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Abstract: In this research, we developed and evaluated a new scheme for merging soil moisture
(SM) retrievals from both passive and active microwave satellite estimates, based on maximized
signal-to-noise ratios, in order to produce improved SM products using least-squares theory.
The fractional mean-squared-error (fMSE) derived from the triple collocation method (TCM) was used
for this purpose. The proposed scheme was applied by using a threshold between signal and noise at
fMSE equal to 0.5 to maintain the high-quality SM observations. In the regions where TCM is unreliable,
we propose four scenarios based on the determinations of correlations between all three SM products of
TCM at significance levels (i.e., p-values). The proposed scheme was applied to combine SM retrievals
from Soil Moisture Active Passive (SMAP), Advanced Scatterometer (ASCAT), and Advanced
Microwave Scanning Radiometer 2 (AMSR2) to produce SMAP+ASCAT and AMSR2+ASCAT
SM datasets at a global scale for the period from June 2015 to December 2017. The merged SM
dataset performance was assessed against SM data from ground measurements of international soil
moisture network (ISMN), Global Land Data Assimilation System-Noah (GLDAS-Noah) and ERA5.
The results show that the two merged SM datasets showed significant improvement over their parent
products in the high average temporal correlation coefficients (R) and the lowest root mean squared
difference (RMSE), compared with in-situ measurements over different networks of ISMN. Moreover,
these datasets outperformed their parent products over different land cover types in most regions of
the world, with a high overall average temporal R and the lowest overall average RMSE value with
GLDAS and ERA5. In addition, the suggested scenarios improved SM performance in the regions
with unreliable TCMs.

Keywords: soil moisture; merged datasets; the triple collocation; least-squares theory; remote sensing

1. Introduction

Soil moisture (SM) is a critical factor in atmosphere-land interactions, energy fluxes, water fluxes
control, and carbon exchange. Therefore, an understanding of SM dynamics informs applications in
agricultural research, hydrology, drought monitoring, and climate change monitoring [1–4]. The most
widely used methods to obtain SM data are ground measurements, remotely sensed retrieval data,
and values extracted from surface models [5,6].
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In satellites, there are two common methods for retrieving SM, including active and passive
microwave instruments working at frequencies ranging from 1 to 10 GHz [7]. In the last two decades,
Active and passive microwave satellites have been widely used to retrieve surface SM variations with
reliable performance at global and regional scales, and are sensitive to SM variations over different land
covers. Passive satellites include Advanced Microwave Scanning Radiometer 2 (AMSR2), Soil Moisture
and Ocean Salinity (SMOS), and Soil Moisture Active Passive (SMAP). The Advanced Scatterometer
(ASCAT) is considered an active satellite, and is loaded on various platforms including the Metop-A,
Metop -B, and Metop-C satellites [8–10].

In previous research, the passive and active microwave SM datasets were evaluated and validated
against in-situ measurements, against land surface models, and by applying the triple collocation
method (TCM) that accounts for different land covers. The results indicate that over sparsely and
moderate vegetated regions, the passive microwave datasets showed higher performance on the
reference datasets than the active products. Over densely vegetated areas, the active microwave SM
product achieved the highest performance on reference datasets than passive SM products [11–15].
Therefore, a scheme to merge both active and passive microwave SM products may add value for an
improved global SM product over various vegetation types.

Land surface models are available on a global scale, but their quality is not finely characterized,
due to the errors in the modeling itself, requiring continuous updates when observations available [14,16].
In most of the existing methods to merge satellite SM products is implemented by algorithms that
maximize correlation or decrease the error between satellite data and the specific land surface model.
Therefore, the accuracy of the merged SM dataset is based on the accuracy of this model itself and
shifts when another land surface model is deployed [13,17,18].

In relation to noise estimates to the SM sensitivity individually using fMSE, not only removes the
error patterns based on the spatial sensitivity to the scaling reference, it also provides a quantitative
quality assessment for actual data. The levels of error are usually highest in regions with a strong SM
signal or when the SM dataset is more sensitive to changes within it. Conversely, the lower levels of
error are expected in the regions with a very low SM sensitivity or very low SM variability, such as
the desert areas. Error levels are considered important for certain applications; therefore, data quality
cannot be investigated using absolute errors alone [19,20]. However, some previous studies merged
satellite SM products based on error variance derived from the triple collocation method [21,22].

