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Abstract: Machine safety is not only a prerequisite for successful production but also the foundation
for the sustainability and growth of any manufacturing organization. The latest approaches in this
rapidly developing field integrate effective risk management tools and strategies into occupational
health and safety (OHS) management systems. The study, through a real example from practice,
describes the use of the analytic hierarchy process (AHP) method for machine safety improvement,
considering the possible types of losses. Classification and Regression Tree Analysis (CART) was
applied to assess the efficiency, cost-effectiveness, and, therefore, the overall sustainability level of the
relevant safety measures. These were proposed risk reduction measures that typically raised uncer-
tainty among managers regarding the estimation of cost-effectiveness. The advantage of the applica-
tion decision tree approach is the possibility to identify and establish relatively homogeneous groups
of undesirable events and their impact on the organization’s objectives. A comprehensive model has
been developed to support management decision making in manufacturing organizations towards
implementing and improving safety measures in line with manufacturing sustainability goals.

Keywords: machinery safety; multicriteria decision making; AHP; CART; sustainability; machinery
safety decision making

1. Introduction

Safety-related data (SRD) are essential to maximize the effectiveness of the risk as-
sessment process. SRD need to be as accurate and detailed as possible at all stages of
the system life cycle; however, at the design stage, they are the basis for achieving the
required level of occupational health and safety (OHS). According to Badri et al. [1], to
improve the process of safety decision making (SDM) to achieve a safety level, SRD can
be considered as the most valuable assets for all safety professionals. The combination of
historical and current data strengthens real-time decision making during the manufacturing
process, positively affecting industrial systems’ performance, safety, reliability, and the
sustainability of industrial systems [2].

In the field of machinery safety, it is crucial to identify all hazards associated with
machinery by collecting accurate and relevant safety data. Accurate machine safety-related
data (MSRD) analysis is needed to use machine safety knowledge and to make more
realistic risk assessments. However, the lack of appropriate communication between
machine manufacturers and end users further magnifies the current problem and hinders
sufficient transfer of MSRD and feedback from end-user experience [3].

Taking care of employee safety and minimizing the impact of hazards when in contact
with machinery is a multi-dimensional prerequisite for any sustainable production. In
addition to the technical, economic, health, social, motivational, or legislative aspects, it
also has a highly ethical dimension. According to Lee et al. [4], most organizations strive
for sustainability by providing workplace conditions that contribute to employee health
and safety. However, choosing effective and efficient measures to proactively reduce risks
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is a challenging process related to experience and the application of appropriate procedures
and methods supporting correct decision making. Therefore, developing a workplace
safety culture is a competitive factor for sustainable companies.

2. Literature

Managers at all levels of management are responsible not only for their subordinates
but also for managing safety within their scope of responsibility [5–7]. Any misconduct
by a manager is usually perceived with great sensitivity by the injured person, as well
as by the wider community. On the other hand, all relevant measures to improve OHS
require incurring considerable costs. It is often economically prohibitive to carry out all
remedial measures at once. From the organization’s perspective, it should be a process
that ensures the cost acceptability of fulfilling the requirement to maintain and improve
the safety of machinery. However, this is no cheap proposition. Particularly in larger
manufacturing operations, which contain a number of machines at different levels of wear
and tear (resulting from lifetime use) operating within several production lines, usually on a
single shop floor, the sustainability of their safety is almost always a serious economic issue.

In manufacturing, machinery creates a dynamic environment, particularly in meeting
Industry 4.0 requirements [8], where quality, accuracy, and efficiency are paramount.
However, this also poses specific risks for the operators, as well as for other people in the
vicinity of the machine. Ensuring safety in manufacturing is not only a legal requirement [9],
but also a moral obligation to protect employees and sustain operations. Leveson [10]
defines “safety as the absence of accidents, where an accident is defined as an event
involving unplanned and unacceptable loss”. Safety is also associated with low and
acceptable risk [11–13].

Nowadays, the concept of any development is associated with the concept of sus-
tainability. Some authors point out [14,15] that OHS, injury, and illness prevention are
issues that may raise concerns in terms of sustainability. Boileau [14] highlights three areas
to consider in sustainable safety: integrating safety requirements at the system design
stage, incorporating OHS into strategic plans, and implementing a safety culture into the
organization. According to Hogevold et al. [16] and Dyllick and Muff [17], a sustainable
business is a business that is economically, socially, and environmentally responsible, with-
out negative impacts on all these areas. Currently, the direction of the business, from small
to large organizations, is contributing to a more sustainable future.

However, if organizations fail to procure and maintain machine safety, provide ad-
equate Personal Protective Equipment (PPE), ensure proper training for employees, or
implement a safety culture, a variety of undesirable events that threaten the sustainability of
the business are likely to occur. If an undesirable event occurs due to insufficient approaches
to OHS management, the manufacturing organization may incur various costs. Many of
these costs can be direct and immediate, but often more significant are the so-called indirect
costs [18]. Indirect (“hidden” or “invisible”) costs of an undesirable event can include a
negative impact on the employer’s reputation, lost time due to injury investigation, cleanup
of the incident site, and reduced productivity and morale among employees [19].

Bearing the initial costs of implementing and complying with a comprehensive occupa-
tional health and safety program (e.g., with the support of an ISO 45001 OHS management
system [20,21]), complying with regulations, and providing employees with proper train-
ing and PPE is much more likely to save more costs than the costs associated with the
occurrence of an undesirable event [21].

However, safety in manufacturing is not just about compliance; it is about promoting
a safety culture, minimizing risks, and optimizing productivity. It is a multifaceted effort
that requires a holistic approach [22]. By implementing strict safety procedures, investing
in appropriate machinery safety devices, and promoting a safety culture, machinery can
significantly reduce the number of undesirable events in the workplace, protect employ-
ees, and ensure business continuity. Safety can be understood in a generic sense as a
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fundamental pillar of any manufacturing organization that adds value to the business’s
sustainability [23].

A sustainable approach to machine operator safety in an organization involves the
integration of environmental, social, and economic aspects into OHS management to not
only protect the health and safety of workers but also to ensure the long-term sustainability
of the business and to minimize environmental impact. This approach requires compre-
hensive planning, implementation, monitoring, and continuous improvement of safety
procedures and systems. The perception of safety as the opposite of risk, i.e., the lower the
risk, the higher the safety, and vice versa, has been challenged by several authors. Already,
Möller et al. [24] concluded that it is necessary to go beyond thinking in this relationship of
“safety as an antonym of risk”. A different approach to risk is taken by Aven and Renn [25],
who view it as uncertainty as well as with respect to its impact on activities. The health
and safety of machine operators should be seen as part of a broader corporate sustainabil-
ity strategy (Corporate Social Responsibility, CSR). This approach involves considering
safety measures in the context of environmental responsibility (e.g., minimizing waste and
emissions, efficient use of energy, etc.) and social responsibility (e.g., ensuring fair working
conditions, promoting the health and well-being of employees) [26,27].

Integrating safety objectives into the overall sustainability goals of the organization
allows for better coordination and more efficient use of resources. Sustainable safety
emphasizes preventive measures that focus on preventing accidents and injuries before
they occur. This includes comprehensive risk identification, analysis, and assessment, as
well as the development and implementation of innovative technological solutions and
safety systems. A preventive approach also encourages investment in the development and
training of employees to be better prepared to identify and respond correctly to potential
risk situations in machinery. The safety of machinery operators in an organization is a
complex area that requires a multidisciplinary approach involving engineering, ergonomics,
occupational psychology, and legislation.

The aim of this research was (1) to apply risk assessment procedures based on the
analysis of available data on the status of 124 devices in the manufacturing organization
of machinery safety-related data; (2) to support the estimation of the cost-effectiveness
of selected measures to reduce unacceptable risks using the AHP method; and (3) to use
the CART technique to support the decision-making process (machinery safety decision
making, MSDM) to assess the effectiveness and efficiency of the proposed measures.

