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Abstract: Autonomous vehicles have the potential to significantly improve modes of transportation,
and many businesses and research facilities are developing such systems. Although there are studies
on the social implementation of autonomous vehicles, these studies are based on limited conditions
such as predetermined driving environments. Therefore, in this study, we target urban areas and
rural areas, and we simulate a behavioral algorithm for autonomous vehicles being developed
and owned by Kanazawa University. In this study, a traffic flow simulation system (Aimsun) was
constructed to reproduce the current situation of traffic flow in the city during normal times, using
data from a person-trip survey conducted by the local government. In addition, we varied the mixing
rate of automated vehicles and evaluated its effect on the delay time between ODs. We assume
the gradual replacement of existing vehicles by autonomous vehicles on actual road networks and
for realistic traffic volumes, and we investigate their impact on traffic flow. We vary the mixing
rate of autonomous vehicles into actual traffic environments, and we measure the delay in the
origin-destination (OD) interval to evaluate the impact of autonomous vehicles on traffic flow. The
results obtained show that as the mixing rate of autonomous vehicles increases, the delay between
OD intervals increases. Then, once the mixing rate exceeds a certain value, the delay between OD
intervals gradually decreased. The delay time for all vehicles slightly increases as the mixing rate of
autonomous vehicles increased from 10 to 45%. When the mixing rate increased from 45 to 50%, the
delay time for all vehicles decreased notably, and when the mixing rate was 50 to 100%, it remained
constant. Analytical results showed that when socially implementing autonomous vehicles, their
mixing rate impacts the traffic flow; thus, there is a need to determine appropriate distribution
scenarios and areas for implementation.