This study develops and evaluates a novel scheme for merging SM retrievals. Advanced
Scatterometer (ASCAT), Soil Moisture Active Passive (SMAP), and Advanced Microwave Scanning
Radiometer 2 (AMSR2) data for period from June 2015 to December 2017 were merged to produce
SMAP+ASCAT and AMSR2+ASCAT SM datasets based on maximized signal to noise ratios using the
weighted averaging method.

2. Datasets

In this research, in order to implement the proposed scheme, we used different datasets in the
period from June 2015 to December 2017 include satellite SM datasets (SMAP, AMSR2, and ASCAT),
in-situ SM observations (ISMN), reanalysis SM products (GLDAS and ERA5), land cover dataset.
All the datasets were resampled to a resolution of 0.25◦ which is often adopted by the reanalysis
datasets. The nearest-neighbor interpolation method was used in the resampling process [23–25].
The details about these datasets will be presented in the following subsections.

2.1. Satellite SM Datasets

In this work, the global daily SM retrievals of SMAP L3 Radiometer version 6 with grid resolution
of 36 km was used as one of the parent SM products for the SMAP+ASCAT merged dataset. This data
is available freely online (https://search.earthdata.nasa.gov). The National Aeronautics and Space
Administration (NASA) launched the SMAP in January 2015 as the first Earth Observation (EO)
satellite [26,27]. The SMAP mission was designed to covers the globe every three days and to retrieve

https://search.earthdata.nasa.gov
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SM over moderate or low vegetation regions within an accuracy of 0.04 m3m−3. The overpass times for
the equator, according to solar time, for this satellite are 6:00 p.m. in the ascending mode and 6:00 a.m.
in the descending mode [28,29]. The SMAP soil moisture data set was filtered for SM values lower
than 0.02 m3m−3and higher than 0.50 m3m−3, when surface soil temperature < 273.15, and based on
the SM retrieval quality flag when was set as “recommended for retrieval” [13,30].

The global daily SM retrievals LPRM AMSR2 X-band with grid resolution a 25 was used as
one of the parent SM products for AMSR2+ASCAT merged product. In May 2012, the Japan
Aerospace Exploration Agency (JAXA) launched the AMSR2 SM sensor loaded on the GCOM-W1
platform [31,32]. The AMSR2 satellite mission follow-up of Aqua AMSR-E since October 2011
to maintain on long-temporal of satellite observations [33]. The overpasses times of the equator
according to solar time for this satellite are 1:30 a.m. and 1:30 p.m. in descending and ascending
modes, respectively. The AMSR2 SM datasets can be derived from two algorithms include the Land
Parameter Retrieval Model (LPRM) and JAXA [15,34]. This data can be accessed freely through
(https://search.earthdata.nasa.gov). The pixels of AMSR2 product are masked if the surface soil in a
freezing state (i.e., soil temperature less than 273.15 K).

The ASCAT SM data record that available through the product H113 with grid resolution 12.5 km
was used as one of the parent SM products for both SMAP+ASCAT and AMSR2+ASCAT merged
datasets. This data is available freely online (http://hsaf.meteoam.it). The ASCAT is an active microwave
radar working at C-band (5.255 GHz) using the TU Wien algorithm. The ASCAT was operated by
the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT). At present,
ASCAT loaded on several platforms include Metop-A (launched in October 2006), Metop-B (launched
in September 2012), and Metop-C (launched in November 2018) satellites [35]. The H113 dataset was
generated based on Metop-A and Metop-B Level 1b backscatter datasets [36]. The unit of ASCAT SM
dataset was translated from the degree of saturation (%) to volumetric unit (m3m−3) by using soil porosity
derived from the database of world soil for the top layer (0–0.40 m) (http://www.esa-soilmoisture-cci.org).
The pixels of ASCAT SM Product were masked if the probability of snow cover/frozen and retrieval
error > 50% using surface state flag data [5,14,37].

2.2. Reanalyzed SM Datasets

The ground SM observations can be considered the ideal reference dataset to evaluate the
performance of SM datasets [38,39]. However, the ground observations have some challenges due to
mismatches between it and the footprints from large scale satellite measurements and the limitations
of spatial coverage [40–42]. To overcome these challenges, the SM retrievals can be assessed by a
comparison with reanalyzed datasets [43].