3. Material and Methods

The research was conducted at an organization that is a global manufacturer of health-
care products. It focuses on the manufacture of market-leading medical devices. These
devices are in the areas of advanced wound care, ostomy care, continence and critical care,
and infusion devices.

A key step to ensure safety when working with machinery is to identify the potential
risk scenarios associated with its operation (hazard → hazardous situation/event → harm).
This process, MSRD, involves analyzing all data on the machine’s operation, including
possible failures, accidents, or hazardous situations that could cause an accident. After
identification of the hazards, a risk assessment must be carried out, i.e., to determine the
probability of occurrence of harm related to the hazardous situation (P) and severity of
harm (S). These estimates are usually represented by a numerical scale corresponding to a
verbal expression.

Note: To avoid uncertainty and complexity in data collection, the parameter probability
of a hazardous situation (P) has been defined as the overall exposure probability of persons
to a hazard during a given machine operation, combined with the probability of a hazardous
event occurrence, which in the description of the accident scenario is related, e.g., to
unintentional human error or machine failure resulting in harm.

Due to the variety of machines in operation at the company and their life cycle (some
machines were more than 20 years old), a risk assessment methodology (ISO 12100 [28],
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see Table 1) was designed by the research team and agreed upon by the OHS management
of the organization. The subjective specific score value for the assessed risk parameters
was estimated based on the available safety information for individual machines and
consultations with safety engineers, operators, and maintenance staff.

Table 1. Risk scoring matrix.

Severity of Harm (S )

R = P ∗ S Negligible
1

Minor
2

Moderate
3

Major
4

Severe
5

Pr
ob

ab
ili

ty
of

oc
cu

rr
en

ce
of

ha
rm

(P
)

Very unlikely
(>3 years)

1
1 2 3 4 5

Unlikely
(1–3 years)

2
2 4 6 8 10

Possible
(6 months to a year)

3
3 6 9 12 15

Likely
(1 month to six months)

4
4 8 12 16 20

Very likely
(<1 month)

5
5 10 15 20 25

Risk Assessment—Risk Category

LOW
Score: 1–3

Low or acceptable risk. Proceed with due care and attention, following instructions
and procedures.

MEDIUM
Score: 4–7

Moderate or tolerable risk. Task must be carried out according to training and in accordance
with safety procedures. Any appropriate control measures must be in place before the

task/activity commences.

HIGH
Score: 8–14

High or undesirable risk. Management consideration and authorization is required for its
tolerance. Where possible, the task should be reassessed to take account of the associated

risks and additional control measures put in place to reduce the risk (if feasible).

STOP
Score: 15–20

Very high or unacceptable risk. This role must not be continued. Further action needs to be
reviewed or implemented immediately. These measures should be reconsidered.

STOP—STOP
Score: 25

A strongly unacceptable risk. Operation must be stopped immediately. Redesign of the
machine must be considered.

Risk (R) is usually expressed [28] as a combination of the probability of occurrence of
harm related to the hazardous situation (P) and the severity of that harm (S):

R = P ∗ S (1)

Based on the risk assessment using the risk matrix, it was possible to choose measures
to reduce the risk (see Table 1).

Although the organization had previously written operational documentation in
accordance with the current legislation on machinery (Directive 2006/42/EC [29]), due
to the age of the machinery and the statistics of OHS accidents in the organization, the
management was not satisfied with its relevance. A new “Machinery Risk Assessment”
document was prepared by experts for each machine, which included an analysis and risk
assessment of the machinery based on the OHS methodology approved by the management.
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4. Results

An example of machinery risk analysis is selected in Table 2. Based on the results of the
MSRD from all 124 machines, a total of 5260 hazardous situations (HSs) and their resulting
risks were identified. To assess the effectiveness and efficiency of the measures, the expert
team, in cooperation with OHS management, focused on those risks whose value was higher
than 9 and less than 20. Values of R that were less than 9 and greater than 20 were not
considered. Lines with a value of less than 9 represented a lower priority risk of harm from
machinery, and lines with a value of more than 20 represented the highest non-comparable
priority, the so-called STOP-STOP category (Table 1), meaning immediate stoppage of machine
operation (a highly unacceptable risk). The result was a database containing 489 pieces of data
reaching the so-called critical risks, for which it was important to prioritize their reduction
or elimination by adding additional measures. From this database, 49 machines (see Table 3)
with the most frequently recurring types of hazardous situations (HS) were selected by the
experts. These were type-non-homogeneous, variously worn-out machines, some of which
are part of different production lines. They are arranged in the production halls in such a
way that their individual hazardous zones overlap with each other. Therefore, the analysis
included an assessment of the safety of the machinery in relation to both its layout and its
interconnection within the production lines. Despite the heterogeneity mentioned above,
these are machines that process the same material and contain similar components, and their
operation is also very similar. Some types of hazardous situations were often repeated, and
others were identical in content, just described differently.

Table 2. Machinery risk assessment—example.
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Kinetic energy
(occurrence in the zone of product

movement on the machine
conveyor, movement of packaging

machine parts)

Ejection, crushing 4 4 16 STOP

Compressed air
(activity in the vicinity of
compressed air pipelines)

Ejection, crushing,
abrasion 3 4 12 H

El
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Electric arc
(arc flash zone) Burn, death 3 5 15 STOP

Inappropriate contact
(contact with live parts of

electrical wiring)
Burn, death 2 5 10 H

R
ad
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ha
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Optical radiation
(exposure to optical radiation

when checking product labeling)

Discomfort, fatigue,
damage to eyes 3 4 12 H

High-frequency el. magnetic
radiation (activity in the zone of

wireless transmission of
production data)

Discomfort, fatigue
(in the case of a

pacemaker, even
death)

3 4 12 H

M
at

er
ia

la
nd

su
bs

ta
nc

es

Air pollution
(environmental pollution by

dusty waste)

Over sensitization,
infection 3 4 12 H

Combustible materials
(combustible dust in the

workplace)

Over sensitization 3 5 15 STOP

fire, explosion 3 5 15 STOP
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Table 3. Types of analyzed machinery.

Machinery SUM

APS—Invisiclose pouch line 7

FUT—Bag production machine 2

Ostomy pouch assembly machine 1

Cutter 2

Folding machine 2

Automatic labeling system 10

Extruder 21

Material handling system 1

Mixer 1

Cartoon maker 2
Note: SUM—the number of machines of a given type.

This allowed experts to introduce a standard designation for the identified hazardous
situations (HSs). A total of 10 main HSi types (i = 1, . . . , 10) could be obtained from the
489 HSs after standardization, which were recurrent in the machine analysis. Table 4 shows
the HSi types with their number of occurrences O on the machines.

Table 4. Number of occurrences of standardized HS on machinery.

HSi Hazardous Situation (HS) Number of HS
Occurrences (O)

HS1 Air pollution 41
HS2 Combustible materials 74
HS3 Compressed air 92
HS4 Electric arc 76
HS5 Falling objects (e.g., tools and materials) 52
HS6 High-frequency electromagnetic radiation 9
HS7 Inappropriate contact 87
HS8 Instability (loose parts) 39
HS9 Kinetic energy 8

HS10 Optical radiation 15
Total sum 489

The possibility of avoidance of harm or impending HS is a very important parameter
for risk management by appropriate measures. The expert group proposed to comple-
ment relationship (1) with the parameter PND—probability of non-detection of HS, which
considers whether the undesirable situation (HS) can be prevented by preventive mea-
sures or only after its occurrence, so-called corrective measures. The experts proposed
extending the risk estimation with one column labeled “Probability of non-detection of
HS” (PND), inspired by the approach applied in Failure Modes, Effects, and Criticality
Analysis (FMECA) [30,31]. The scores of this column are described in Table 5, applying the
Braglia [32] approach. In collaboration with the OHS organization experts, the relation for
risk estimation was modified (see Equation (2)) and then applied to all 489 pieces of data,
see Table 6.
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Table 5. Quantified score values of PND.

