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Abstract: A considerable amount of water is stored in vegetation, especially in regions with high
precipitation rates. Knowledge of the vegetation water status is essential to monitor changes in
ecosystem health and to assess the vegetation influence on the water budget. In this study, we develop
and validate an approach to estimate the gravimetric vegetation water content (mg), defined as the
amount of water [kg] per wet biomass [kg], based on the attenuation of microwave radiation through
vegetation. mg is expected to be more closely related to the actual water status of a plant than the
area-based vegetation water content (VWC), which expresses the amount of water [kg] per unit area
[m2]. We conducted the study at the field scale over an entire growth cycle of a winter wheat field.
Tower-based L-band microwave measurements together with in situ measurements of vegetation
properties (i.e., vegetation height, and mg for validation) were performed. The results indicated a
strong agreement between the in situ measured and retrieved mg (R2 of 0.89), with mean and standard
deviation (STD) values of 0.55 and 0.26 for the in situ measured mg and 0.57 and 0.19 for the retrieved
mg, respectively. Phenological changes in crop water content were captured, with the highest values
of mg obtained during the growth phase of the vegetation (i.e., when the water content of the plants
and the biomass were increasing) and the lowest values when the vegetation turned fully senescent
(i.e., when the water content of the plant was the lowest). Comparing in situ measured mg and
VWC, we found their highest agreement with an R2 of 0.95 after flowering (i.e., when the vegetation
started to lose water) and their main differences with an R2 of 0.21 during the vegetative growth of
the wheat vegetation (i.e., where the mg was constant and VWC increased due to structural changes
in vegetation). In addition, we performed a sensitivity analysis on the vegetation volume fraction
(δ), an input parameter to the proposed approach which represents the volume percentage of solid
plant material in air. This δ-parameter is shown to have a distinct impact on the thermal emission at
L-band, but keeping δ constant during the growth cycle of the winter wheat appeared to be valid for
these mg retrievals.

Keywords: gravimetric vegetation water content; vegetation volume fraction; vegetation optical
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1. Introduction

In the present context of climate change, it is of key importance to closely monitor the vegetation
conditions of agricultural fields to secure yield and prevent damage from widespread flood and drought
episodes. In this regard, our research aims to develop and validate at the field scale a new approach
to retrieve the gravimetric vegetation water content (mg) from the vegetation attenuation of L-band
microwave radiation (τ parameter). Tower-based L-band (1.4 GHz) microwave measurements above a
winter wheat field were acquired over an entire growing cycle together with in situ measurements
of vegetation properties [1]. The proposed attenuation-based approach to retrieve mg is built on the
τ model of Schmugge and Jackson [2] and on the Debye-Cole dual dispersion dielectric model of
Ulaby and El-Rayes [3]. The motivation of our study is to get a direct estimate of the plant water
status (i.e., mg) which, unlike the area-based vegetation water content (VWC), is independent of
biomass variations. The VWC can be defined as the amount of water [kg] per unit area [m2] and the
gravimetric vegetation water content (mg) as the amount of water [kg] per wet biomass [kg] [4,5].
The retrieval of VWC was frequently investigated in past studies using optical sensor measurements;
global estimates have been validated by using (limited) available in situ measurements (e.g., [6,7]) or
by first upscaling ground observations to regional scales via air-borne observations that were later
related to space-borne measurements (e.g., [8]). Additionally, several studies were performed at the
field scale to retrieve VWC using L-band (e.g., [9] for alfalfa) or a combination of L- and C-band
passive microwave measurements (e.g., [10] for soy bean and winter wheat). At L-band, the VWC
was shown to be linearly related to the vegetation optical depth (VOD) parameter (τ) [11] using a
vegetation structural parameter (i.e., the so-called b-parameter with τ = b · VWC) [11]. This b-parameter
was estimated at the local scale in field studies for multiple vegetation types (e.g., [11–14]) and has
been defined globally for different land cover types based on the International Geosphere-Biosphere
Program (IGBP) classification system [15]. However, while the use of b for the retrieval of the VWC is a
common and established method considered in ESA’s Soil Moisture and Ocean Salinity (SMOS) [16]
and NASA’s Soil Moisture Active Passive (SMAP) [17] retrieval algorithms [12,15], it is not fully
physically-based and it is generally defined using empirical methods. In addition, most VWC retrieval
approaches were developed at the field scale and require in situ datasets as an input (e.g., vegetation
density) [12], which are usually not available on a global scale. Finally, the limited availability of
ground measurements makes the validation of globally estimated VWC products very challenging.

The gravimetric vegetation water content (mg) is expected to be more closely related to the actual
water status than VWC and, therefore, better suited for eco-hydrological studies [18]. However, studies
addressing the estimation of mg based on passive microwave measurements are scarce. At the field
scale, the mg was shown to be highly dependent on the absorption and the scattering of microwave
emissions at L-, C-, and X-bands for leaves of a soybean canopy [13]. In addition, a strong relationship
to the complex vegetation dielectric constant (εveg) for different plant parts (i.e., stalks and leaves of
wheat and corn plants [14] or wheat heads [19]) was reported. A few studies proposed approaches
for the global estimation of mg from τ estimates [5,18]. However, the retrieval of mg still needs
further investigation and improvement, especially at the global scale, since in situ reference datasets
for validation are also missing at this scale [18,20]. In particular, a proper characterization of the
canopy volume is a pre-requisite information to estimate mg. Such information is generally unknown
and often fixed as a constant or neglected in actual retrieval algorithms (e.g., the τ-ω model [21]).
The vegetation volume fraction (δ) can be defined as the volume percentage of solid plant material of
a canopy in air [22]. The δ-parameter has a high impact on the emission-band radiation originating
from the vegetation and is therefore directly related to water absorption within the canopy [13]. Thus,
an improved estimate of δ may lead to more accurate estimates of the attenuation of microwave
emissions by the vegetation layer [2,13], and therefore more accurate estimates of mg. Only a few
field studies have investigated δ so far. They state that δ typically ranges between 0 and 0.01 for most
vegetation layers [2] and that it can in general be assumed to be smaller than 0.01, like that shown by
Wigneron et al. [13] for a soybean canopy. The objectives of our study are to investigate the information
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on water content and above-ground biomass contained in the vegetation optical depth parameter and
to develop an algorithm to extract mg from τ under controlled field experiment conditions.