The Global Land Data Assimilation System (GLDAS) was developed by the National Oceanic and
Atmospheric Administration (NOAA) and NASA. The GLDAS-Noah model provides time series (3-h)
SM data for four layers with different depths at a spatial resolution of 0.25◦ [44]. The SM of the top
layer (0–10 cm) from GLDAS Noah version 2.1 was used as one of the triple collocation method (TCM)
datasets and to assess the performance of merged and parent SM datasets. GLDAS Noah has been
used as a reference dataset in several studies for blending satellite SM datasets [13,22,45]. Moreover in
several studies, the top 10 cm layer of SM from reanalyzed products was used to validate and improve
SM retrievals for different satellites [35,46].

The daily averaged of the ERA5 reanalysis SM dataset with spatial resolution 0.25 in the period
from June 2015 to December 2017 was used to evaluate the performance of merged and parent SM
datasets. The European Center for Medium-Range Weather Forecasts (ECMWF) provides a global
ERA5 atmospheric reanalysis to the public. In previous studies, the evaluation of ERA5 on global scale
proved that the performance of ERA5 has reliability in the absence of ground measurements [47–49].
More information about this product is available at https://apps.ecmwf.int/datasets/.

https://search.earthdata.nasa.gov
http://hsaf.meteoam.it
http://www.esa-soilmoisture-cci.org
https://apps.ecmwf.int/datasets/
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2.3. In-Situ SM Dataset

The ground SM measurements from various networks of the international soil moisture network
(ISMN) were used to evaluate the performance of merged and parents SM products. The locations of
ISMN ground stations used in this study are displayed in Figure 1.
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Figure 1. The locations of the ISMN validation stations used in this study at the global scale.

The ISMN is a website that stores and organizes the SM measurements form various in-situ stations
of different global networks and make it freely through (https://ismn.geo.tuwien.ac.at). The ISMN data
collected from approximately 1400 ground stations. The SM measurements of ISMN are important for
evaluating the performance of SM retrievals from satellites and land surface models and for studying
the climate [15,40,50]. The main features of ISMN validation sites used in this study are listed in Table 1.

Table 1. The main characteristics of ISMN validation sites were used in this study.

Network Name Location No. of Stations Depth (cm) Type of Sensor References

PBO-H2O USA 74 0–5 GPS Larson et al. [51]

SCAN USA 46 5 Hydra-Probe analog
(2.5 Volt) Schaefer et al. [52]

SNOTEL USA 51 5 Hydra-Probe analog
(2.5 Volt)

https://www.wcc.
nrcs.usda.gov/

USCRN USA 29 5 Stevens-Hydra-Probe
II Sdi-12 Bell et al. [53]

SMOSMANIA France 5 5 Theta-Probe ML2X Albergel et al. [54]
HOBE Denmark 20 0–5 Decagon-5TE-A Jensen et al. [55]

OZNET Australia 15 0–5 Stevens-Hydra-Probe Smith et al. [56]

2.4. Land Cover Dataset

The quality of SM data from both satellite and land surface model changes according to land
cover types [14,57]. In this study, The MODIS (Moderate Resolution Imaging Spectroradiometer)
land cover product (MCD12Q1) with grid resolution 0.5 km was used to assess the performance of
merged and parents SM products over different land covers on a global scale. MCD12Q1 product
provides a yearly land cover on a global scale from 2001 to the present available freely for users through
(https://search.earthdata.nasa.gov/) [58]. Figure 2 shows a global map of the MODIS land cover.

https://ismn.geo.tuwien.ac.at
https://www.wcc.nrcs.usda.gov/
https://www.wcc.nrcs.usda.gov/
https://search.earthdata.nasa.gov/
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Figure 2. The global map of the MODIS land cover.