Identifiable
by Human Senses Automatic Detection

Detection after
HS Occurrence

(Corrective Measures)

Detection before
HS Occurrence

(Preventive Measures)
Score
PND

Yes Partially No Directly Indirectly No Yes No Yes No

o 1
o o 1

o o o 2
o o o o 2
o o o o 3

o o o o 3
o o o o 4

o o o o 4
o o o o 4
o o o o 5
o o o o 5
o o o o 5
o o o o 5

Note: HS—hazardous situations; PND—probability of non-detection HS/E, o—indication of the option.

Table 6. Main HS and assignment of parameters to determine their effects (E).

La
be

lo
f

H
S

N
um

be
r

of
O

Process Type of
Hazard

Description of
HS Potential Harm P S PND RM

La
be

lo
f

E

C
A

U
SE

HS1 41 Operation Material/
substance Air pollution Over sensitization,

infection 3 4 3 36 E1

EF
FE

C
T

HS2

15
Maintenance

Material/
substance

Combustible
materials

Local fire 4 5 4 80 E2.1
4 Explosion 4 5 5 100 E2.2
12 Operation Over sensitization 3 5 4 60 E2.3
43 fire, explosion 2 5 5 50 E2.4

HS3 92 Operation Mechanical Compressed air Ejection, crushing,
abrasion 3 4 3 36 E3

HS4
31 Maintenance

Electrical Electric arc
Burn, death 3 5 5 75 E4.1

45 operation Burn, death 2 5 4 40 E4.2

HS5 52 Maintenance Mechanical
Falling objects
(e.g., tools and

materials)

Crushing,
contusion, throwing 4 4 4 64 E5

HS6 9 Operation Radiation
High-frequency
electromagnetic

radiation

Discomfort, fatigue
(in the case of a

pacemaker, even
death)

3 4 5 60 E6

HS7
32 Operation Electrical Inappropriate

contact
Burn, death 2 5 3 30 E7.1

51 Maintenance Mechanical impact, crushing,
ejection 4 3 2 24 E7.2

HS8 39 Maintenance Mechanical Instability
(loose parts) Impact, crushing 5 3 4 60 E8

HS9 8 Operation Mechanical Kinetic energy Ejection, crushing 4 4 3 48 E9

HS10 15 Operation Radiation Optical
radiation

discomfort, fatigue,
damage to eyes 3 4 5 60 E10

Total 489 - - - - - - - 823 -

Note: HS—hazardous situations; O—number of HS occurrences; P—probability of HS; S—severity of the harm;
PND—probability of non-detection of HS; RM—risk of machinery; E—effects.
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Table 6 contains the assessment of RM (machine risk) based on two parameters ob-
tained from the performed risk analysis and the third parameter, PND. These were added
based on Table 5. The specific quantification RM is given by the relation:

RM = P ∗ S ∗ PND (2)

This is a similar relationship to the one used in the FMECA method [30,31], with
the only difference being that the parameters mentioned above are estimated using a
five-step scale, whereas FMECA uses standard 10-step scales. The individual rows of
Table 4 contain the above-mentioned main HSs obtained from the safety analyses of the
individual machines. Numerical values of the parameters P, S, and PND represent the
maximum of the values of similar parameters from the risk assessment analysis of the
machinery for a particular combination of HSs. Each risk presents the possibility of loss
for the organization [19], the impact of which can be of different natures, e.g., loss of
customer, penalties, loss of reputation, etc. For this reason, Table 6 has been extended with
a column allowing for the assignment of a parameter to determine the significance value
of negative impacts (E) from the point of view of the organization’s management when a
given hazardous situation occurs (HS) in the performance of the activity (maintenance or
operation) and severity of harm.

4.1. Estimation of Expected Cost Using the AHP Method

Estimation of the expected costs (EC) caused by the severity of harm (e.g., direct and
indirect costs associated with injury caused by machine hazardous situation) generally
cannot be estimated with sufficient precision [33]. On the other hand, the abovementioned
costs are an important indicator of the effectiveness of measures that reduce or even
eliminate the assessed risks. This problem can be solved, e.g., by using the AHP method.
In this method, it is not necessary to accurately estimate the amount of expected costs for a
specific criterion. It is sufficient if a pairwise comparison of the mentioned criteria can be
performed [34].

AHP is a tool that can be used in decision making based on multiple criteria, where the
level of information about criteria preferences is based on pairwise comparisons [35,36]. It is
a powerful and flexible tool for complex problems where both qualitative and quantitative
aspects need to be considered. It allows analysts to organize the critical aspects of a problem
into a hierarchical structure like a family tree. By reducing complex decisions to a series of
simple comparisons and rankings and then synthesizing the results, it supports coming to
the best decision but also provides a clear reason for the decisions made.

Once the AHP hierarchy was defined (see Figure 1), it was possible to prioritize among
the elements within each level of the hierarchy of the researched model. As mentioned
above, both qualitative and quantitative criteria can be compared using informal judgments
to derive priorities.

Part (a) of Table 7 presents a pairwise comparison matrix of expected costs (EC) for all
combinations of hazardous situation/effect (HS/E) of the analyzed HSs and the severity of
their E, described in Table 6. For example, the second row of Table 7 indicates that E2.1 is
assigned by the evaluation team as a priority that is five times higher than E1, the same
priority as E2.2, four times higher than E2.3, E2.4, E3, and E4.1, eight times higher than E4.2,
and so on. In terms of the AHP’s evaluation concept of pairwise comparisons, the second
column, also labeled E2.1 in the table, represents the inverted values of the abovementioned
priorities in the same order.

Using the AHP method, the calculated priorities of each combination are expressed as
the expected cost (EC). These form part (b) of Table 7.
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Figure 1. Model of a three-level hierarchical framework for machine risk management (source:
own design).

Table 7. Pairwise combination comparison matrix E for estimating EC.

E1 E2.1 E2.2 E2.3 E2.4 E3 E4.1 E4.2 E5 E6 E7.1 E7.2 E8 E9 E10 Local
Priority EC

E1 - 0.2 0.2 0.2 0.2 0.25 0.33 2.00 0.25 1 1 2 0.33 0.25 5 0.027
E2.1 5 - 1 4 4 4 4 8 2 4 5 2 6 2 5 0.157
E2.2 5 1 - 4 4 4 4 8 2 4 5 2 6 2 5 0.157
E2.3 5 0.25 0.25 - 1 2 1 4 0.33 0.5 4 3 2 2 3 0.069
E2.4 5 0.25 0.25 1 - 2 1 4 0.33 0.5 4 3 2 2 3 0.069
E3 4 0.25 0.25 0.5 0.5 - 2 6 0.33 4 0.5 5 1 0.33 3 0.056

E4.1 3 0.25 0.25 1 1 0.5 - 6 0.33 4 2 0.25 1 0.33 2 0.049
E4.2 0.5 0.13 0.13 0.25 0.25 0.17 0.17 - 0.13 0.5 0.2 1 0.2 0.13 0.5 0.013
E5 4 0.5 0.5 3 3 3 3 8 - 6 3 6 3 1 4 0.115
E6 2 0.25 0.25 2 2 0.25 0.25 2 0.17 - 0.33 2 0.33 0.17 3 0.039

E7.1 2 0.2 0.2 0.25 0.25 2 0.5 5 0.33 3 - 5 1 0.33 2 0.046
E7.2 0.5 0.5 0.5 0.33 0.33 0.2 4 1 0.17 0.5 0.2 - 0.2 0.13 1 0.033
E8 3 0.17 0.17 0.5 0.5 1 1 5 0.33 3 1 5 - 0.33 4 0.049
E9 4 0.5 0.5 0.5 0.5 3 3 8 1 6 3 8 3 - 5 0.101
E10 0.2 0.2 0.2 0.33 0.33 0.33 0.5 2 0.25 0.33 0.5 1 0.25 0.2 - 0.020

(a) (b)

Note: E—effect; EC—expected cost. (a)—pairwise comparison matrix; (b)—priority vector.

