sirisook, P.; Lohpaisankrit, W. Flood risk areas simulation using SWAT and Gumbel distribution method in
Yang Catchment, Northeast Thailand. Geogr. Tech. 2020, 15, 29–39. [CrossRef]

16. Ekkawatpanit, C.; Pratoomchai, W.; Khemngoen, C.; Srivihok, P. Climate change impact on water resources in Klong Yai River
Basin, Thailand. Proc. Int. Assoc. Hydrol. Sci. 2020, 383, 355–365. [CrossRef]

17. Thongwan, T.; Kangrang, A.; Techarungreungsakul, R.; Ngamsert, R. Future inflow under land use and climate changes and
participation process into the medium-sized reservoirs in Thailand. Adv. Civ. Eng. 2020, 2020, 5812530. [CrossRef]

18. Prasanchum, H.; Kangrang, A. Optimal reservoir rule curves under climatic and land use changes for Lampao Dam using Genetic
Algorithm. KSCE J. Civ. Eng. 2018, 22, 351–364. [CrossRef]

19. Kumar, N.; Singh, S.K.; Srivastava, P.K.; Narsimlu, B. SWAT Model calibration and uncertainty analysis for streamflow prediction
of the Tons River Basin, India, using Sequential Uncertainty Fitting (SUFI-2) algorithm. Model. Earth Syst. Environ. 2017, 3, 30.
[CrossRef]

20. Abeysingha, N.S.; Islam, A.; Singh, M. Assessment of climate change impact on flow regimes over the Gomti River basin under
IPCC AR5 climate change scenarios. J. Water Clim. Chang. 2020, 11, 303–326. [CrossRef]

21. Tayebiyan, A.; Mohammad, T.A.; Al-Ansari, N.; Malakootian, M. Comparison of optimal hedging policies for hydropower
reservoir system operation. Water 2019, 11, 121. [CrossRef]

22. Akbarifard, S.; Sharifi, M.R.; Qaderi, K. Data on optimization of the Karun-4 hydropower reservoir operation using evolutionary
algorithms. Data Br. 2020, 29, 105048. [CrossRef] [PubMed]

23. Kangrang, A.; Chaleeraktrakoon, C. Suitable Conditions of Reservoir Simulation for Searching Rule Curves. J. Appl. Sci. 2008, 8,
1274–1279. [CrossRef]

24. Kangrang, A.; Lokham, C. Optimal Reservoir Rule Curves Considering Conditional Ant Colony Optimization with. J. Appl. Sci.
2013, 13, 154–160. [CrossRef]

http://doi.org/10.1016/j.jhydrol.2017.09.008
http://doi.org/10.2166/hydro.2018.094
http://doi.org/10.1016/j.scitotenv.2020.141246
http://www.ncbi.nlm.nih.gov/pubmed/32798863
http://doi.org/10.3390/w10030273
http://doi.org/10.1007/s11269-017-1672-z
http://doi.org/10.4236/acs.2020.103020
http://doi.org/10.3178/jjshwr.31.17
http://doi.org/10.1002/met.1706
http://doi.org/10.3390/w12041029
http://doi.org/10.1155/2019/1067365
http://doi.org/10.1016/j.catena.2019.104082
http://doi.org/10.1016/j.jhydrol.2020.125826
http://doi.org/10.1007/s11069-018-3259-2
http://doi.org/10.11648/j.ijepp.20180602.13
http://doi.org/10.21163/GT_2020.152.04
http://doi.org/10.5194/piahs-383-355-2020
http://doi.org/10.1155/2020/5812530
http://doi.org/10.1007/s12205-017-0676-9
http://doi.org/10.1007/s40808-017-0306-z
http://doi.org/10.2166/wcc.2018.039
http://doi.org/10.3390/w11010121
http://doi.org/10.1016/j.dib.2019.105048
http://www.ncbi.nlm.nih.gov/pubmed/31970276
http://doi.org/10.3923/jas.2008.1274.1279
http://doi.org/10.3923/jas.2013.154.160


Sustainability 2022, 14, 8599 17 of 17

25. Kangrang, A.; Srikamol, N.; Hormwichian, R.; Prasanchum, H.; Sriwanphen, O. Alternative Approach of Firefly Algorithm for
Flood Control Rule Curves. Asian J. Sci. Res. 2019, 12, 431–439. [CrossRef]

26. Sinthuchai, N.; Kangrang, A. Improvement of Reservoir Rule Curves using Grey Wolf Optimizer. J. Eng. Appl. Sci. 2019, 14,
9847–9856. [CrossRef]

27. Marchand, A.; Gendreau, M.; Blais, M.; Guidi, J. Optimized operating rules for short-term hydropower planning in a stochastic
environment. Comput. Manag. Sci. 2019, 16, 501–519. [CrossRef]

28. Thongwan, T.; Kangrang, A.; Prasanchum, H. Multi-objective future rule curves using conditional tabu search algorithm and
conditional genetic algorithm for reservoir operation. Heliyon 2019, 5, e02401. [CrossRef]

29. Haddad, O.B.; Afshar, A.; Mariño, M.A. Honey-bee mating optimization (HBMO) algorithm in deriving optimal operation rules
for reservoirs. J. Hydroinform. 2008, 10, 257–264. [CrossRef]

30. Kangrang, A.; Prasanchum, H.; Hormwichian, R. Active future rule curves for multi-purpose reservoir operation on the impact of
climate and land use changes. J. Hydro-Environ. Res. 2019, 24, 1–13. [CrossRef]

31. Ferguson, C.R.; Pan, M.; Oki, T. The effect of global warming on future water availability: CMIP5 synthesis. Water Resour. Res.
2018, 54, 7791–7819. [CrossRef]

32. Climate Change in Australia. List of Global Climate Models. Available online: https://www.climatechangeinaustralia.gov.au/
en/overview/methodology/list-models/ (accessed on 20 February 2022).