3. Methods

A flowchart of the proposed blending scheme of SM datasets is shown in Figure 3. The blending
scheme is based on maximizing signal to noise ratios. The fractional mean-squared-error (fMSE)
estimates derived by the TCM was used for weight estimation based on the least-squares method.
The proposed scheme was applied by using a threshold between signal and noise at fMSE equal to
0.5 to maintain the high-quality SM observations. Based on the correlations determinations between
all three SM datasets of TCM at significance levels (i.e., p-values), we proposed four scenarios in
the regions of unreliable TCM. These scenarios include using passive SM product only or using an
active SM dataset only or using an unweighted average or exclude the pixels without any retrieval
skills. The proposed merge scheme was applied to SM retrievals from ASCAT, SMAP, and AMSR2
in the period from June 2015 to December 2017 to produce SMAP+ASCAT and AMSR2+ASCAT SM
datasets. The two merged SM datasets were evaluated against SM estimates from in situ observations
of ISMN and reanalysis datasets (GLDAS and ERA5). More details about the merging scheme in the
following sub-sections.
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3.1. Maximized SNR for Merging SM Datasets

There are different ways to define optimality. In this research, the least-squares method was used
to determine the optimal weight. Least-squares is widely used for data assimilation, since it was
developed by [59,60]. The least-squares method deploys a weighted average method for calculating
the optimal weights for parent of the merged datasets [22,61,62]. The original formula of the weighted
mean can be written as,

SMc =

∑n
i = 1 Wi∗SMi∑n

i = 1 Wi
(1)

where SMc is the averaged SM estimate; SMi is the SM estimates for different datasets; and Wi are
the weights given to SM estimates when the output product is blended as a linear combination of
single products. To merge the independent uncorrelated observations of active and passive satellite
SM, the original Equation (1) of merging datasets can be expressed as,

SMc = WacSMac+WpaSMpa (2)

where Wac and Wpa are the weights of active and passive satellite SM datasets; and SMac and SMpa

are the values of active, and passive SM retrievals, respectively.
To overcome on the dependency of the relative estimated weights for merged product on a specific

model, the weights are given for satellite datasets were calculated, based on maximizing signal to
noise ratios of SM estimates. The fractional mean-squared-error (fMSE) was used for this purpose.
Where fMSE has a normalized representation of the signal to noise ratio (SNR) and it has a specific range
(i.e., from 0 to 1). A higher/lower fMSE indicates a noisier/clearer signal of the SM value. When the
fMSE is equal to 0, it means that the SM observation is free from noise. When the fMSE is equal to 1, it is
means the SM observations have only noise. Also, the SM signal becomes stronger than its noise when
the fMSE value is lower than 0.5 [13,20]. The weights can be determined using the following equations,

Wac =
fMSEpa

fMSEac+fMSEpa
(3)

Wpa =
fMSEac

fMSEac+fMSEpa
(4)

where Wac and Wpa are the weights of active and passive SM products respectively; fMSEac and
fMSEpa are the fractional mean squared errors of active and passive SM datasets respectively.

To maintain the high-quality SM observations, the proposed scheme was applied using a threshold
between signal and noise at fMSE equal to 0.5.The different cases for using fMSE threshold to maintain
high-quality SM retrieval data are listed in Table 2.

Table 2. The different cases for using fMSE threshold to maintain high-quality SM retrieval data.
Note that, the threshold value was chosen at fMSE equal to 0.5.

Active Passive Decision

fMSE < 0.5 fMSE < 0.5 Weighted average method

fMSE > 0.5 fMSE > 0.5 Weighted average method

fMSE > 0.5 fMSE < 0.5 Passive only

fMSE < 0.5 fMSE > 0.5 Active only

The weighted average method was used only when the signal of both active and passive exceed
the noise (i.e., fMSE < 0.5) or when the noise of both them exceed the signal (i.e., fMSE > 0.5). When the
signal of one parent dataset exceeds the noise (i.e., fMSE < 0.5) and the noise for other dataset exceed
the signal (i.e., fMSE > 0.5), we take only the dataset the strong signal.
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Moreover, prior to merging datasets using the estimated weights, the systematic differences
between the datasets were removed. This was achieved by rescaling SM products into a mutual data
space. In this research, the fMSE estimates and rescaling coefficients were derived using TCM [20,63–65].

3.2. Triple Collocation Method

The triple collocation method (TCM) was utilized to determine the fMSE and rescaling coefficients
of the active and passive SM datasets. TCM considers a promising method to validate remotely sensed
SM datasets [63,65]. Where the random error variance and SNR of these datasets can be estimated
on a larger scale without the need for ground reference information [66]. Furthermore, it provides
an optimal solution for rescaling SM datasets take into consideration the individual random error
properties and match the variability of the jointly observed signal [67]. Further details about TCM
derivation are presented in previous research [20,68].