These are the values obtained using the following steps [37]:

1. The calculation of the normalized comparison matrix was performed;
2. The average weights (priorities) for each element were determined;
3. The maximum eigenvalue was calculated (λmax);
4. Specific coherence indices (CI) and the coherence ratio (CR) were calculated to verify

the consistency of the comparison matrix.

The normalized matrix in Table 7 part (a) was used to determine the priorities of each
HS/E combination (priority vector). Since the normalized matrix is of order 15 × 15, the
Random Index (RI = 1.59) was used for the calculation:

• The priority vector for each HS/E combination (Table 7 part (b)) represents the priority
or weight of the relevant element compared to the other elements;

• The maximum eigenvalue represents the value λmax = 16, 886;
• The consistent index is equal to CI = 0.1347;
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• The coherence ratio is equal to CR = 0.0847.

Given that the coherence ratio (CR) is lower than 0.1, the comparison matrix can
be considered sufficiently consistent by AHP standards. This means that the identified
priorities can be considered reliable in the evaluation of alternatives.

In the next step of the analysis, pairwise comparisons were performed at the first level
of the hierarchy to obtain value judgments. Table 8 part (a) shows the matrix A obtained
from the pairwise comparison of criteria performed with the help of experts and OHS
management. The comparison was performed in terms of the five criteria described in the
previous section. The prioritization of the performance criteria was calculated similarly to
the previous case. The prioritization vector (Table 8 part (b)) was determined by calculating
the normalized components of the right eigenvector of the corresponding matrix.

Table 8. Variant A—pairwise comparison of criteria at the first level of the AHP hierarchy.

Criteria P PND S EC O Priority

P - 3 1 1 0.50 0.2084
PND 0.33 - 0.50 0.33 0.50 0.0889

S 1 2 - 0.50 1 0.1802
EC 1 3 2 - 2 0.3048
O 2 2 1 0.50 - 0.2177

(a) (b)
Note: P—probability of HS; PND—probability of non-detection of HS; S—severity of harm; EC—expected cost;
O—number of HS occurrences. (a)—matrix of pairwise comparison of the criteria; (b)—prioritization vector.

The values in the Table 8 represent pairwise comparison weights, indicating how one
criterion was evaluated against another. On the diagonal, the default values are 1, because
each criterion is equally important in comparison to itself.

Similar to the first set, the procedure for calculating the priorities and consistency of
this AHP matrix was as follows:

1. The diagonal was filled with units, and the values were mirrored in the lower half of
the matrix to the upper half to make it symmetrical;

2. The matrix was normalized;
3. Average weights (priorities) for each criterion were calculated;
4. The consistency of the matrix was verified by calculating the consistency ratio (CR).

In the calculation described above, it was calculated:

• The maximum eigenvector is λmax = 5.1835;
• Consistent index is equal to CI = 0.0459;
• The coherence ratio is equal to CR = 0.0409.

The coherence ratio (CR) is again lower than 0.1, so the comparison matrix is consid-
ered sufficiently consistent by AHP standards. In this case, the identified priorities can also
be considered reliable in the evaluation of alternatives.

Table 8 part (b) shows the priorities for each criterion, i.e., their degree of importance,
which are as follows:

• Probability of HS: P = 0.2084;
• Severity of harm: S = 0.1802;
• Number of HS occurrences: O = 0.2177;
• Probability of non-detection of HS: PND = 0.0889.
• The most important are the expected costs: EC = 0.3048.

The value of the inconsistency ratio is equal to 0.04 < 0.1, i.e., it is acceptable. This
variant of pairwise comparisons was referred to as Variant A.

After evaluating the different causes of undesirable events (HSs) with respect to the
criteria under consideration, all the evaluations must be aggregated in a hierarchical tree.
Table 9 shows the priority of the probability of occurrence of HSs with respect to the five
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criteria from a local and total perspective (i.e., criterion priority multiplied by local cause
priority (HS)). This means that in the next step, local and then total priorities were set for
all five risk management parameters. The three “quantifiable” criteria can be evaluated by
normalizing the quantitative assessments. These are the risk estimation parameters P, S,
and PND (see Equation (2)). The normalization is performed by using the sums of all their
scores (see the last row of Table 7). For example, for the parameter P, the value of Total = 49.
The local prior for the parameter P and the value of E1 were calculated as 3/49 = 0.061.
A similar calculation for all rows for the three risk parameters mentioned above RM was
followed. In the same way, the row values of the local priority were calculated for the
parameter O. The local priority for the value of E1 and parameter O were calculated as
41/489 = 0.084. The local priority for the parameter EC is represented by the priority vector
described in Table 8 part (b). In the following step, the total priorities for each parameter
were computed. The values from the priority vector described in section (b) of Table 8 were
used for the calculation. For example, for the value of E1, the total prior to the parameter P
was calculated as the product of the local priority times the corresponding priority from
the priority vector, namely, 0.061 ∗ 0.2084 = 0.013.

Table 9. Resulting prioritization for all parameters examined.

A
lt

er
na

ti
ve

Probability
of HS
(P )

0.2084 Severity
(S ) 0.1802

Probability of
Non-Detection

(PND)
0.0889

Expected
Cost
(EC)

0.3048 Occurrence
Count (O) 0.2177

Ev
al

ua
ti

on

P
Local

Priority
P

Total
Priority

P
S

Local
Priority

S

Total
Priority

S
PND

Local
Priority

PND

Total
Priority

PND

Local
Priority

EC

Total
priority

EC
O

Local
Priority

O

Total
Priority

O

E1 3 0.061 0.013 4 0.062 0.011 3 0.051 0.005 0.027 0.008 41 0.084 0.018 0.055
E2.1 4 0.082 0.017 5 0.077 0.014 4 0.068 0.006 0.157 0.047 15 0.031 0.007 0.091
E2.2 4 0.082 0.017 5 0.077 0.014 5 0.085 0.008 0.157 0.047 4 0.008 0.002 0.087
E2.3 3 0.061 0.013 5 0.077 0.014 4 0.068 0.006 0.069 0.021 12 0.025 0.005 0.059
E2.4 2 0.041 0.009 5 0.077 0.014 5 0.085 0.008 0.069 0.021 43 0.088 0.019 0.070
E3 3 0.061 0.013 4 0.062 0.011 3 0.051 0.005 0.056 0.017 92 0.188 0.041 0.086

E4.1 3 0.061 0.013 5 0.077 0.014 5 0.085 0.008 0.049 0.015 31 0.063 0.014 0.063
E4.2 2 0.041 0.009 5 0.077 0.014 4 0.068 0.006 0.013 0.004 45 0.092 0.020 0.052
E5 4 0.082 0.017 4 0.062 0.011 4 0.068 0.006 0.115 0.035 52 0.106 0.023 0.092
E6 3 0.061 0.013 4 0.062 0.011 5 0.085 0.008 0.039 0.012 9 0.018 0.004 0.048

E7.1 2 0.041 0.009 5 0.077 0.014 3 0.051 0.005 0.046 0.014 32 0.065 0.014 0.055
E7.2 4 0.082 0.017 3 0.046 0.008 2 0.034 0.003 0.033 0.011 51 0.104 0.023 0.062
E8 5 0.102 0.021 3 0.046 0.008 4 0.068 0.006 0.049 0.015 39 0.080 0.017 0.068
E9 4 0.082 0.017 4 0.062 0.011 3 0.051 0.005 0.101 0.031 8 0.016 0.004 0.067

E10 3 0.061 0.013 4 0.062 0.011 5 0.085 0.008 0.020 0.006 15 0.031 0.007 0.044
Total 49 1 0.2084 65 1 0.1802 59 1 0.0889 1 0.3048 489 1 0.2177 1

Note: P—probability of HS; PND—probability of non-detection of HS; S—severity of Harm; EC—expected cost;
O—number of HS occurrences.

The other values of the overall priority parameter P, as well as the values of all other
parameters, were calculated using the same procedure.