The decision to use L-band data was made as the L-band is a promising frequency to monitor
crop vegetation, as it penetrates into the canopy (i.e., measurements of the whole above-ground plant
layer are possible), is less affected by scattering within the vegetation than higher frequencies, and is
located within a protected band leading to low radio frequency interference (RFI) [23]. However,
the L-band is more sensitive to soil moisture than higher frequencies, especially if the vegetation
density is low to moderate. C- and X-band radiometer measurements (e.g., as provided by AMSR-E
and WindSat) are less sensitive to the soil moisture content and could be better suited to characterize
the (upper) vegetation layer [24,25]. Nonetheless, we performed our measurements in the L-band for
the reasons given above, and designed our experiment specifically to block the soil surface emission
and thus avoid the soil moisture influence on the radiometer measurements. Furthermore, vegetation
indices retrieved from passive L-band measurements differ from indices deducted from optical or
active microwave observations. Optical sensors do not penetrate into the canopy and only sense the
very top of the vegetation layer (leaf component) [4]. Active microwave sensors, in turn, are more
strongly affected by scattering within the vegetation than their passive counterparts [26,27]. Passive
microwave observations at L-band allow to estimate the vegetation permittivity (dielectric constant),
which can be directly related to properties, like water content, density, and structure [28,29]. In this
context, the vegetation water status is a key variable for global and regional climate models to improve
water budget estimations [30,31].

The following research questions were investigated during our study: (a) Can we retrieve the
gravimetric moisture (mg) of vegetation using the vegetation optical depth (τ) parameter, i.e., the degree
to which vegetation attenuates microwave radiation in the L-band?; (b) Is mg influenced by changes
of the vegetation canopy (e.g., structure, biomass) over the growing season of a winter wheat field?;
(c) Is the retrieval of mg influenced by the applied vegetation dielectric mixing model (i.e., assuming
different vegetation shapes in the dielectric mixing model)?; and (d) Is the assumption of a constant δ
valid for the retrieval of mg at the field scale?

Section 2 presents the experimental setup and the methodology of the microwave attenuation-based
approach to estimate mg. Section 3 shows the results of the retrieved mg and its correlation to in
situ measured mg. Additionally, a sensitivity analysis of mg for varying δ is presented, as well as a
comparison between the in situ measured mg and the in situ measured VWC values. In Section 4,
we discuss the results of the mg-retrieval, our findings concerning the δ-parameter, and the potential
of our attenuation-based approach to provide estimates of mg. Section 5 provides a summary and
our conclusions.

2. Materials and Methods

2.1. Experiment Description, Vegetation Conditions, and Datasets

Tower-based passive microwave measurements over a winter wheat (Triticum aestivum L.) field
were carried out using the ELBARA-II radiometer during summer 2017 [1]. The measurements were
performed at the Selhausen remote sensing field laboratory (Germany) [21]. The ELBARA II device
operates in the L-band with a center frequency of 1.4 GHz. The measurements were performed at
horizontal (p = H) and vertical (p = V) polarization (p) using a 3 s integration time to provide an
accuracy of about 1 K and the −3 dB full beam width was 23◦ in the far field. The radiometer was
mounted on an aluminum bridge at about 4 m height.

The experiment was conducted during a period of about four months from tillering of the winter
wheat on April 10th (DOY 100) to the late senescence stage on August 14th (DOY 226). The microwave
measurements were performed twice a week over a gridded plot (i.e., soil covered by a perfect reflector
(metal grid) to block the soil surface emission, but allowing vegetation to grow through the mesh
grid) for different incidence angles (i.e., 40–60◦ in increments of 5◦) during the morning (i.e., from 8 to
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12 a.m.). The collected brightness temperature (TB) data showed that the TBV measurements had a
higher temporal variability with generally higher values over the entire growing period, and also a
larger increase and dynamic range during crop development, compared to TBH (e.g., a STD of 18.4 K
for TBH and 53 K for TBV using a 40◦ incidence angle). This can be explained by the stronger vertical
orientation of the wheat canopy leading to a higher emission contribution in the V polarization [1].
In addition, weekly in situ measurements of vegetation properties were performed for: leaf area index
(LAI), total above ground biomass (TOB), vegetation water content (VWC), growing stages (BBCH),
and vegetation height (d). The field experimental setup and the changes in the vegetation layer during
the growing season are depicted in Figure 1 for selected phenological stages. The vegetation layer
changed significantly during the phenological cycle of the winter wheat plants with a leaf-dominated
vegetation structure between DOY 100 and 120, followed by a period of stalk-dominated vegetation
structure (DOY 120–180) where the highest VWC was reached during flowering, and a period where
the vegetation turned into senescence (DOY ≥ 200) and the heads as well as the stems of the wheat
began to bend towards the soil surface. For a more detailed description of the field setup and the
collected measurement datasets (i.e., in situ and radiometer) see Meyer et al. [1].
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Figure 1. Experimental field setup (an aluminum bridge with ELBARA-II looking down toward the
metal grid surface). (a) Vegetation conditions changing over the growing season of a winter wheat for
selected phenological stages (b–e) at the Selhausen field laboratory (Germany) [1]. The experiment
was conducted during a period of about 4 months from tillering of the winter wheat on April 10th
(DOY 100) to the late senescence stage on August 14th 2017 (DOY 226).
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In the current study, we used the polarization (p) dependent vegetation optical depth (τ) parameter,
which was retrieved from the 40◦ incidence angle brightness temperature measurements using the
τ–ω model [32]. Optimal values for τ (H and V polarizations) were simultaneously estimated for
one measurement angle using TB data at both polarizations. Additionally, information on canopy
temperature (measured at 15 cm above ground) was used. The TB data consisted of mean values
of the five measurements performed per day (n = 33 days, from which only 20 measurement days
correspond to the in situ measured vegetation properties) at the 40◦ incidence angle and for each
polarization. The estimated τV as well as in situ measurements of vegetation height (d) were used
as an input in our mg retrieval approach. Finally, to be able to compare our retrievals of mg with a
reference dataset, the in situ VWC was converted to mg by calculating first the dry matter fraction (md)