33. Zhou, T.; Yu, Y.; Liu, Y.; Wang, B. (Eds.) Flexible Global Ocean-Atmosphere-Land System Model: A Modeling Tool for the Climate Change
Research Community; Springer: Berlin/Heidelberg, Germany, 2014.

34. Chaowiwat, W. Impact of climate change assessment on agriculture water demand in Thailand. Naresuan Univ. Eng. J. 2016,
11, 35–42.

35. Sharma, D. Selection of suitable general circulation model precipitation and application of bias correction methods: A case study
from the Western Thailand. In Environmental Management of River Basin Ecosystems; Springer: Cham, Switzerland, 2015; pp. 43–63.

36. Arnold, A.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrological modeling and assessment pert I: Model
development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [CrossRef]

37. Prasanchum, H.; Kangrang, A. Analyses of climate and land use changes impact on runoff characteristics for multi-purpose
reservoir system. In Proceedings of the Conference on The AUN/SEED-Net Regional Conference 2016 on Environmental
Engineering (RC-EnvE 2016), Chonburi, Thailand, 23–24 January 2017.

38. Khalid, K.; Ali, M.F.; Abd Rahman, N.F.; Mispan, M.R.; Haron, S.H.; Othman, Z.; Bachok, M.F. Sensitivity analysis in watershed
model using SUFI-2 algorithm. Procedia. Eng. 2016, 162, 441–447. [CrossRef]

39. Shivhare, N.; Dikshit, P.K.; Dwivedi, S.B. A comparison of SWAT model calibration techniques for hydrological modeling in the
Ganga river watershed. Engineering 2018, 4, 643–652. [CrossRef]

40. Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and water quality models: Performance measures and evaluation
criteria. Trans. ASABE 2015, 58, 1763–1785.

41. Zhang, S.; Li, Z.; Lin, X.; Zhang, C. Assessment of climate change and associated vegetation cover change on watershed-scale
runoff and sediment yield. Water 2019, 11, 1373. [CrossRef]

42. Haddad, O.B.; Afshar, A.; Mariño, M.A. Honey-bees mating optimization (HBMO) algorithm: A new heuristic approach for
water resources optimization. Water Resour. Manag. 2006, 20, 661–680. [CrossRef]

43. Rodriguez, L.B.; Cello, P.A.; Vionnet, C.A.; Goodrich, D. Fully conservative coupling of HEC-RAS with MODFLOW to simulate
stream–aquifer interactions in a drainage basin. J. Hydrol. 2008, 353, 129–142. [CrossRef]

44. Techarungruengsakul, R.; Kangrang, A. Application of Harris Hawks Optimization with Reservoir Simulation Model Considering
Hedging Rule for Network Reservoir System. Sustainability 2022, 14, 4913. [CrossRef]

http://doi.org/10.3923/ajsr.2019.431.439
http://doi.org/10.36478/jeasci.2019.9847.9856
http://doi.org/10.1007/s10287-019-00348-2
http://doi.org/10.1016/j.heliyon.2019.e02401
http://doi.org/10.2166/hydro.2008.018
http://doi.org/10.1016/j.jher.2019.03.001
http://doi.org/10.1029/2018WR022792
https://www.climatechangeinaustralia.gov.au/en/overview/methodology/list-models/
https://www.climatechangeinaustralia.gov.au/en/overview/methodology/list-models/
http://doi.org/10.1111/j.1752-1688.1998.tb05961.x
http://doi.org/10.1016/j.proeng.2016.11.086
http://doi.org/10.1016/j.eng.2018.08.012
http://doi.org/10.3390/w11071373
http://doi.org/10.1007/s11269-005-9001-3
http://doi.org/10.1016/j.jhydrol.2008.02.002
http://doi.org/10.3390/su14094913

	Introduction 
	Materials and Methods 
	Research Area 
	World Climate Models 
	CMIP5 Model 
	Data Bias Correction 

	SWAT Hydrological Model 
	Data Input 
	Model Performance Evaluation Using SWAT-CUP 

	Application of HBMO Algorithm for Reservoir Rule Curves Generation 
	HBMO Algorithm 
	Water Equilibrium Simulation Model 
	Reservoir Rule Curves Efficiency Evaluation 


	Results and Discussion 
	Streamflow Analysis Using the SWAT Model 
	Model Performance Assessment 
	Forecasting of Future Streamflow Volumes 

	Optimal Reservoir Rule Curves with HBMO Algorithm Technique 
	Optimal Reservoir Rule Curves by HBMO Algorithm 
	Reservoir Rule Curves Efficiency Evaluation 


	Conclusions 
	References