After calculating all five total priorities by multiplying them in the corresponding row,
the values of the last column of Table 9 were obtained under the name “Evaluation”. As
soon as the prioritization of the performance criteria is achieved by composing pairwise
comparisons, the last step involves using the AHP framework to evaluate the different HSs.
The last column of Table 9 shows the final ranking of the 15 causes/effects considered, i.e.,
the hazardous situations analyzed and their effects (HS/E).

As indicated in the table above, falling objects during machine maintenance (HS5)
emerges as the most critical problem among the 15 alternatives in terms of expected
costs (E5) resulting from the severity of harm when this hazardous event occurs, with an
overall priority score of 0.092. This is followed by ignition of combustible material during
maintenance resulting in fire (E2.1), with a value of 0.091, and ignition of combustible
material (E2.2) resulting in explosion during maintenance of the machine, with a similar
value of 0.087.

As can be seen, in the case of E5, the result of this analysis is different than the results
of the previous analysis based on the risk calculation alone RM (Table 6). The most critical
undesirable events are E2.2, with a corresponding value of RM = 4 ∗ 5 ∗ 5 = 100, and E2.1,
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with the value RM = 4 ∗ 5 ∗ 4 = 80. These represent a high degree of probability of an
undesirable event occurring that is both very serious and difficult to detect. This apparent
contradiction is due to the way the table for Variant A has been constructed.

4.2. Sensitivity Analysis

The solution based on Table 8 for Variant A reflected a possible scenario in which the
most important criteria are the expected costs (EC) and the number of undesirable event
occurrences (O). In general, the model solutions may change in line with changes in the
logic of the approach, given the focus of the analysis.

The sensitivity or robustness of the model solution to potential shifts in strategy
priority creates the opportunity to analyze the sensitivity of the criteria weights to changes
in the priority (relative importance) of the weights. In fact, each criterion is characterized
by an important degree of sensitivity, i.e., the ranking of all events differs dramatically
across the weight range [38]. Therefore, it is important to control to what extent changes
in the evaluation ratings may lead to more or less significant changes in the final order of
priorities. Sensitivity analysis is used to examine the sensitivity of alternatives to changes
in the priority of criteria immediately below the target. The final solution is obviously
sensitive not only to changes in the priorities of the top level of the hierarchy, but also to
their interaction effects. These make the classical sensitivity analysis too complicated and
difficult to implement in practice due to their high level of complexity. For simplification
reasons, OHS experts and management were asked to suggest two more options that were
extreme to critical but realistic. This simple, intuitive approach represents a compromise
between the complexity of a precise solution and the simplicity of an easy-to-use solution
in practice.

The proposed analysis sufficiently highlights the priorities of the five criteria used in
the model and shows how a change in the priority of one criterion affects the priorities of
the others. Clearly, as the priority of one criterion increases, the priorities of the remaining
criteria must decrease in proportion to their original priorities, and the global priorities of
the alternatives (see Table 9) must be recalculated.

Table 10 shows the priorities for each criterion, listed in order of importance:

• Chance of event (probability of HS): P = 0.127;
• Severity of harm: S = 0.1802;
• Number of HS occurrences: O = 0.369;
• The chance of not detecting an undesirable event: PND = 0.08;
• Expected costs: EC = 0.279.
• This variant of the pairwise comparison will be named as Variant B.

Table 10. Variant B—pairwise comparison of criteria at the first level of the AHP hierarchy.

Criteria P PND S EC O Priority

P - 3 1 0.33 0.33 0.127
PND 0.33 - 0.50 0.33 0.33 0.078

S 2 2 - 0.33 0.33 0.145
EC 3 3 3 - 0.50 0.279
O 3 3 3 2 - 0.369

(a) (b)
Note: P—probability of HS; PND—probability of non-detection of HS; S—severity of harm; EC—expected cost;
O—number of HS occurrences. (a)—matrix of pairwise comparison of the criteria; (b)—prioritization vector.

In the calculation described above, the following were calculated:

• The largest eigenvector is λmax = 5.587;
• The consistency index is CI = 0.072;
• The consistency ratio is CR = 0.064.
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The consistency ratio (CR) is less than 0.1, which is the generally accepted threshold
for an acceptable level of consistency in AHP analysis. This means that the comparisons
between criteria in this analysis are sufficiently consistent, and the priority results can be
considered reliable.

Table 11 shows the priorities of each criterion, listed in order of importance:

1. Severity of harm: S = 0.395;
2. Chance of event (undesirable event): P = 0.258;
3. Number of HS occurrences: O = 0.16;
4. Expected costs: EC = 0.109;
5. The chance of not detecting an undesirable event: PND = 0.078.

Table 11. Variant C—pairwise comparison of criteria at the first level of the AHP hierarchy.

Criteria P PND S EC O Priority

P - 3 0.33 3 3 0.258
PND 0.33 - 0.33 0.5 0.33 0.078

S 3 3 - 0.33 3 0.395
EC 0.33 2 0.33 - 0.50 0.109
O 0.33 3 0.33 2 - 0.16

(a) (b)
Note: P—probability of HS; PND—probability of non-detection of HS; S—severity of harm; EC—expected cost;
O—number of HS occurrences. (a)—matrix of pairwise comparison of the criteria; (b)—prioritization vector.

This variant of pairwise comparison will be named as Variant C.
Like the previous cases, the consistency of the matrix is verified by calculation:

• The largest eigenvector: λmax = 5.331;
• Consistency index: CI = 0.083;
• Consistency ratio: CR = 0.074.

A consistency ratio (CR) lower than 0.1 indicates that the comparison matrix is suffi-
ciently consistent for the purposes of AHP analysis. This indicates that the comparisons
between criteria are consistent, and the results of the analysis are reliable (see Table 12).

Table 12. Comparison of the priorities set for the different risk assessment variants.

Alternative Evaluation—
Variant A

Order of
Events

Variant A

Evaluation—
Variant B

Order of
Events

Variant B

Evaluation—
Variant C

Order of
Events

Variant C

Risk
RM

Order of
Events by

RM

E1 0.055 11 0.059 7 0.057 11 36 9
E2.1 0.091 2 0.082 3 0.076 4 80 2
E2.2 0.087 3 0.075 4 0.079 2 100 1
E2.3 0.059 10 0.053 10 0.060 9 60 5
E2.4 0.070 5 0.075 4 0.072 6 75 3
E3 0.086 4 0.106 1 0.077 3 36 9

E4.1 0.063 8 0.063 6 0.071 7 75 3
E4.2 0.052 12 0.059 7 0.059 10 50 6
E5 0.092 1 0.096 2 0.082 1 64 4
E6 0.048 13 0.041 11 0.061 8 60 5

E7.1 0.055 11 0.057 9 0.052 12 40 8
E7.2 0.062 9 0.068 5 0.059 10 60 5
E8 0.068 6 0.068 5 0.075 5 75 3
E9 0.067 7 0.058 8 0.060 9 48 7
E10 0.044 14 0.040 12 0.061 8 60 5

Total 1 - 1 - 1 - - -

It should be noted that the sensitivity analysis is only relevant to the priorities of the
five criteria.



Sustainability 2024, 16, 3718 14 of 24

If the values of only one attribute, one at a time, were to change, only the “main
effects” would be considered; thus, the “interaction effects” of changes in two or more of
the weights would be neglected. Therefore, an approach was adopted whereby different
combinations of parameters were varied for each variant, depending on the focus of the
analysis and in consultation with OHS management.