Keywords: autonomous vehicle; traffic flow; simulation; impact analysis

1. Introduction

In recent years, autonomous vehicles have attracted attention as a transportation
mode that will significantly affect vehicular traffic [1]. From a mechanical engineering
perspective, autonomous vehicles are being actively developed [1–5]. However, the
social implementation of autonomous vehicles is significant as it is a transportation
system that has the potential to have a major impact on existing traffic systems [6,7].
The research into and the development of autonomous vehicles is summarized based
on details [8,9]. While the social implementation of autonomous vehicles has many
advantages, for many people, the following two factors are important. The first is its
impact on road safety. For example, autonomous driving is achieved using sensors and
cameras, which may reduce the number of accidents caused by human errors [10]. As
such, the driving techniques required by drivers will be less demanding and may result in
driving by children with little experience as well as the elderly individuals with decreased
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dynamic vision, although additional restrictions may be enforced compared to general
drivers. With respect to increased speed and efficiency of driving, autonomous vehicles
depend on the accuracy of their sensors. As they detect obstacles in 360 degrees and
have a detection range beyond what is possible for humans, sufficient safety can be
realized at higher speed. In addition, compared to human driving, the gaps between
vehicles can be reduced, increasing efficiency, which in turn reduces congestion and
environmental loads [11–15]. As such, the introduction of autonomous vehicles in a society
may solve traffic problems and could potentially change the concept of transportation.
There have been many studies on autonomous driving. Case studies on the applicability
of autonomous vehicles in traffic environments have focused mainly on system structures
aimed at understanding driver behavior when actually driving autonomous vehicles.
Examples of such studies include the study of an autonomous vehicle driving environment
designed indoors, a study that recreated the behavior of autonomous vehicles in real time,
and one that recreates autonomous driving scenes [16–19]. On the other hand, few studies
have recreated autonomous vehicle motion using traffic flow simulations to evaluate their
impact on traffic flow, and these studies are limited to cases that modeled autonomous
vehicles [20–25]. Mixed human vehicle (HV) and automated vehicle (AV) operation is
an inevitable phase in future transportation development, and because HV drivers have
different levels of trust in AVs, the interaction between these two vehicle types leads to
differences in the characteristics of HV driving behavior, which can affect highway traffic
flow conditions The authors point out that the interaction between these two vehicle
types has an impact on highway traffic flow conditions. To address these issues, the
characteristics of changes in confidence levels and their effects on driving behavior are
analyzed based on questionnaire data. The results show that the confidence level is not
affected by changes in the AV penetration rate. It also reveals that the interaction between
these two vehicle types becomes stronger as AV penetration approaches 50% [26,27]. In
terms of simulation, we propose a model and an algorithm for estimating the traffic
flow generated by the centralized management of automated vehicles under exclusive
and mixed traffic conditions. The proposed model and algorithm have been tested on a
small network with a single origin-destination pair and a network with various levels of
congestion and different proportions of automated vehicles. Results show the effectiveness
of the proposed method and the impact of automated vehicles on network performance.
The proposed static/equilibrium approach shows that transportation planning, design,
or policy interventions that include the presence of automated vehicles in the traffic
flow can be used for evaluation. This suggests that analyses based on simulations of
automated vehicles are beginning to be used in transportation policy [27]. It also examines
the impact of changes in automatic vehicle (AV) sharing ratios at various speeds. The
simulation-based analysis is performed using TRANSYT and PTV Vissim simulations. The
simulations reveal changes in the AV share due to optimized signal timing. The results
indicate that the use of automated vehicles is effective when traveling at speeds between
30 and 50 km/h in urban transit networks [28]. The study also uses sensors such as
radar, cameras, lidar, and ultrasonic sensors in traffic flow simulations to measure relative
speeds to other vehicles, and simulations are used to evaluate the impact of the mixing
of automated vehicles in dense metropolitan traffic environments [29]. Furthermore, the
introduction of automated vehicles will require driving control through inter-vehicle
communication. With respect to these studies, several automakers offer driver assistance
systems that use sensors to automatically brake vehicles to avoid collisions. Before these
systems can be implemented on a large scale, it is necessary to determine how they will
affect highway capacity. The goal of this paper is to compare highway capacity when
sensors alone are used versus when sensors and inter-vehicle communications are used.
To achieve this goal, rules for preventing crashes using both technologies are proposed
and highway capacity is estimated based on these rules. We show that both technologies
can increase highway capacity. The increase in capacity depends on the percentage of
vehicles using the technology. If all vehicles use only sensors, highway capacity would
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increase by about 43%. On the other hand, if all vehicles use both sensors and vehicle-to-
vehicle communications, the increase is about 273%. The above results clearly indicate
that inter-vehicle communication is essential for the introduction of automated vehicles.
However, since inter-vehicle communication cannot be considered in this study, the
importance of inter-vehicle communication is discussed here [30]. The goal of this study
is to analyze the impact of connected automated vehicles (CAVs) on traffic safety under
different penetration rates. The mixed traffic flows of both conventional vehicles and
CAVs were simulated and the values of frequency of dangerous situations and time to
collision in mixed traffic flows under different CAV penetration rates were calculated. The
results were used as an indicator of the impact of CAVs on road safety. The distributions
of acceleration and velocity differences for mixed traffic flows were presented to show
the evolution of mixed traffic flow dynamics with increasing CAV penetration in the
mixed flow. Results show that the road safety situation improved significantly with
increasing CAV penetration rates. it was found that the more cautious vehicles following
systems of CAVs provide significant road safety benefits, albeit with little increase in
carrying capacity. The percentage of smooth running increases with increasing CAV
penetration rates. The CAVs are more likely to be used in mixed traffic flows. The
percentage of smooth running will increase. Speed differentials between vehicles are
reduced and traffic flows are significantly smoother. It also reveals that stop-and-go traffic
is greatly mitigated [31,32]. Upon reviewing existing studies on autonomous vehicles,
this study developed an algorithm that enables autonomous vehicles to drive in traffic
flow simulations (Aimun 8.0) and aimed to evaluate the impact on traffic flow when
introduced to an actual traffic environment. Because autonomous vehicles are driven
under predetermined constraints, their driving behaviors differ from those of general
vehicles. Therefore, their coexistence with general vehicles will have both positive and
negative impacts. However, as it is currently complex to introduce autonomous driving in
actual traffic flows, we evaluated the impact of introducing autonomous vehicles in actual
traffic flows using traffic flow simulation software. The implementation of the behavior
algorithm for automated vehicles developed at Kanazawa University into a traffic flow
simulation system, the reproduction of traffic flow on the traffic flow simulation system
based on a person-trip survey, and the evaluation of the effect of mixing automated
vehicles into the traffic flow on road traffic during normal times are innovative points,
and the measurement of the delay time between ODs enables the formulation of road
traffic policies. In this study, a behavior algorithm for automated vehicles was defined
in order to reflect the behavior of automated vehicles in a traffic flow simulation system.
Actual road traffic flows in urban and rural areas were reproduced on the simulation
system. Automated vehicles were mixed into the simulation system that reproduced actual
road traffic flow. By varying the mixing rate, we attempted to clarify the positive and
negative effects of the diffusion of automated vehicles. By utilizing the analysis results
of this study, it is possible to formulate transportation policies for the introduction and
diffusion of automated vehicles in urban and rural areas with different transportation
environments. Section 2 provides an overview of the self-driving vehicles covered in this
study. Section 3 describes a simulation experiment of the social acceptability of self-driving
cars. Algorithms and simulation areas for self-driving cars are also described. In Section 4,
the results of the simulation experiments are discussed. Section 5 presents a summary of
this research and future issues. The research and development of autonomous vehicles
are being conducted all over the world. When autonomous vehicles are implemented
in society, our lifestyles will undergo a major transformation. The time required for
driving itself will be reduced, and we will be able to spend more time on other activities.
The widespread use of autonomous vehicles in society will have various positive effects,
such as increasing leisure time in human life and reducing carbon dioxide emissions
by optimizing driving behavior, and will greatly contribute to the development of a
sustainable society for human life. For this reason, it is extremely important to evaluate the
diffusion of autonomous vehicles in society in advance. In particular, this study provides
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a detailed analysis of the mixing rate of autonomous vehicles and the delay time between
ODs. This enables us to quantitatively understand the impact of the development of new
machines such as autonomous vehicle on human life and contributes to the solution of
global problems and the formulation of sustainable transportation, environmental, and
other policies. Furthermore, from the viewpoint of sustainable policy making, this research
contributes to the evaluation from various perspectives from the viewpoint of the SDGs,
as autonomous vehicle are expected to be introduced not only in developed countries but
also in developing countries. In particular, this research is the first attempt in the world to
analyze the behavior of automated vehicles, and no analysis has been conducted on the
delay time between ODs. In addition, as cutting-edge technologies supporting automated
vehicles, research is being conducted on the development of computational algorithms
for the cooperative operation of intelligent vehicles [31] and on faster communication for
connected vehicles using 6G networks and UAVs [32]. Furthermore, the development
of information and communication technology will enable the realization of smart cities,
the construction of sensor networks and the acquisition of accurate location information,
and the operation of UAVs, which will contribute to a reduction in resources and the
improvement of safety [33]. Research and development on the development and social
implementation of self-driving vehicles is being conducted around the world. Under these
circumstances, there are contributions to be made to traffic congestion, the time required
between ODs, the impact on public transportation, and the mobility of the elderly that can
be assessed in advance when self-driving vehicles begin to be implemented in society.