as defined by Mätzler [33] (i.e., md =
dry mass
f resh mass ) and subtracting it afterwards from 1 (i.e., mg = 1−md).

This calculated mg will be called in situ measured mg in our study.

2.2. Methodology for Estimating the Gravimetric Water Content of Vegetation

2.2.1. Retrieval Algorithm

Figure 2 shows, conceptually, the retrieval scheme of mg. For the estimation of mg, the in situ
measured vegetation height (d), a constant value of the vegetation volume fraction (δ), and the canopy
dielectric constant (εcan) (i.e., which was derived from the modelled complex vegetation dielectric
constant (εveg)) were used as input for the τ model. The output modelled τ values were then compared
to the radiometer-derived τ values (i.e., which were estimated from L-band brightness TB measurements
using the τ–ω model (see Section 2.1) by minimizing the objective function (ϕ), which is defined as
the cumulative squared error between the modelled and measured τ. Finally, the optimal (opt) εveg

is obtained from the best fit between τ-model and the radiometer-derived τ, and is converted to mg

using the model of Ulaby and El-Rayes [3]. The different vegetation dielectric mixing models used
to estimate εcan will be explained in Section 2.2.2. In addition, further explanations regarding the
conversion of the εveg to the corresponding mg and vice versa will follow in Section 2.2.3.

Concerning the radiometer-derived τ parameter, τp at vertical (p = V) polarization was used
for the mg retrieval as τ at horizontal polarization (p = H) did not lead to a proper estimation of mg

(i.e., a significantly deviating temporal evolution and underestimation of mg in comparison to the in
situ measured mg (results not shown)). The fact that τV performed better for the mg retrieval can be
explained by the strong vertical structure of the wheat canopy which is better sensed with V- than
with H-polarization. Therefore, all results presented in this work are only based on one polarization
(i.e., V-polarization) and one incidence angle (i.e., 40◦). Using τ at nadir (τNAD) (i.e., corrected for
anisotropy) retrieved from multiple incidence angles was not an option, as the resulting estimated
mg showed a similar behavior as the mg for the τH-case in comparison to the in situ measured mg.
To minimize ϕ during the mg-retrieval, the multi-level coordinate search (MCS) algorithm [34] was
used. Additionally, we used the Local–Nelder–Mead simplex algorithm [35] to further improve
the optimization.

Concerning δ, it is not directly measurable with the radiometer and was not measured in
the field. It could be estimated from radar measurements using the Radar Vegetation Index (RVI)
(e.g., as proposed in [18]) but, unfortunately, radar measurements were not performed during this
experiment. Hence, we performed a sensitivity analysis to assess whether it was reasonable to set
δ to a constant value along the entire growing period. Note a daily retrieval of δ was not possible
(i.e., a global minimum could not be found and several δ-values led to the smallest ϕ (local minima)).
A range of literature values for constant δ (between 0 and 0.01 [18,20]) were tested in the mg retrieval
approach and the δ which led to the smallest ϕ was chosen based on a model selection. The search
step for finding the optimum δ for the entire growing period was set to 10−6, to ensure that the global
minimum could be found. Finally, a sensitivity analysis was performed where the influence of the
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constant δ-parameter assumption on the estimated mg using the attenuation-based approach was
investigated (as presented in Section 3.2).

The proposed attenuation-based mg-retrieval concept was first applied in a previous study to
global SMAP radiometer data for τ estimation and radar for δ estimation [5]. It has been adapted
here for application at the field scale. Note that it was not possible to retrieve both parameters
simultaneously, since V-polarization data at one incidence angle (i.e., 40◦) does not contain enough
information to retrieve two variables simultaneously (i.e., mg and δ) (see Section 4).
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Figure 2. Conceptual scheme of the attenuation-based retrieval approach of the gravimetric vegetation
water content (mg) based on radiometer-derived vegetation optical depth (τ) estimates (i.e., estimated
from the brightness temperature (TB) measurements over a gridded plot using vertical polarization
(p = V) [K], in situ measured vegetation height (d) [m], and a constant value for the vegetation volume
fraction (δ) [–]. Different vegetation dielectric mixing models were used to derive the dielectric constant
of the canopy (εcan), which was also used as an input for the τ model. Finally, mg was retrieved using
the optimal (opt) vegetation dielectric constant (εveg) and based on the Ulaby and El-Rayes [3] model.