Even after different, radical changes in preferences in pairwise comparisons, some
robustness can be observed for variants A, B, and C. The first four riskiest events in all
variants are identical (E2.1, E2.2, E3, E5), albeit in a different order. Moreover, this (except
for the E3 case) corresponds in some way to the assessment based on RM (see penultimate
column of Table 6 or the last two columns of Table 12). In the original evaluation based
on RM, only the three parameters of P, S, and PND were considered. Thus, the other two
parameters were not considered, i.e., the expected unit cost of the alternative, as well as
O, i.e., the frequency of occurrence of the given alternative across all the machinery, were
not considered. In the third place, when assessing the parameter RM, three alternatives,
E2.4, E4.1, and E8, were recorded immediately, but when evaluated according to the five
parameters (Variants A to C), their priority was ranked at 4 and above. On the other hand,
the parameter E3 was ranked as high as 9, but when evaluated on a variant-by-variant
basis, it was ranked up to rank 4. This apparent mismatch in priorities is due to a more
complex view, where alternative E3, although with a low-risk number RM = 36, has a
higher occurrence than the other alternatives by an order of magnitude.

4.3. Results of the Evaluation of the Effectiveness and Efficiency of the Proposed Measures

In the previous section, the AHP method was described to determine the priority of
each HS/E according to the severity of the overall impacts on the whole group of considered
machinery. Thus, this examined the amount of additional costs or losses that could potentially
be incurred by the organization with respect to each of the considered alternatives.

The next step of the study was focused on the assessment of the performance of the
individual measures that have been proposed within the framework of the aforementioned
“Machinery Risk Assessment” document. This is an important element in ensuring the
sustainability of machinery safety. The MSDM process involves, in addition to the assess-
ment of the assigned risks, the proposal of effective and efficient measures. Within the
framework of the document referred to above, experts have defined the most appropriate
types of measures (Ms) for each HS/E.

This means that for each of the 489 identified HS, specific measures have been pro-
posed, and it has been estimated how these measures will reduce the resulting risk number.
The reduced risk number is referred to as RAM.

After consideration of the OHS by management and evaluation of all the proposed
measures, it was found that many cases are repetitive and can be standardly divided into
seven basic types (see Table 13). All proposed measures represent some combination of the
measures and risk management hierarchy according to NIOSH (the National Institute for
Occupational Safety and Health) [39].

Table 13. Types of individual measures.

Mi Measures Hierarchy of Control [39]

M1 LOTO—safety padlock Isolate people from the hazard
M2 Emergency stop button (ESB) Isolate people from the hazard
M3 Guard Elimination
M4 Education—training Administration
M5 Automated ventilation system Engineering
M6 PPE PPE
M7 Periodic maintenance—inspections Engineering

Note: Mi—measures (i = 1,. . ., 7); LOTO—lockout/tagout devices.
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Two of these, i.e., M6 and M7, do not require any additional cost increase. These
are measures that are routinely implemented in the organization. However, they have
almost always been recommended in risk analyses, because many accidents or hazardous
situations have been reported in which these generally legislated safety measures have
not been followed. Compliance with these two measures is therefore considered to be the
absolute basis for the risk management of machinery and has therefore not been considered
in the following assessment.

Based on consultations with OHS management, the expected costs associated with
implementing each machine and each of the five proposed measures were estimated.

It should be noted that the costs for each measure were only estimated at approximately
the same time, without considering possible fluctuations in the price of materials and labor
changes, etc.

The costs associated with the introduction of each measure were influenced not only
by the specific machinery, but also by its location in the plant or its proximity to other
machinery. Table 14 shows the minimum and maximum estimated unit costs. Thus,
these are the CM costs budgeted for each event, the machinery, as well as the type of
measure proposed.

Table 14. Estimated unit costs for the identified measures.

Mi Measures
CM

Min (Eur) Max (Eur)

M1 LOTO—safety padlock 25 78
M2 E—STOP 44 88
M3 Safety guard 500 1000
M4 Education—training 50 500
M5 Automated ventilation system 600 1000

Note: Mi—measures; LOTO—lockout/tagout devices; CM—cost of measures; E—STOP—emergency stop button.

The effectiveness of the measures was assessed by the so-called AEI index (Action
Effectiveness Index), whereby AEI is a metric used to assess the effectiveness of proposed
or implemented corrective actions in reducing risk RM. It aimed to quantify whether the
proposed actions Mi reduce risk or improve detection capability of a HS before it could
have a negative impact on the machinery operator.

Calculation of the AEI index is based on a comparison of the values of RM before
and after the implementation of the measures, i.e., RAM (AM—after measure). The index
of effectiveness of the measures (AEI) can thus be calculated as a percentage change that
shows how much the risk (RM) has been reduced because of the implementation of the
measures. The following relation applies:

AEI =
RM − RAM

RM
∗ 100% (3)

This calculation provides a quantitative indicator of measured effectiveness. If a high
percentage is achieved, the measures have significantly reduced the risk. On the other hand,
a low or negative percentage could indicate that the measures have not been sufficiently
effective, or that the risk has not changed or has even increased.

It is important to note that the specific calculation methods and values may depend on
the specific practices and policies of the organization. Therefore, when calculating AEI, it is
always advisable to follow internal guidelines. Calculation of the AEI index was used to
estimate the effectiveness of the implementation of the five proposed measures mentioned
above (M1 to M5). For each, HS/E were almost always a combination of several of the five
measures M1 to M5. Thus, the estimation of the resulting costs implied an accumulation
of the mentioned values. Therefore, for Mi (M1 to M5), a CMi value was defined for each
HS/E. These are the costs that potentially need to be incurred in relation to the measure Mi.
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If any measures Mi are not for a given HSi proposed, the value CMi (i = 1, . . . , 5) is zero.
The resulting expected costs CM for each HS/E are therefore given by the relation:

CM =
5

∑
i=1

CMi (4)

The costs assigned to each measure as well as the values P and S described in relation
(1) were used as predictor variables in the Classification and Regression Trees (CART)
method. This is a method focusing on regression trees to model the relationship between
the dependent variables.

4.4. Applying the CART Method for Assessing Effectiveness of Mi

This is a seven-node CART regression analysis, focusing on regression trees to model
the relationship between the dependent variable (AEI) and the predictor variables (S,
P, CM1 to CM5). The key parameters of the CART analysis include [40] node splitting,
optimal tree, model validation, R-squared, RMSE (root mean squared error) and MSE
(mean squared error), MAD (mean absolute deviation), and MAPE (mean absolute percent
error), which allow alternative measures of prediction error, important for understanding
model accuracy in practical terms.

Based on previous analyses related to machine risk assessment and their impacts on
the organization, specified criteria for classifying subjects into the best terminal nodes
were developed as predictor variables, and their thresholds define the division of data
and the assignment of cases to different subgroups for prediction. These criteria and
the assignment to nodes were the basis for creating a model that maps the relationships
between the predictor variables and the dependent variable. Minitab software was used to
analyze the regression decision tree and applied to an extended database with 489 rows.
As mentioned above, the AEI response index and the predictor parameters P, S, and CM1
to CM5 characterizing the expected unit cost for one machine, one event, and the specific
measure proposed were considered.

Figure 2 is a graphical representation of the dependence between the number of
terminal nodes in the network and the R-squared value. R-squared is a statistical measure
that expresses the degree to which the variability of the dependent variable is explained by
the independent variable. In this case, the dependent variable is the number of terminal
nodes, and the independent variable is R-squared. Axis X shows the number of terminal
nodes in the network, with the values on the axis X ranging from 2 to 11. Axis Y shows
the value of R-squared, and the values on the axis Y range from 0 to 85%. The curve in the
graph shows the trend of the relationship between the number of terminal nodes and the
R-squared value.

The curve has an increasing trend, indicating that the number of terminal nodes and
R-squared value increases. The optimal R-squared value, which is 84.08%, is also indicated
in the graph. This value has been achieved with eight terminal nodes. The graph shows that
the number of terminal nodes increases; the R-squared value also increases to explain the
variability in the number of terminal nodes. This indicates that as the number of terminal
nodes increases, the model becomes more accurate in predicting the number of terminal
nodes. The optimal value of R-squared indicates the model is most accurate in predicting
the number of terminal nodes at this point. Increasing the number of terminal nodes above
eight would lead to a decrease in the accuracy of the model. This shows that there is a
strong dependence between the number of terminal nodes and the R-squared value.