2. Autonomous Vehicles
2.1. Outline of Autonomous Vehicles

In this study, we used the behavioral algorithm of an autonomous vehicle being
developed at the mechanics laboratories at the authors’ university (Figure 1), and we
introduced the algorithm into a traffic flow simulation software. In this section, we discuss
details of the autonomous vehicle that was employed. With autonomous vehicles, a series
of driving activities normally performed by drivers must be substituted by sensors and
computers onboard the vehicles. These include cognition, judgement, and operation.
Therefore, advanced information processing and reliability are necessary. The test vehicle
in Figure 1 is equipped with many sensors, including an omnidirectional high-resolution
range sensor (Velodyne HDL-64E S2, San Hose, CA, USA), six laser range sensors (IBEO
LUX fusion system, Seongnam-si, Republic of Korea), nine millimeter-wave radars (Fujitsu
Ten, Kobe, Japan), a monocular color camera, and a GNSS/INS compound navigation
system (Applanix POS-LV220, Richmond Hill, ON, Canada). With these sensors, the
environment around the vehicle and estimates of the position of the autonomous vehicle
can be obtained with high accuracy, allowing for actual operation. The autonomous
vehicle targeted in this study uses a laser range sensor (IBEO LUX) to recognize drivable
space and visualize moving objects, with which it accurately estimates its own position.
Multiple signals are simultaneously recognized while driving autonomously, enabling it
to drive through intersections. By combining these technologies, it has been confirmed
that autonomous vehicles can be driven on roads with lengths exceeding 10 km, including
urban areas [34].
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Figure 1. Autonomous vehicle owned by Kanazawa University.