2.2.2. Modelling the Vegetation Optical Depth Including a Two-Phase Dielectric Mixing Model

Our approach is based on the attenuation model proposed by Schmugge and Jackson [2].
They found that for a wavelength (λ) [m] at frequencies between 0.2 and 20 GHz the nadir vegetation
optical depth VOD (τ) can be related to the imaginary part of the complex dielectric constant of the
canopy (εcan) by:

τ = 4π
(

d
λ

)
. Im

[√
εcan

]
, (1)

where the square root of εcan is applied, since it is directly related to the refractive index of the canopy,
and the imaginary part (Im) (also called loss factor) refers to the loss of the electromagnetic energy when
the waves propagate through a vegetation layer with thickness d [m]. Thus, τ describes the attenuation
of the surface emission when it passes through the vegetation canopy. For the description of εcan,
different two-phase dielectric mixing models can be used, as proposed by de Loor [36] who extended
the work of Polder and van Santen [22] on the dielectrics of mixtures of solids. Thus, the vegetation
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layer can be described as a two-phase mixture with air as the host material with a dielectric constant
(εair) equal to one and the vegetation as inclusions with a specific shape (i.e., spheres (s), needles
(n), discs (di)), orientation (i.e., random (r) or vertical (v)), complex vegetation dielectric constant
(εveg), and volume fraction (δ). For the winter wheat field, the vertical needles (vn) dielectric mixing
model is expected to perform best to retrieve mg, as the winter wheat canopy is mainly vertically
oriented (distinct stalk component) and therefore anisotropic attenuation effects should be significant.
The randomly-oriented discs (rdi) dielectric mixing model will also be tested as the leaves have a disc
like shape without a dominant orientation (i.e., random). The equations used to calculate εcan for
vegetation inclusions with vertical needles (vn) and randomly-oriented discs (rdi) can be found in [19].
For the vertically oriented needles (vn) inclusions:

εcan = εhost +
δ
3

(
εveg − εhost

) ∑
u=a,b,or c

 1

1 + Au
( εveg
εhost

− 1
) , (2)

where εhost is the dielectric constant of the host material (which is equal to εair in the case of a
canopy layer in nature) and the so-called shape factor (Au) (also called depolarization factor) which
describes the influence of the inclusion shape on the dielectric constant along its semi-axis (u = a, b,
or c). The semi-axes a and b are symmetric in the vn mixing model (i.e., a = b) and c >> a. The A
parameter is than Aa = Ab = 0.5 and Ac was set equal to zero in our case because we did not perform
measurements of the stalk diameter to calculate the ellipsoid eccentricity. The sum of the three shape
factors is always equal to 1 [19]. When assuming that the vegetation inclusions have the shape of
randomly oriented discs (rdi) the semi-axes are a = b and c << a and the following equation should
be used:

εcan = εhost +
δ
3

(
εveg − εhost

)(
2 +

εhost
εveg

)
. (3)

The A-parameter can be assumed to be equal to Aa = Ab = 0 and Ac = 1, in this case. In general,
it has to be stated that for vegetation layers with an anisotropic structure, vegetation dielectric mixing
models which account for the orientation (i.e., random or vertical) and the shape of the inclusions
(i.e., needles or discs) seem to perform better at the field scale (e.g., [13]) than mixing models which
do not account for the orientation and shape of the vegetation inclusions (i.e., assuming the shape
of spheres) [5]. Hence, the choice of the dielectric mixing model should be adapted to the actual
phenological stage and the vegetation species. In addition, it is also important to mention that on large
scales (kilometer resolution of radiometers) the vertical and horizontal structure in natural vegetation
are usually mixed and do not appear monotonically oriented over large areas. In these cases, dielectric
mixing models which describe the vegetation as isotropic structures would describe the vegetation
layer in a more appropriate way (i.e., the spheres (s) or random needles (rn) mixing models [19]),
as was shown by Fink et al. [5] using SMAP data. However, for our field scale study on a single winter
wheat field, s and rn dielectric mixing models did not succeed in representing the anisotropic structure
of the wheat stalks and will, therefore, not be considered here.

2.2.3. Conversion of Vegetation Dielectric Constant into Gravimetric Vegetation Water Content

Ulaby and El-Rayes [3] developed the semi-physical Debye–Cole dual-dispersion dielectric mixing
model. It is a low-parameterized and well-established model to convert the gravimetric vegetation
water content (mg) [kg kg−1] into the corresponding complex vegetation dielectric constant (εveg)
and vice versa (e.g., applied by [13,37]). It assumes that εveg is a mixture of three components [3]:
a non-dispersive residual component r [–], a free-water component fw [–], and a bulk vegetation-bound
water component b [–]. These three components in turn depend on mg. Therefore, εveg can be defined
as [3]:

εveg = εr + v f wε f w + vbεb, (4)
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where εr is the nondispersive residual component of the complex dielectric constant, with the following
equation:

εr = 1.7− 0.74 mg + 6.16 mg
2. (5)

The ε f w and εb of Equation (4) are the free-water and the bulk vegetation bound water components
of the complex dielectric constant, respectively. They are defined as follows:

ε f w = 4.9 +
75.0

1 + j f /18
− j

18σ
f

, (6)

εb = 2.9 +
55.0

1 + ( j f /0.18)0.5 , (7)

where f is the measurement frequency [GHz] and σ is the ionic conductivity of the aqueous solution
[S m−1] (σ is assumed to be equal to 1.27 as in Ulaby and El-Rayes [3]). j denotes the imaginary number.
v f w and vb of Equation (4) are the associated volume fractions of the free-water and bound vegetation
bound-water mixture, respectively. They are described as:

v f w = mg
(
0.55 mg − 0.076

)
, (8)

vb =
4.64 mg

2(
1 + 7.36mg2

) . (9)

Furthermore, parameters in Equation (4) depend on frequency, temperature, and salinity.
As suggested in [3], plant temperature and salinity are fixed to 22 ◦C and 10%�, respectively. This allows
keeping the conversion static and avoids the need of accounting for any additional bias in the
subsequent analysis. By using Equatoin (4) any value of mg (between 0 and 1) can be associated to a
certain value of εveg and vice versa.