The overall importance of the nodes in the CART tree (see Figure 3) lies in their ability
to partition the dataset into predictively homogeneous groups, allowing for more accurate
predictions and a better understanding of the relationships in the data. It describes the
specific data in the tree nodes and the criteria for classifying subjects into the best terminal
nodes within the CART model.
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Figure 3. Optimal tree diagram for 7 terminal nodes (source: own design).

Figure 4 compares the relative importance of each cost measure CM1 to CM5 and
parameters S and P. It shows that the costs of the measures CM4, CM1, and CM2 have a
large impact on the formation of the predictive model.

Table 15 provides quantitative measures of model accuracy, i.e., it shows the perfor-
mance of the CART regression model on the training and test sets. The low values of RMSE,
MSE, MAD, and MAPE indicate good prediction accuracy of the model. The potential
occurrence of possible overfitting was excluded by using a statistical test to create a tree
using the training group, to estimate whether a given tree needed to be changed.
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Table 15. Model summary for 7 terminal nodes.

Statistics Training Test

R-squared 86.75% 84.08%
RMSE 0.0469 0.0514
MSE 0.0022 0.0026
MAD 0.0120 0.0137
MAPE 0.0231 0.0279

Note: RMSE—root mean squared error; MSE—mean squared error; MAD—mean absolute deviation; MAPE—
mean absolute percent error.

The R-squared value (86.75% on the training set and 84.08% on the test set) indicates
that the model explains the variability of the dependent variable relatively well. Overall,
these figures show the CART model can accurately predict the dependent variable with a
high degree of accuracy, and it has low prediction errors on both the training and test sets.
The following Table 16 describes the criteria for the seven terminal nodes.

Table 16. Criteria for 7 terminal nodes.

Terminal
Node

Number of HS
Events AEI Criterion Total Cost

4 4 75% CM1 = {78}; CM2 = {44; 88}; CM4 = {0; 50} {122; 216}
7 70 66.43% CM3 = {1000}; CM4 = {200; 500} {1200; 1500}
6 147 59.85 P > 3.5; CM3 = {0; 500}; CM4 = {200; 500}; {200; 1000}
2 52 50.58% P > 3.5; CM2 = {0; 67}; CM4 = {0; 50} {0; 117}
3 83 50% CM1 = {0; 25; 52}; CM2 = {44; 88}; CM4 = {0; 50} {44; 190}
1 130 33.72% P ≤ 3.5; CM2 = {0; 67}; CM4 = {0; 50}; {0; 117}
5 3 33.33% P ≤ 3.5; CM3 = {0; 500}; CM4 = {200; 500} {200; 1000}

Note: AEI—Action Effectiveness Index; P—probability of hazardous situation; CM1 to CM5—cost of measure.

The greatest efficiency in terms of the greatest percentage of the index value AEI is
represented by terminal node 4, specifically 75%, but on the other hand, this node refers
to the application of measures for HS/Es. The path to it from the root goes through
node 2 and node 4, i.e., for each of the four events, it is necessary to spend CM4 (from
EUR 0 to 50) + CM2 (from EUR 44 to 88) + CM1 (EUR 78). This can be interpreted as the
implementation of measures M4: education—training, M2: E- STOP, and M1: LOTO—
safety padlock at unit costs ranging from EUR 132 to EUR 216. This is therefore a high
efficiency of the related measures at a relatively low cost. As previously mentioned, a
limitation is that only four types of undesirable events (HS/E) are addressed. Another
of the nodes, terminal node 7, achieves success in reducing the criticality of the event
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with measures M4 and M3 at corresponding costs ranging from EUR 1200 to EUR 1500.
In a similar way, the unit cost was calculated for the proposed measures with respect to
their effectiveness as measured by AEI for all 489 undesirable events (HS/E) considered.
Thus, using the CART method, the individual HS/E events were divided into relatively
homogeneous groups according to the relationship between AEI and costs CM (divided
into five groups according to each measure: M1 up to M5) as well as parameters P and S.
The parameters P and S were the basis for calculating the risk number R and thus naturally
influence the parameter AEI. In the following, it is shown how both applied methods can
be used simultaneously.

In Section 4.3, the ranking of the results of the AHP method was performed for the
five investigated parameters and three different pairwise comparison matrices (Variant A,
B, C, Table 14). By comparing the rankings, independently of the different variants, it was
found there are four basic types of negative effects (namely, E2.1, E2.2, E3, and E5). Once
they occur, this will imply the largest total costs (losses) related to HS.

In the following procedure, the 489 HS/E identified events were therefore reduced to
four types of significant undesirable events.

The resulting reduced database contained 188 HS/E that corresponded to any of the
types of undesirable events mentioned above. The CART method was applied to this
database. The results of the Action Effectiveness Index were again used as predictors P, S,
and CM1 to CM5. The results of the regression decision tree are presented in Figure 5.
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The resulting parameters of the model can be described as follows. The R-squared
values (91.04% on the training set and 84.08% on the test set) indicate that the model
explains the variability of the dependent variable relatively well. Overall, these figures
show that the CART model can accurately predict the dependent variable with a high
degree of accuracy, and it has low prediction errors on both the training and test sets. The
following Table 17 describes the criteria for the three terminal nodes.
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Table 17. Model summary for 3 terminal nodes.

Statistics Training Test

R-squared 91.04% 89.97%
RMSE 0.0402 0.0425
MSE 0.0016 0.0018
MAD 0.0245 0.0250
MAPE 0.0444 0.0451

Note: RMSE—root mean squared error; MSE—mean squared error; MAD—mean absolute deviation; MAPE—
mean absolute percent error.

The final evaluation of the decision tree is presented in summary in the following
Table 18. It can be concluded which undesirable events can be expected to result in the
greatest cost savings, i.e., both the cost of the event (losses from undesirable events) and
the cost of the measures that will most reduce the existing risk. The presented results are
obtained by the AHP method for three different variants, A, B, and C, of the pairwise
comparisons matrices. The table shows the order of importance of the four events, with the
highest priority for all three variants. These are the 188 events selected for E2.1, E2.2, E3,
and E5. Three terminal nodes were obtained from the CART technique applied to the set
of all events of these types. Each of them represents the percentage of expected criticality
reduction for each event. The table also lists the measures that are expected to result in
each criticality reduction. The unit and total costs that will be incurred by implementing
the prescribed combination of measures are also included in the table.

Table 18. Criteria for 3 terminal nodes.

Terminal
Node

Reduction in the
Criticality of the

Event

Events in
the Node HS/E O

Priorities
under

Variant A

Priorities
under

Variant B

Priorities
under

Variant C

Mi
(i = 1 to 5)

Unit
Costs CM

in Eur

Total
Cost in

EUR

3 64.54% 100
E2.2 3 3 4 2 M4, M5 1500 4500

E3 46 4 1 3 M1, M2,
M3, M4 1366 62,836

E5 51 1 2 1 M1, M2,
M4 666 33,966

2 56.66% 42 E2.1 42 2 3 4 M4, M5 1500 63,000

1 33.33% 46 E3 46 4 1 3 M1, M2,
M3 619 28,474

Note: HS/E—hazardous situations analyzed and their effects; O—number of HS occurrences; Mi—measures;
CM—cost of measures.

From the table, is clear that the event with the highest efficiency has the designation
E5 and a frequency of 51. An approximately 65% reduction in criticality for all events of
this type requires the implementation of a combination of measures M1, M2, and M4, with
a unit cost of EUR 666 and a total cost of EUR 33,966. In other words, up to about a 65%
reduction in criticality for the 51 most serious events, as assessed by all three variants, can
be achieved with the measures M1, M2, and M4 at the lowest possible unit cost of EUR 666.
With even lower unit costs, it is possible to implement the measures M1, M2, and M3 to
reduce 46 E3 events by one-third. In the same way, it is possible to estimate the costs of
other events. If the management of the organization decides to reduce all 188 most critical
events, it would need to cover costs of about EUR 192,776.