2.2. Demonstration Experiment in Suzu City, Japan

Here, we discuss a driving experiment involving an autonomous vehicle on public
roads in Suzu City, Ishikawa Prefecture, which is the first reported attempt by any Japanese
university (Figure 2). Suzu City is an aging municipality located at the tip of Noto Penin-
sula in Ishikawa Prefecture, with 45% of its population (15,000) being elderly. Presently,
public transportation in Suzu City is limited to buses and taxis, and depending on the
specific area, there may be only one bus service per day. Therefore, the use of autonomous
vehicles to service areas without public transportation is urgently required. Driving tests
in Suzu City began in February 2015, and it is currently in the initial stage of the exper-
iment. The experiment aims to improve elemental technology of autonomous driving
such as recognizing driving environments and pass planning, and this is being carried
out primarily by accumulating driving data from urban areas. In the future, we plan to
continue our tests towards the utilization of autonomous vehicles in Suzu City as part of
its public transportation network. The vehicle used for the experiment is the Toyota Prius
shown in Figure 1, and it has been remodeled so that the steering angle, braking, driving,
and turning signals can be controlled using commands received from a computer. Upon
installing various sensors, experiments were performed on public roads after confirming
that no traffic regulations would be breached. At the present time, the section used for
the driving experiment is about 6.6 km in various environments such as urban areas and
mountainous areas. In April 2015, two months after the beginning of the experiment, a
completely autonomous return journey was successfully achieved, with a total distance
of 13.2 km. Figure 2 shows some pictures taken during the driving experiment. From the
driving experiment, we also discovered various issues related to urban areas. For example,
there is a problem with the sensor layout. In the test vehicle that we are currently using for
the driving experiment, we installed a laser-range sensor that is able to sense all directions.
However, since the sensor was installed in the center of the vehicle, in intersections with
poor visibility, the condition of such an intersection cannot be safely assessed unless the
vehicle has already entered the intersection. Normally, drivers can confirm the condition of
an intersection with limited view by moving their heads; however, this is not possible with
the sensor that was fixed to the vehicle. Therefore, an omnidirectional sensor is insufficient,
and it is important to place the sensor in a position that allows for the appropriate moni-
toring of critical regions. By driving on public roads, other problems, both significant and
minor, were highlighted. To fully understand these findings, a public road driving test is
essential. As such, the autonomous vehicle that is presently being studied continues to go
through driving experiments on public roads, while we continue to develop fundamental
technologies.
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Figure 2. Driving experiment on a public road.

3. Evaluation of Social Acceptability of Autonomous Vehicles
3.1. Execution Environment of the Simulation

In this study, we used Aimsun 8.0 to evaluate the impact of autonomous vehicles on
traffic flow. To express the behavior of autonomous vehicles, we used C++ on the Aimsun
SDK platform. Aimsun is a high-function traffic simulator that is considered one of the
best worldwide, and it was developed by a Spanish company, TSS (Barcelona, Spain). It
is a comprehensive traffic-simulation platform that is able to handle microsimulations,
mesosimulations, hybrid simulations, and traffic-demand models together in one applica-
tion. Aimsun allows for the selection of the origin–destination (OD) model or the branching
rate model depending on the situation. With the OD model, without assumed conditions
such as the branching rate, we can perform a simulation using path selection.