3. Results

3.1. Gravimetric Vegetation Water Content Retrieval

The complex dielectric constant of vegetation (εveg) will be analyzed (before conversion to mg,
see Figure 2) to illustrate the dielectric variation with changing vegetation water content. Figure 3
depicts the estimated εveg values for the vertical needles (vn) (open and filled black squares) and random
discs (rdi) (open and filled cyan diamonds) dielectric mixing model (retrieved from V polarization
data only) and the εveg values derived from in situ measurements as a reference (open and filled
magenta triangles). The real and imaginary parts of the εveg (i.e., ε′veg and ε′′veg, respectively) show for
both mixing models an increase of the εveg between DOY 100 and 140 reaching a peak value around
DOY 140 of about 35 (ε′veg) and 10 (ε′′veg), respectively, and a decrease of εveg afterwards to minimum
values around 6 (ε′veg) and 4 (ε′′veg), respectively, at the end of the experiment (senescence phase).
In comparison to the in situ measured εveg (which were converted from the in situ measured mg using
the Ulaby and El-Rayes model [3]) the modeled εveg seems to be underestimated during the beginning
of the experiment (i.e., between DOY 100 and 120) and overestimated during the senescence phase
(i.e., after DOY 180). The mean and STD values of the modelled and measured εveg can be found
in Table 1.

The obtained εveg values are comparable to vegetation dielectric constant values found for crops
in literature. Ulaby and Jedlicka [14] performed measurements of the dielectric properties of wheat
and corn leaves and stalks at a frequency of 1.5 GHz and found values between 2.5 and about 35 for
ε′veg and values between 0 and about 10 for ε′′veg.
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Table 1. Mean and standard deviation (STD) values of modelled ε′veg (real part) and ε′′veg (imaginary
part) using the vertical needles (vn) and random discs (rdi) dielectric mixing model in comparison to
ε′veg and ε′′veg derived from in situ measurements.

vn rdi In Situ

ε
′

veg ε
′′

veg ε
′

veg ε
′′

veg ε
′

veg ε
′′

veg

mean 22.5 7.0 22.2 6.8 21.3 6.7
STD 10.3 3.0 12.8 3.9 9.4 2.8
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Figure 3. Complex vegetation dielectric constant (εveg) retrievals for different mixing models (i.e., vertical
needles (vn) (open and filled black squares) and random discs (rdi) (open and filled cyan diamonds))
using the proposed attenuation-based approach. These values are compared to εveg values (open
and filled magenta triangles) derived from mg measurements. ε′veg denotes the real part and ε′′veg the
imaginary part of the dielectric constant.

The complex (i.e., real (ε′veg) and imaginary part (ε′′veg) of the) vegetation dielectric constant was
considered in the dielectric mixing model to calculate εcan, which was used as an input in Equation (1)
(i.e., the τ-model). After minimization, Figure 4a depicts the estimated mg using different vegetation
dielectric mixing models (i.e., vn and rdi) as well as the in situ measured mg (ref ) as a reference.
In addition, linear regressions between the in situ measured and retrieved mg using the vn and the rdi
dielectric mixing model are shown in Figure 4b,c, respectively. Table 2 contains the corresponding
slope, intercept, and squared Pearson correlation coefficient (R2) values of the linear regression analysis.
As can be seen for both the vn and the rdi dielectric mixing models, there is good agreement between
measured and modelled mg, with an R2 of 0.89 and root mean square error (RMSE) values of 0.10 and
0.11, respectively, showing a mean and STD of 0.57 and 0.19 (vn) and 0.55 and 0.18 (rdi). The mean and
STD of the in situ measured mg are 0.55 and 0.26, respectively. The smallest bias can be found for the
rdi mixing model with a value of 0.009. However, the vn and rdi models still underestimate the in situ
mg between DOY 100 and 120 and overestimate mg after DOY 180. This is probably due to the fact that
we had to assume a constant value of δ over the whole growing period due to an insufficient number
of measurements, i.e., too low degree of information, to determine δ, whilst knowing that, in reality,
the volume/structure of the vegetation is actually changing along with the phenological development.

This can be also seen in the linear regression plots (Figure 4b,c), where the retrieved mg during the
vegetative growth stages (i.e., open black circles) are located below (underestimation) and the retrieved
mg during the senescence stages (i.e., filled black circles) are located above (overestimation) the ideal
correlation (1:1) line. Concerning the slopes and intercepts of the regression lines, the vn dielectric
mixing model shows a slightly closer fit to the 1:1 line.
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Figure 4. mg retrievals for different mixing models (i.e., vertical needles (vn) and random discs (rdi))
using the proposed attenuation-based approach. These values are compared to the in situ measured
mg (ref ) (a). In addition, the linear regressions between the retrieved mg parameters and the in situ
measured mg for the vn (b) and rdi (c) case are shown. The open and closed black circles in the regression
plots indicate the vegetative growth (DOY ≤ 160) and senescence stages (DOY > 160), respectively.