5. Discussion

The presented five-parameter machinery safety analysis appears to be an effective
tool to perform a comprehensive risk assessment analysis of machinery. The proposed
procedure allows for obtaining a ranking of the causes and consequences of undesirable
events, which include several types of information (P—probability of hazardous situation;
PND—probability of non-detection of HS; S—severity of harm; EC—expected cost; O—
number of HS occurrences). The approach, based on the implementation of the AHP
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method for multi-attribute analysis, provides a framework in which the selection of the
most critical undesirable events can be performed using different relevant characteristics.
The AHP method helps safety analysts to work in a systematic and analytical manner,
addressing each aspect of the events in a stepwise hierarchy. The qualitative and subjective
judgments of multiple individuals can be incorporated into the prioritization process.
Using a series of paired evaluations, the AHP can obtain a direct (quantitative) assessment
based on intangible (qualitative) criteria. Specifically, the problem is how to assign scores
based on tables listing vague and unreliable verbal ratings. However, the great advantage
is that if reliable quantitative judgments are available for some criteria, they can easily be
included in the AHP analysis. This possibility means that proposed procedures can replace,
complement, or be integrated into a more comprehensive approach to safety studies.

Using the AHP method and the five basic parameters, a way to estimate the most
critical undesirable events (HS/E) is shown. Risk management is based on EC and is
applied to the whole group of machinery also based on the estimation of the parameter O.
The result of such an approach is a procedure that allows for designing an effective plan of
action to minimize the expected losses due to undesirable events in an organization.

Another way to increase the effectiveness of machinery safety management is to
maximize the effect of the measures taken at an effective cost. The CART technique was
applied for this purpose. The parameter AEI was selected as a response. This evaluates
the effectiveness of the proposed or implemented corrective actions in reducing the risk of
HS. As predictors, the expected unit cost for each machine (cause or effects) was applied.
In the case study, we verified that it is possible to develop a proposed model that can
predict which group of measures, at what expected unit cost, will reduce the criticality of a
particular undesirable event to what extent.

The costs associated with the fulfilment of existing hazards in an organization realis-
tically engaged in safety management can in principle be divided into two groups. The
first is impact costs, i.e., the losses that can potentially arise in an organization from the
realization of undesirable events (the fulfilment of hazards) despite measures. These costs
are those that cannot, by their own nature, be defined in an exact way. For this type of cost,
it is appropriate to use the AHP method, which is based on the subjective assessments of
experts and OHS management. Another type of costs are those for specific actions that
the organization undertakes as part of its safety management. These costs are generally
known and can be defined in an exact way. For these costs, efficiency of expenditure is
important. Often, measures are implemented without mature consideration, which unnec-
essarily increases the cost of implementation. The AEI index was used as a criterion for the
effectiveness of the implemented measures. A subsequent decision tree analysis based on
the empirically estimated costs over time and the AEI index helped prioritization in view
of the greatest efficiency at the lowest estimated cost.

Estimating the investigated quantities exactly is a rather complex problem. Limitations
may result mainly from the different level of experience and estimates of the experts
consulted, as well as from the approach of the organization’s management to the issue
of MSDM.

6. Conclusions

Machinery safety should be a priority for the management of every operation in an
organization. As significant resources are usually required to ensure safety or reduce risks,
it is appropriate to carefully consider the priority of the relevant measures as well as the
expected costs of their implementation. The presented study showed, based on existing
safety analyses, in a relatively simple way, those undesirable events, the fulfilment of which
entails the greatest risk of an often-unexpected increase in costs (losses). Although it is
almost impossible to define these costs in an exact way, by using the AHP method, it has
been demonstrated that it is possible to prioritize them using pairwise comparisons.

The case study presents the results of the MSRD analysis on 124 machines in a case
study organization. The analysis identified 5260 HSs and the related risks. From these,
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489 critical risks were selected in collaboration with the OHS management team, from
which 10 basic HS types were identified after some standardization. All the 489 critical
risks were expanded by the PND parameter. As each HS can cause several different effects,
15 different HS/E types were identified from the 10 HS types. Each of them was then
assigned the parameter EC using pairwise comparison and the parameter O based on the
frequency of occurrences. Using AHP decision making applied to all five parameters (P,
PND, S, EC, and O), the priority of each effect was determined. The study also relied on
pairwise comparisons at the first level of the hierarchy, designated as matrix A, which
was developed by a group of experts and OHS management. Since it was a subjective
evaluation, the experts were invited to compile other variants of the pairwise comparison
on the first level of the hierarchy, marked as B and C. The resulting AHP analyses showed
that from the point of view of all three considered options, A, B, and C, four HS/Es were
identified (albeit in different orders) that were prioritized for all considered alternatives.
Priority implementation of corrective actions to reduce or even eliminate the four HS/Es for
each piece of machinery represents the greatest prerequisite for minimizing the expected
total losses in terms of the five criteria considered.

The study has shown that despite the extensive analysis of MSRD, with appropriate
standardization, the resulting number of HS/E types may be far from large. In fact, the
different hazardous situations and their effects are very similar to each other, except for
negligible variations. The advantage of the presented AHP method is the fact that some
parameters of the decision criteria do not have to be determined exactly, but it is sufficient
to estimate their mutual priorities by pairwise comparisons.

Increasing the efficiency of machinery safety assurance can also be achieved by effi-
ciently spending resources on individual proposed measures aimed at reducing the risk
of undesirable events. The CART tool was used to determine how the cost of individual
measures affects the degree of criticality reduction for each type of undesirable event.
Overall, the CART model in this analysis provides an accurate and reliable technique for
prediction, indicating its suitability for the data analyzed even when expanding operations
to include similar machinery.

The combination of the AHP method and the CART technique can be used to extract
and estimate costs for those measures that will most effectively reduce both the unit and
total cost of risk within the operations of a manufacturing organization.

The study was based on the individual measures resulting from the MSRD analysis,
for which the experts then estimated the actual minimum and maximum costs associated
with each of these measures. Subsequently, MSDM support procedures were applied. The
AEI was calculated for all 489 HSs and was used to assess the effectiveness of the corrective
measures in reducing the risk of RM. The CART decision tree was applied to the thus
added data. The result was a categorization of each HS/E into groups according to the
relationship between the AEI and the estimated actual CM costs. For example, terminal
node 7 identified 70 HS events that, using CM3 and CM4 measures, will achieve an AEI of
66.43% at an expected actual cost of between EUR 1200 and 1500. Similarly, other HSs are
categorized using the other 6 terminal nodes.

Finally, by combining both approaches, 188 HS/Es of four priority types determined
using the AHP method were selected, on which the CART method was implemented. The
resulting three terminal nodes showed how to achieve the best possible AEI index for each
HS/E group at the expected current cost of the relevant measures, totaling EUR 192,776
(see Table 18). The resulting decision tree therefore identified the measures that require the
minimum cost, on the one hand, as well as substantially reduce the risk of those HS/Es
whose fulfilment would result in the greatest loss.
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26. Kóča, F.; Pačaiová, H.; Turisová, R.; Sütőová, A.; Darvaši, P. The Methodology for Assessing the Applicability of CSR into Supplier
Management Systems. Sustainability 2023, 15, 13240. [CrossRef]

27. Tsalis, T.A.; Stylianou, M.S.; Nikolaou, I.E. Evaluating the quality of corporate social responsibility reports: The case of occupa-
tional health and safety disclosures. Saf. Sci. 2018, 109, 313–323. [CrossRef]

28. Standard ISO 12100; Safety of Machinery—General Principles for Design–Risk Assessment and Risk Reduction. ISO: Geneva,
Switzerland, 2010.

29. European Parliament and of the Council. Directive 2006/42/EC of the European Parliament and of the Council of 17 May 2006 on
Machinery and Amending Directive 95/16/EC (Recast); European Parliament and of the Council: Brussels, Belgium, 2006.

30. Dudek, E.; Kozłowski, M. The concept of risk tolerability matrix determination for aeronautical data and information chain. J.
KONBiN 2017, 43, 69–94. [CrossRef]
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