3.2. Simulation Area

Kanazawa City is a major city in Ishikawa Prefecture, with an area of 467.8 km2 and a
population of 454,607. The use of cars accounts for 67.2% of the modes of transportation
employed, and this is 22.5% higher than the national average of 44.7%. The main mode of
public transportation is the bus (4.6%), with higher usage by the elderly in the center of
the city. Based on these facts, it is a city with a relatively advanced degree of motorization
of urban areas. With respect to aging, in 2013, 23.3% of the total population was at least
65 years of age, and this figure is expected to rise to 28.6% by 2025. On the other hand,
Suzu City is a rural city in Ishikawa Prefecture with an area of 247.2 km2 and a population
of 14,631. Within the city, there are no forms of public transportation, such as trains and
buses, and residents mainly travel by car. In 2015, 46.6% of the total population was at least
65 years of age, and this figure is expected to rise to 51.7% in 2025 (Figure 3).
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3.3. Simulation Data

In this section, we present various data used for the simulation. First, we assumed the
traffic flow based on the 2005 person-trip (PT) survey. PT surveys examine “when”, “from
where”, “to where”, “who”, “for what reason”, and “what transportation method”, and
capture the movements of persons throughout a given day. The target city is divided into
zones, and the OD traffic volumes in these zones are surveyed. In the present simulation,
the authors superimposed zones used for the PT survey on the road data prepared using a
digital road map (DRM) using GIS data. We placed a centroid (the point where vehicles
gather and begin) and prepared the OD model for each zone. In this study, the current con-
ditions were reproduced according to the traffic flow of the Parson trip survey conducted
by the government. The centroid was set so that the centroid would have the highest result
from the as-built simulation. The OD settings during the simulation were set using the
Parson trip survey. The route selection model used was the model provided by the traffic
flow simulation system (Aimsun). Using Aimsun, by preparing an OD table, the vehicle
distribution on the OD base can be performed; therefore, we set each centroid to match
the zone number of the PT survey and prepared the OD table. Next, we used the 2010
traffic census for Suzu City. A traffic census is a national statistical survey that is conducted
to understand the roads and traffic in a region, and it aims to obtain basic information
on road plans, construction, and management. The main data survey the cross-sectional
traffic volume over a certain section of the road. Because the simulation area of Suzu City is
relatively small, and the traffic volume distribution in the PT survey zone was complex, we
used the traffic census in this study. For the transportation network, we prepared the roads
at the prefectural level (highways and main thoroughfares that connect important areas
within the prefecture). It is currently difficult to traverse narrow streets with the present
autonomous vehicle technology, but because the simulation is in the OD base and the target
vehicle may pass through narrow streets, we omitted such narrow streets for convenience.
The simulation was performed for the one-hour period from 8 to 9 a.m., which is when
congestion is likely to occur. The time of the simulations in this study was aligned with the
time of the Parson trip survey. In this study, the results of the Parson trip survey were used
to reproduce the current state of traffic volumes on the simulation and the survey results.
As a result, the simulation results were 95% accurate in matching the current traffic volume
with the simulated traffic volume. These conditions were evaluated by mixing autonomous
vehicles. This is to minimize the impact of passing traffic that cannot be accommodated by
the PT survey OD traffic volume, while observing the change in congestion. The number of
vehicles was 10,274 in Kanazawa City and 1025 in Suzu City.

3.4. Driving Behavior Algorithm of Autonomous Vehicle

In Aimsun, we used the following Gipps formula for the vehicle behavioral algorithm,
which is shown below [35–42]:

3.4.1. Car-Following Theory

Va(n, t + T) = V(n, t) + 2.5a(n)T(1 − V(n, t)
Ve(n)

√
0.025 +

V(n, t)
Ve(n)

) (1)

Va: Speed of vehicle a;
V(n, t): Speed of vehicle n at time t;
Ve(n): Expected velocity of vehicle n;
a(n): Maximum acceleration of vehicle n;
T: Reaction speed of the driver.