To remove the dependence of the scaled error pattern on the spatial climatology of the selected
scaling reference, Draper et al. [68] suggested normalizing the estimates of the un-scaled error variance
with the variance of corresponding datasets. The fMSE of active and passive SM datasets can be
determined as,

fMSEac =
1

1 + SNRac
(5)

fMSEpa =
1

1 + SNRpa
(6)

where SNRac and SNRpa are the signal to noise ratios of active and passive SM products respectively.
The signal to noise ratios for active and passive SM datasets can be calculated using the following formulas,

SNRac =
σac,pa σac,mo

σ2acσpa,mo
(7)

SNRpa =
σpa,ac σpa,mo

σ2paσac,mo
(8)

where σac,pa , σpa,mo and σac,mo are the covariance of datasets; σ2
ac and σ2

pa are the variance of the
active, and passive datasets, respectively.

Draper et al. [69] recommended normalization of the SM datasets to remove systematic differences
between them, based on one reference dataset. To remove the systematic differences between SM
datasets, the rescaling coefficients are estimated as,

BRESpa =
σac,mo

σpa,mo
(9)

SMRESpa = BRESpa(SM Pa − SMPa)+SMac (10)

where BRESpa is a coefficient used to linearly rescaling of the passive against the active SM dataset;
SMPa and SMac are the average of SM retrieval for active and passive datasets respectively. The dataset
used as a reference in rescaling process does not matter, as this does not affect the rescaled dataset or
the merged time series.

3.3. Blending of Unreliable TCM Observations

TCM is deemed unreliable due to the limited numbers of observations (i.e., <100). This is caused
by one or more of SM datasets in the TCM triplet having retrieval issues such as spatial coverage
gaps due to masking procedures or radio frequency interference (RFI), the difference in overpass
times, and the lower time-series coverage. TCM results can also be unreliable if one or more SM
datasets of the TCM triplet are correlated insignificantly to other datasets as indicated by a student’s
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t-test [42,65]. The area of unreliability may be found in certain regions, such as over desert regions and
at high latitudes.

In this work, we proposed four scenarios to increase the temporal and overall spatial coverage of
merged datasets in regions where the TCM is unreliable. These scenarios include passive SM products
only or active SM datasets only, an unweighted average, or excluded pixels. The selection of a suitable
scenario is based on the retrieval quality of the SM dataset. The correlations between all three SM
datasets in the TCM (i.e., passive and active products, active product and reanalysis, passive product
and reanalysis) was calculated at significance levels (i.e., p-value < 0.05) as an indication for retrieval
quality. The criteria for choosing the different scenarios in unreliable TCM regions are as follows:

• The active SM retrieval data were used only in the area where the passive product correlates
insignificantly to both model and active product, while the active product is correlated significantly
with the model. Moreover, the pixels of an active SM ware used in the regions where the correlations
of the active product with both, passive product and model are significant, while the passive
product correlates insignificantly with the model.

• The passive SM dataset was used only in the regions where the active correlates insignificantly
with both the model and passive product, while the passive product is correlated significantly
with the model. Also, a passive SM still the best choice, if the correlation of passive with both
active product and model are significant, while the active product correlates insignificantly with
the model.

• The unweighted average was used in the case of, the correlations of both active and passive SM
datasets are significant with the reanalysis, but not with each other. Also, the unweighted average
method outperformed than other methods, if the active and passive SM datasets are correlated
insignificantly with the model but the correlation between active and model is significant.

• Excluded the pixels at which the correlations between all three SM of TCM are insignificant with
each other. Moreover, these pixels showed an insignificant correlation against the independent
reference dataset when applied in both scenarios using a single sensor and an unweighted
mean method.

3.4. Hovmöller Diagrams

The SM strongly varies temporally and spatially. This variability mainly depends on latitude or
longitude and season [23,70]. Hovmöller diagrams were used to study the spatiotemporal variability
of merged and parents SM datasets [14,71,72]. A hovmöller diagram represents the time variability of
spatial data. Where the time is presented on the x-axis and the average values (either overall latitudes
or overall longitudes) of datasets are displayed on the y-axis [73]. In this research, the longitudinal
averages for SM values were used to study the consistent between parents and merged SM products.