Table 2. Slope, intercept, and squared Pearson correlation coefficient (R2) values of the linear regression
between measured and modelled mg using the vn and rdi dielectric mixing models. Furthermore,
the bias and RMSE between the measured and retrieved mg are shown.

Slope Intercept R2 Bias RMSE

Modelled mg (vn) Measured mg 0.70 0.19 0.89 0.03 0.10
Modelled mg (rdi) Measured mg 0.64 0.20 0.89 0.009 0.11

3.2. Sensitivity Analysis on the mg Retrieval for Varying δ

Numerical experiments were conducted to analyze the impact of assuming a constant δ on
mg-retrievals. Figure 5 depicts the results of the mg-retrieval along the growing season using the
vertical needles (vn) (a) and random discs (rdi) (b) dielectric mixing models with the in situ measured
mg-values (ref ) as a reference, for different values of δ. Results show that mean and STD values of mg

steadily decrease for increasing δ (see also Table 3). When using the vn or rdi mixing model, a high
δ (i.e., 0.01) leads to an underestimation of mg and if δ is low (i.e., 0.004 (vn) or 0.002 (rdi)) mg is
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overestimated. A δ of 0.0049 (vn) or 0.0026 (rdi) leads to the minimum in the objective function ϕ

between the measured and modelled τV (but this minimum is not unique as mentioned before in
Section 2.2.1) and to the closest fit between the retrieved and in situ measured mg. However, in general,
there is no large difference in the temporal behavior of the retrieved mg when using the vn and rdi
dielectric mixing models while varying δ. Concerning the mg-value range, it can be seen that mg ranges
between ~0.2–0.45 for δ equal to 0.01 and ~0.25–0.95 for δ equal to 0.004 for the vn model and almost in
the same range for the rdi model with mg values between ~0.15 and 0.3 for δ equal to 0.01 and ~0.25
and 0.95 for δ equal to 0.002.

Interestingly, the vn model seems to be in general more sensitive to changes of δ than the rdi
mixing model. This can be seen in the fact that δ for the vn model was only varied between 0.004 and
0.01 and for the rdi dielectric mixing model δ was varied between 0.002 and 0.01 showing almost the
same changes in estimated mg. Yet, it is important to note that small changes of δ result in relatively
large changes in retrieved mg.
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Figure 5. Sensitivity analysis on the mg-retrieval by varying δ using the proposed attenuation-based
approach. For this, two different vegetation dielectric mixing models were used, namely, the vertical
needles (vn) (a) and random discs (rdi) (b) model. These results are compared to the in situ measured
mg (ref ). Note that the black circles represent the δ-value, which leads to the closest fit between the
retrieved and in situ measured mg.

Table 3. Mean and STD values of retrieved mg [kg kg−1] for selected δ-values using the vertical needles
(vn) and random discs (rdi) dielectric mixing models (cf. Figure 5) and the mean and STD of the in situ
measured mg as reference (ref ).

δ-Values Mean—mg STD—mg

vn 0.004 0.66 0.22
0.0049 0.57 0.19

0.01 0.34 0.11
rdi 0.002 0.67 0.22

0.0026 0.55 0.18
0.01 0.22 0.06

ref - 0.55 0.26

In general, the highest sensitivity of the mg-retrieval using either the vn or rdi dielectric mixing
models to changes of δ can be found between DOY 100 and 180 (i.e., when the mg-values are relatively
high with values between 0.8 and 0.5) and the lowest sensitivity appears during the senescence phase
(i.e., when the mg-values are very low (≤0.25)). This means that the effect of δ on the L-band microwave
thermal emission is higher when also the water content of the plants is high (e.g., varying δ between
0.002 and 0.01 decreases the mean value of mg by about 0.56 for the rdi mixing model at DOY ≤ 160).
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For lower water contents (i.e., low mg-values at DOY > 200) the effect of δ on the thermal emission can
be assumed to be rather small (e.g., varying δ between 0.002 and 0.01 decreases the mean value of mg

by ~ 0.2 for the rdi model).

3.3. Comparison between mg and VWC

Differences between gravimetric vegetation water content [kg kg−1] and area-based VWC [kg m−2]
were studied using linear regressions over the whole growing season, the vegetative growth stages
(DOY ≤ 160), and the senescence stages after the peak vegetation water content (i.e., after flowering
of the winter wheat; DOY > 160) (Figure 6a and Table 4). In addition, the variation of the mg and
VWC over time is depicted (Figure 6b). The results show that for the whole growing season and the
vegetative growth stages the correlation between mg and VWC is rather low, with a R2 of 0.26 and
0.21, respectively. This is related to the wheat growth where the VWC increases from values around
0.1 kg m−2 to values around 3.5 kg m−2 while mg stays more or less constant during the same period
with values around 0.75 (see Figure 6b). After crop flowering (i.e., DOY > 160) both the VWC and
mg show the same temporal behavior with decreasing values, as the vegetation starts to lose water
during the senescence phase. This results in a high correlation between the mg and VWC with a R2 of
0.95 and slope and intercept values of 0.20 and 0.11. As expected, the VWC reflects the amount of
water [kg] per unit area [m2], which is lowest during the beginning and the end of the growing season
and highest during flowering. mg on the contrary, is more closely describing the plant available water,
which is high during the vegetative growth stages of the vegetation (i.e., no drought stress conditions
were present with mg ≥ 0.7) and low during senescence.
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Figure 6. Linear regressions between the in situ measured gravimetric vegetation water content
(mg) [kg kg−1] and the area-based vegetation water content (VWC) [kg m−2] for the whole growing
season (WS)(open and filled black circles and red solid line), for only the vegetative growth phase
(VP) (i.e., DOY < 160) (open black circles and dotted line), and for only the senescence phase (SP)
(i.e., DOY > 160) (filled black circles and solid line) (a). In situ measured mg and VWC over time (b).