Vb(n, t + T) = d(n) +

√√√√d(n)2T2 − d(n)

[
2{x(n − 1, t)− s(s − 1)− x(n, t)} − V(n, t)T − V(n, t)2

d′(n − 1)

]
(2)
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Vb: Speed of vehicle b;
d(n): Maximum deceleration of vehicle n;
x(n, t): Position of vehicle n at time t;
s(n − 1): Length of vehicle n − 1;
d′(n − 1): Expected deceleration of vehicle n − 1.
We compared the values obtained using the above two equations, and we used the

smaller one. The velocity of the autonomous vehicle depends on the distance to the vehicle
driving in front.

3.4.2. Vehicle Interval

The formula used to determine the vehicle spacing in Aimsun is shown below.
Equation (3) shows the interval between vehicles. Thus, V1 represents the speed of the car
in front; V2 represents the speed of the car behind.

VehicleInterval =
V2

2
2b

−
V2

1
2b

+ 1.5V2RTL (3)

b: deceleration;
RT: reaction speed;
L: vehicle length + minimum distance from vehicle in front when the car is at rest.
We determined the vehicle interval for autonomous vehicle (Figure 4) in this study is

determined with the following equation:

VehicleInterval = 5 + Va × TTC (4)
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Va: velocity of vehicle driving in front;
TTC (time to collision): distance from the vehicle in front divided by the relative

velocity.
For the autonomous vehicle in this study, TTC is assumed to be 2 s.

3.4.3. Deceleration Starting Distance

If the distance from the deceleration starting point to the stopping point is l (Figure 5),
this is calculated using the following equation, and the vehicle will begin to decelerate so
that it can come to a stop within the predetermined deceleration.
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3.4.4. Determining When to Turn Right or Left

The vehicle begins to turn right or left when the following conditions are met. In this
study, the setting for determination of left turns and right turns was based on observations
of traffic flow (Figure 6).
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1⃝ At least 1.5 s has elapsed since coming to a stop as shown in Figure 6i.
2⃝ If there is no oncoming vehicle on the driving route within 5 s, the vehicle will start as

shown in Figure 6ii.

3.4.5. Reaction Time

In this study, we set the reaction time based on the environment surrounding the
driver in the simulation system. General vehicles have a reaction time of 0.8 s during
normal operation, 1.2 s when stopping, and 1.6 s to the vehicle in front. However, vehicles
driven by the elderly have reaction times of 1.6 s during normal operation, 2.4 s when
stopping, and 3.2 s to the vehicle in front (modeling reaction time within a traffic simulation
model).

4. Results and Discussion

In this study, Suzu City and Kanazawa City were selected for the following reasons.
Presently, the driving experiments of the autonomous vehicle owned by Kanazawa Uni-
versity are being conducted in Suzu City, and social implementation is therefore expected
to be relatively fast. We aim to determine whether there is a difference in the impact on
traffic flow between a rural area such as Suzu City and an urban area such as Kanazawa
City. The present simulation gradually increases the mixing rate of autonomous vehicles. It
is assumed that autonomous vehicles have become commercially available to the general
public, and an increase in the number of such vehicles is captured over time. As it increases,
the changes in the traffic congestion are observed, and we observe whether the impact
of the autonomous vehicle is positive or negative, using the delay time as a parameter.
This delay time is the difference between the expected time of arrival for the autonomous
vehicle and the actual arrival time for each 1 km of roadway. By comparing these value, we
determine the degree of congestion. On the graph, the vertical axis shows the delay time,
while the horizontal axis shows the mixing rate. We also compared the delay time for the
operations of general vehicles and autonomous vehicles to observe the potential trends in
changes in delay time owing to vehicle characteristics.