3.5. Error Statistics

In this research, the statistical metrics were used to evaluate the merged and parents SM datasets
against reference (in-situ and reanalysis) datasets. These metrics include the Pearson correlation
coefficients (R) and the root mean squared difference (RMSE) [74]. The R and RMSE between SM
datasets and reference datasets are calculated by using the following equations,

R =
E[(SM(t)−E[SM(t)])(SMr(t)−E[SMr(t)])]

σσr
(11)

RMSE =
√

E
[
(SM (t)−SMr(t))

2
]

(12)

where E[·] represents the estimation of the average values, t is the time series of the dataset, SM(t)
represents the SM observations of merged or parent dataset at time t; SMr(t) represents the SM
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observations of reference dataset; σ represents the standard deviation of merged or parent SM dataset;
σr represents the standard deviation of the reference SM dataset.

4. Results

4.1. Spatiotemporal Variability of SM Datasets

The performance of merged datasets can be achieved by constructing hovmöller diagrams.
Hovmöller diagrams of SMAP+ASCAT, AMSR2+ASCAT, SMAP, AMSR2, ASCAT, GLDAS, and ERA5
SM datasets on the global scale are presented in Figure 4. In these diagrams, time is represented on
the abscissa from June 2015 to December 2017 and the latitude from 90◦S to 90◦N is displayed on
the ordinate. These diagrams show that the overall global spatial patterns of all SM datasets agree.
All datasets displayed the same seasonal SM dynamics and SM variations on a global scale. For example,
around the equator, there are clear seasonal changes related to the intertropical convergence zone and
monsoon changes. The seasonal change in the SM dynamic in the last half of 2015 was consistent with
the same seasons in 2016 and 2017. The SMAP+ASCAT and AMSR2+ASCAT merged SM datasets
showed the same spatiotemporal variability of parents (SMAP, ASCAT, and AMSR2) and reanalysis
referenced (GLDAS and ERA5) SM products.
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4.2. Optimal Weighting Factors

The optimal weights indicate the relative contribution of the remotely sensed SM datasets
against each other. Also, the optimal weights provide evidence about the weakness and strengths of
satellite SM products over different land covers. The relative optimal weights of parents SM products
(SMAP, AMSR2, and ASCAT) for SMAP+ASCAT and AMSR2+ASCAT merged datasets are presented
in Figures 5 and 6.
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ASCAT) of the AMSR2+ASCAT merged dataset.

The weights are given for parent (SMAP, ASCAT, and AMSR2) SM products of SMAP+ASCAT
and AMSR2+ASCAT datasets derived from the proposed scheme as discussed. In two merged SM
datasets, the blue color indicates that the majority of the weight comes from the ASCAT product
while the majority of SMAP and AMSER2 weights are represented with red colors. The ASCAT SM
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product was given a high relative weight than SMAP and AMSR2 in their merged products over more
dense vegetation regions (forests, savannas, and crops) (see land cover map Figure 2) which is mostly
concentrated in high-temperature regions below and above the equator. While, the SMAP and AMSR2
are given high relative weight than ASCAT in SMAP+ASCAT and AMSR2+ASCAT merged datasets
over the areas of moderate and less vegetation (grassland, shrub, and desert) (see land cover map in
Figure 2). The analysis of the weights are given for both SMAP and AMSR2 in their merged datasets
over various land cover we found that the SMAP was given a higher relative weight than AMSR2.

4.3. Evaluation of Merged SM Datasets

A key objective of the proposed scheme was to develop two merged SM products that outperform
the parent products. Moreover, the selection of the SM dataset for some critical applications is based on
their quality or accuracy. Therefore, the performance of SMAP+ASCAT and AMSR2+ASCAT SM
merged products were assessed by a comparison with independent reference datasets include in-situ
measurements, GLDAS, and ERA5 using R and RMSE metrics.

4.3.1. Validation of Merged Products against In-Situ Measurements

The SMAP+ASCAT and AMSR2+ASCAT products assessed against SM measurements of ISMN
networks using correlations coefficients analysis and RMSE to fully understand how the merged
products perform relative to parents products. Also, the parents (SMAP, AMSR2, and ASCAT) products
were evaluated against the same ISMN networks which indicate the strengths points of these products
and how contribute to merged products. The merged and parents datasets compared with the ground
stations of different six networks available from ISMN and concentrated over America and Europe
which include PBO-H2O, SNOTEL, SCAN, HOPE, SMOSMANIA, and USCRN. The results of overall
averages of R and RMSE for the comparison of merged and parents SM datasets with the in-situ SM
observations of different ISMN networks are listed in Table 3.