Table 4. Slope, intercept, and squared Pearson correlation coefficient (R2) of linear regression between
in situ measured gravimetric vegetation water content (mg) and the vegetation water content (VWC).
Regressions were performed over the whole growing season, for only the growth stages (i.e., DOY ≤ 160),
and for only the senescence stages (i.e., DOY > 160).

DOY. Slope Intercept R2

Whole (100–226) 0.12 0.39 0.26
Growth (≤160) 0.02 0.74 0.21

Senescence (>160) 0.20 0.11 0.95
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4. Discussion

This study represents a direct attempt to retrieve the gravimetric vegetation water content (mg)
under controlled conditions at the field scale over an entire growing season. The retrieved mg values
agree highly with the mg reported by Grant et al. [18] for crop vegetation on global scale where mg

showed a mean and STD of 0.54 and 0.18, respectively. They used the effective medium approach [38,39]
to estimate the mg from L-band SMOS data. This approach calculates the canopy opacity (τ) based on a
canopy structure coefficient, the wet biomass per area, the vegetation density, the wave number in air,
the imaginary part of the vegetation dielectric constant, and the incidence angle [18,38]. Concerning
the temporal evolution of our retrieved and in situ measured mg, the study of Grant et al. [20] derived
mg from SMOS L-band optical depth (τ) values for the whole of 2010 over a coniferous forest in the
U.S. and showed that the mg values stay relatively constant over the year with values around 0.8.
This confirms our finding that when the ratio between the water inside the plant and the wet biomass
does not change (like during the vegetative growth stages), mg is more or less unaffected because it
directly represents this ratio. At the local scale, Wigneron et al. [37] found that mg varied between 0.74
and 0.84 over the whole growing season (without the senescence stages) of a soy bean field. This is
in good agreement to the findings of our study where mg is generally stable during the vegetative
growth stages of the winter wheat. Finally, on the basis of published reports about vegetation water
content for different vegetation types (i.e., prairie grass, corn, soy beans, and others), Schmugge and
Jackson [2] outlined that mg varies between 0.6 and 0.8 for green vegetation, which was also the case
in our study. Regarding the decrease of the retrieved and in situ measured mg after DOY 160, such
a behavior of mg was also observed by Mätzler [40]. The author showed the temporal evolution of
the dry matter fraction (md) over the whole growth cycle of an oat vegetation (with senescence stages
included), which increased after the vegetation reached its highest VWC. This increase in md was
caused by a decrease in VWC, where md reached a peak value of about 0.9 when the vegetation was
fully senescent. Assuming that the mg can be calculated from md (see Section 2.2.1), this study confirms
our findings that the mg can decrease after peaking of VWC to values around 0.1.

One unexpected result during our study was that our proposed approach underestimated mg for
the period between DOY 100 and 120 and overestimated mg for DOY ≥ 180 in comparison to the in situ
measured mg. Indeed, when focusing on the δ parameter as the main reason for this behavior already
small changes of δ result in relatively large changes in retrieved mg (especially when the vegetation
available water content was high) (see Figure 2 in Section 3.2). This was also confirmed by the study of
Wigneron et al. [13] who observed that the δ of soy bean leaves had a distinct impact on the thermal
emission especially for lower frequencies (i.e., L- and C-band). In addition, the study of Choe and
Tsang [41] showed that for a cylindrical scatterer (i.e., stalk-dominated corn) changes of δ between
0.01% and 0.1% already led to significant changes in the measured emissivity at the L-band frequency.
Hence, one possible solution to avoid these effects could be to use a daily variable δ or adapting δ
according to the main phenological stages in the retrieval scheme. A daily variable δ was, for example,
measured and retrieved by Wigneron et al. [37] over the whole growing season of a soy bean canopy
where δ varied between 0.25 × 10−3 and 2.5 × 10−3. A daily variable δ could also be retrieved from
the radar vegetation index, as suggested by Fink et al. [5]. Another reason for the underestimation
and overestimation of mg could have also been the assumptions made in the model of Ulaby and
El-Rayes [3] (i.e., to assume a constant value for the temperature, salinity, and density of dry vegetation
material (p = 0.33 g cm−3)), which were not able to describe the real conditions of the vegetation layer
during the respective phenological stages. In this regard, Grant et al. [42], found a very small influence
of temperature on εveg, but further tests are needed to investigate this option further.

Finally, to assume one static dielectric mixing model over the whole growing period of the winter
wheat is also a strong simplification as the vegetation structure is actually changing (i.e., from a more
leaf dominated vegetation in the beginning to a stronger stem-dominated vegetation during the main
growing stages and the senescence phase). However, in our study it seems appropriate to describe
the vegetation by the inclusion type which represents the dominant vegetation structure (i.e., the vn
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dielectric mixing model for the stalk-dominated wheat vegetation) as the linear regression between the
retrieved and in situ measured mg showed the closest fit to the optimum correlation line and a slightly
smaller RMSE.