4.1. Simulation Results for Rural Areas

First, we considered the lack of public transportation and high ratio of the elderly
population in Suzu City. We prepared a vehicle with a reaction time that is slower than that
of a general vehicle and used a mixing rate of 45% based on the actual ratio of seniors in
Suzu City. The mixing rates of the autonomous vehicle in the simulation were 10%, 20%,
30%, 45%, 50%, 60%, 70%, 80%, 90%, and 100%. Each mixing rate was verified three times.
In this study, we used the mean delay time obtained from each of the three verifications
(three patterns of delay for each mixing rate) as the delay time for each mixing rate. Figure 7
shows simulation results obtained for Suzu City. The blue bars in Figure 7 represent the
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delay time for all vehicles including both autonomous and general vehicles. Red bars
represent the delay time for only autonomous vehicles for each mixing rate. Grey bars
represent the delay time for only general vehicles for each mixing rate. The standard
deviation for each delay time obtained from three delay patterns is also shown in Figure 7.
The reason for which there is no 0% mixing rate is because the delay time is calculated with
a standard value, and in the present study, the standard is when there are no autonomous
vehicles, i.e., a 0% mixing rate. This study used representative values from a person-trip
survey conducted by the local government, and although the results are of a general nature,
they show the traffic situation in a rural area (Suzu City), especially in a situation where
the traffic density is extremely low.
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Figure 7. Simulation results for Suzu City (rural area in Ishikawa prefecture).

Furthermore, with a mixing rate of 100%, there is no delay time for general vehicles.
This is because when the mixing rate of autonomous vehicles is 100%, there are no general
vehicles, and thus there would be no delay.

Figure 7 shows that the delay time for all vehicles slightly increases as the mixing rate
of autonomous vehicles increased from 10 to 45%. When the mixing rate increased from 45
to 50%, the delay time for all vehicles decreased notably, and when the mixing rate was 50
to 100%, it remained constant. Next, we compare the 10% and 45% mixing rates, between
which the delay time increased. The delay time at the mixing rate of 45% was 1.10 times
that at the mixing rate of 10%. The delay time dropped by 0.89 from the mixing rate of 45%
to 50%. The delay time of the autonomous vehicle for each mixing rate was different from
the delay time of all vehicles when the mixing rate increased from 10 to 45% and remained
mostly the same. When the mixing rate increased from 45 to 50%, the delay time suddenly
dropped and plateaued.

The delay time of general vehicles for each mixing rate increased at a mixing rate of
10 to 45% and then suddenly dropped at 45–50%, then remained constant, which was the
same trend observed for the delay time of all vehicles.

4.2. Simulation Results for Urban Areas

Next, we performed the simulation for Kanazawa City, and verifications were carried
out in the same manner as in Suzu City. Figure 8 shows the simulation results for Kanazawa
City. The trend details for Figure 8 are the same as those of Figure 7. Figure 8 shows that
the delay time for all vehicles fluctuated between mixing rates of 10 to 60%. The standard
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deviation also showed variations. When the mixing rate increased from 60 to 70%, the
delay time for all vehicles decreased, then remained constant without large variation. We
focused on the mixing rate of 60 and 70% when the delay time decreased and stabilized
and found that the delay time changed by a factor of 0.90 from the mixing rate of 60% to
70%. The delay time for the autonomous vehicle for each mixing rate had the same trend
as that of all vehicles. Similar to the delay time for all vehicles, as the mixing rate increased
from 60% to 70%, the delay time decreased, and then remained constant. By comparing
the mixing rates of 60% and 70%, the delay time decreased by a factor of 0.89. The delay
time for general vehicles also fluctuated between the mixing rates of 10% and 60%, and it
showed a minor decrease from 60% to 70%, after which it stabilized. Between the mixing
rates of 60% and 70% where the delay time decreased and stabilized, compared with the
other two patterns, the delay time decreased the least by 0.92. When the mixing rate of
automated vehicles is low, the delay time tends to be large because of the negative impact
on traffic flow. On the other hand, when the mixing rate of automated vehicles is high, the
delay time tends to be smaller than when the mixing rate is low. Based on these results,
there is concern that the delay time will be significantly larger than the current situation
unless the mixing rate is controlled to be 70% or higher when taking measures to introduce
automated vehicles.
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5. Conclusions

In this study, we used a traffic flow simulation system, and we evaluated the impact
on the traffic flow using the delay time between the OD when an autonomous vehicle is
socially implemented. We evaluated the effects on the traffic flow in an urban area that has
been motorized and in an aging rural area. For both areas, with the implementation of the
autonomous vehicle, decreased congestion, decreased traffic accidents, and the improved
reliability of travel time are expected. However, as the population of rural areas is aging
and these regions becoming more sparsely populated, its implementation may be able to
solve many issues such as mobility for seniors.