Future work will be directed towards further improving and validating the proposed mg-retrieval
approach by enabling a daily-varying or a phenology-adapted δ-retrieval. In addition, we will also
investigate the possibility to analyze the relationship between the vegetation height and the δ-parameter
allometrically, in order to have a dynamic δ along the growing season. Qin et al. [43], for example,
studied the reproductive allocation of wheat plants for different growing densities and analyzed the
relationship between the grain mass and vegetative mass by using an allometric function. They found
a high correlation (i.e., R2 > 0.9) between these two variables.

Moreover, the use of a more sophisticated objective function (i.e., not only using the squared
difference between the measured and modelled τ as a decision criterion) could potentially improve the
performance of the approach and could be investigated.

In addition, different τ-models, including polarization and/or angle-dependency on τ, could be
tested (e.g., [32,44,45]). The τ-model of Schmugge and Jackson [2] was originally formulated to be
used only with a nadir τ-parameter. Using a polarimetric τ for different incidence angles at the
same time would certainly help to increase the accuracy of mg retrievals and may also open the
opportunity to use daily retrieved δ-parameters as mentioned above, since there would be more
degrees of information [46,47]. At the moment we only use one polarization (i.e., V-polarization) and
one incidence angle (i.e., 40◦), which does not contain enough information to retrieve two variables
simultaneously (i.e., mg and δ) (see Section 2.2.1).

Concerning the potential of using our approach for other crop types and also at larger scales,
it remains a subject of further research. We established controlled field conditions to investigate the
different influences on τ and to develop an algorithm to extract mg from τ. All the findings made
during our study are only valid for winter wheat vegetation at a specific field and growing season.

Our recommendation for future studies would be to also use this attenuation-based approach
for other crop types at the field scale and to continue the validation of the retrieved mg with in situ
measured mg over longer observation periods and at different locations. Assessing the performance of
our method at the regional or global scale is challenging due to limited availability of representative in
situ validation data sets for mg. In the event of having global coverage of radiometer-derived τ-values
(e.g., estimated from SMOS or SMAP), LIDAR-based vegetation heights, and robust estimates for δ
(e.g., radar-based as proposed by Fink et al. [5]), there might be an opportunity to use the proposed
approach to generate global maps of mg.

5. Summary and Conclusions

In this study, an approach was developed and applied to retrieve the gravimetric vegetation water
content (mg) of a winter wheat field over an entire growing season from L-band microwave radiometer
observations (using V polarization data only). It is based on the inversion of a physical modeling
framework describing the dependency of microwave radiation attenuation on vegetation height (d),
vegetation volume fraction (δ), and mg. The approach includes the Debye–Cole dual dispersion
dielectric model of Ulaby and El-Rayes [3] as well as different vegetation dielectric mixing models [19].
The δ-parameter has a distinct impact on the microwave emission originating from the vegetation in
the L-band and is another key variable for absorption inside the canopy [13]. We optimized δ to a
constant value for this study, and analyze the impact of this assumption. The retrieved mg agreed well
with the in situ measured mg (see Section 3.1). Their temporal agreement was high with a correlation of
R2 > 0.8. As expected, the vertical needles (vn) dielectric mixing model showed the best performance
for the stalk-dominated wheat vegetation, with the closest fit of the linear regression to the optimum
correlation line and a slightly smaller RMSE (see Figure 4 and Table 2 in Section 3.1).

In addition, the results implied that the assumption of a constant vegetation volume fraction (δ)
over the growing season leads to an underestimation of mg during the beginning of the vegetation
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growing phase and an overestimation of mg during the senescence stage. To better understand this,
a sensitivity analysis was performed on the mg retrieval by varying the δ-input. It showed that small
changes in δ already result in relatively large changes in retrieved mg, especially when the actual water
content within the vegetation is high. To improve the retrieval of mg, δ could be defined on a daily basis
or be adapted for dominant phenological stages (see Section 4). Additionally, no in situ measurements
of δ or radar or LIDAR measurements (from which to estimate δ [5]) were available during the field
experiment (see Section 2.2.1). However, results show that the assumption of a constant δ seems to
be valid for the main growth stages of winter wheat (i.e., between DOY 120 and 180) (see Figure 4 in
Section 3.1. and Figure 5 in Section 3.2).

Moreover, our comparison between gravimetric (mg) and area-based (VWC) vegetation water
content implied that mg reflects the plant internal water content and is more closely related to the
actual amount of water per unit of fresh biomass than VWC (see Figure 6 in Section 3.3). However,
this finding cannot be generalized to a larger scale, as our experiment was only conducted at the field
scale for a specific crop (winter wheat) and the results are therefore only valid for the presented data
set. Still, results show that plant internal water is high during the growth stages of the vegetation and
low during senescence. These results highlight that mg is mainly the vegetation water content of the
plants relative to their biomass amount. If both the biomass and the accompanying amount of water in
the plant change (i.e., increase or decrease) at the same rate (such as, e.g., during the growing phase,
for DOY 100-160), mg does not change much, whereas VWC does increase due to the overall higher
amount of water as a consequence of the higher biomass per area. When the biomass still continues to
increase (or stays constant) and the VWC decreases (e.g., during the senescence phase, for DOY > 160),
mg begins to decrease as well.

We found that in situ measured structure parameters as vegetation height or biomass did not
have a clear influence on mg (results not shown). Concerning the influence of the dielectric mixing
model on the mg-retrieval, it was shown that it is appropriate to describe the vegetation over the whole
growing season by the inclusion type which represents the dominant vegetation structure, i.e., vertical
wheat stalks in our case. This corresponds to the vn mixing model.
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