We examined an autonomous vehicle that is being developed by our university. The
autonomous vehicle that was employed is equipped with various sensors and is able to
drive on public roads with complete autonomy. In order to evaluate the impact on the
traffic flow, we developed an algorithm to incorporate its driving behavior into a traffic flow
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simulation system. This algorithm consists of car-following, vehicle intervals, principle
start position, right/left turn decision, and reaction time to environmental changes.

We implemented into the traffic flow simulation system the autonomous vehicle
algorithm that we developed in this study, and we modeled an environment that allows for
simulations with autonomous vehicles. In a traffic flow simulation system, based on the
results of PT surveys and transportation census, the OD traffic volume was determined,
and a normal traffic environment was modeled. Next, the autonomous vehicle was driven
and its impact on traffic flow was evaluated. In this study, to evaluate the impact of the
autonomous vehicle on traffic flow, we used the delay time between OD as an indicator. We
increased the mixing rate of autonomous vehicles in the traffic environment in increments
of 10%, and we obtained the delay time between the OD.

When we compared the results for Kanazawa City and Suzu City, the delay time for
all vehicles was found to be smaller in Kanazawa City. The variations in the delay time
due to the increasing mixing rate were more notable in Kanazawa City, while it was more
stable in Suzu City. This was likely because of differences in the road characteristics of
both cities, such as the number of intersections and traffic volume. During the initial stages
of the vehicles’ implementation in the society, traffic congestion may increase. However,
when the ratio exceeds a certain value, congestion is expected to decrease and the traffic
environment will improve.

As such, when autonomous vehicles are mixed with general vehicular traffic, there
is some impact on traffic flow. It has been shown that the impact of autonomous vehicles
on traffic flow depends greatly on the mixing rate and traffic environment, such as urban
or rural areas. Because the mixing rate of autonomous vehicles impacts the traffic flow
when socially implementing autonomous vehicles, appropriate distribution scenarios and
distribution areas are necessary.

In this study, we recreated the implementation of a specific autonomous vehicle in a
traffic flow simulation system, and we evaluated the impact on traffic flow using the delay
time between OD, which is an evaluation indicator. To evaluate in more detail the impact
of the social implementation of autonomous vehicles on traffic flow, the driving behaviors
of all autonomous vehicles being developed worldwide need to be recreated in the traffic
flow simulation system to consider the variety of autonomous vehicles. Furthermore, in
this study, we recreated the traffic environments of an urban area and a rural area in the
traffic flow simulation, but the system only considers vehicles. Therefore, the right- or
left-turning behaviors of autonomous vehicles in the traffic flow simulation system were
not complex. However, considering non-vehicular traffic, such as pedestrians and cyclists,
the autonomous vehicle will need to make many decisions before turning right or left,
making such decisions more complex. As a result, the delay time between the OD may
increase. In this study, we evaluated the impact of the social implementation of autonomous
vehicles on traffic flow using the delay time between OD. However, various other eval-
uation indicators need to be applied to evaluate the impact of social implementation of
autonomous vehicles on traffic flow. Therefore, we have added a note in the future issues
section of the manuscript that although this study uses only delay time as an evaluation
index, it is necessary to evaluate the impact on traffic flow using evaluation indexes other
than delay time in the future. In this study, the analysis was conducted during weekday
morning hours. However, it is necessary to target the traffic environment on weekends
and holidays, as well as the evening peak hours. In this study, based on the results of
a person-trip study conducted by the government, we evaluated the basic impact of the
mixing of automated vehicles into the normal traffic flow by using the mixing rate and
the delay time of automated vehicles. However, the results of this study were based on
limited parameter settings, so future sensitivity analyses should be conducted by varying
the various parameters used in this study to evaluate the impact of automated vehicles
when they are mixed into various traffic environments from a multifaceted perspective.
In the future, it will be necessary to study the method of dispatching automated vehicles,
the areas where they will be used, traffic flow management and planning, etc., in order to
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make them practical. Due to the limitation of the simulation system, the evaluation in this
study was based on the delay time. Simulation experiments under various conditions are
necessary to generalize the results of this study.
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