Table 3. The results of overall averages of R and RMSE for the comparison of merged (SMAP+ASCAT
and AMSR2+ASCAT) and parents (SMAP, ASCAT, and AMSR2) SM datasets with the in-situ SM
observations of different ISMN networks. Note that, p-value < 0.01.

Network
Name

SMAP ASCAT AMSR2 SMAP+ASCAT AMSR2+ASCAT

R RMSE
(m3m−3)

R RMSE
(m3m−3)

R RMSE
(m3m−3)

R RMSE
(m3m−3)

R RMSE
(m3m−3)

PBO-H2O 0.73 0.058 0.70 0.075 0.67 0.096 0.75 0.057 0.73 0.066
SCAN 0.69 0.068 0.62 0.090 0.53 0.132 0.70 0.067 0.66 0.089

SNOTEL 0.64 0.095 0.62 0.101 0.53 0.133 0.68 0.088 0.66 0.095
USCRN 0.72 0.083 0.64 0.095 0.57 0.126 0.73 0.079 0.69 0.089

SMOSMANIA 0.75 0.088 0.64 0.113 0.57 0.192 0.78 0.082 0.72 0.101
HOBE 0.73 0.097 0.63 0.143 0.60 0.233 0.74 0.084 0.68 0.131

OZNET 0.84 0.063 0.78 0.071 0.74 0.092 0.85 0.052 0.79 0.063
Average 0.73 0.079 0.66 0.098 0.60 0.143 0.75 0.073 0.70 0.091

The overall averages of correlation coefficients for all ISMN networks were 0.75, 0.70, 0.73, 0.66,
and 0.60 for SMAP+ASCAT, AMSR2+ASCAT, SMAP, ASCAT, and AMSR2, respectively. In terms of
overall average correlations values, the SMAP+ASCAT and AMSR2+ASCAT SM datasets showed
higher overall average R values with in-situ measurements over all different six ISMN networks than
either of the parents datasets (SMAP, AMSR2, and ASCAT).

The overall averages of RMSE for all ISMN networks were (0.073, 0.091, 0.079, 0.098, and 0.143)
m3m−3 for SMAP+ASCAT, AMSR2+ASCAT, SMAP, ASCAT, and AMSR2, respectively. In terms of
overall average RMSE values, the SMAP+ASCAT and AMSR2+ASCAT SM products showed the
lowest overall average RMSE values with in-situ measurements over all different six ISMN networks
than either of the parents datasets (SMAP, AMSR2, and ASCAT).
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To analysis the full performance of two merged datasets comparing with parent datasets we
constructed the box plots. The overall performance of merged and parents SM products against the
in-situ SM observations of different six ISMN networks are displayed on box plots of Figures 7 and 8.
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against the in-situ SM observations of different ISMN networks: (a) PBO-H2O; (b) SNOTEL; (c) SCAN;
(d) HOPE; (e) SMOSMANIA; (f) USCRN; and (g) OZNET.

The overall performance of SMAP+ASCAT and AMSR2+ASCAT datasets outperformed the
parents datasets (SMAP, ASCAT, and AMSR2) over different six ISMN networks. These improvements
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are displayed in box plots of correlations coefficients for merged and parents’ products against ground
measurements (see the median, the 3rd quantile Q3, and the 1st quantile Q1).

4.3.2. Evaluation of Merged Products against Modeling Data

Although, SM measurements of ground stations consider more robust reliable methods to assess
the performance of the satellite SM retrieval data, but still has limitations in the temporal and spatial
coverage all over the world. Also, the ground observations have some challenges due to mismatches
between it and the footprints from large scale satellite measurements and the limitations of spatial
coverage [40–42]. Therefore, to overcome these problems and fully evaluate the merged and parents
SM datasets over different land covers, the comparison with reanalysis becomes the alternative
solution. The merged and parents SM products were assessed by comparing it with GLDAS and ERA5
reanalysis datasets using R and RMSE metrics. The spatial distribution of differences in correlation
coefficients (against modeling datasets) between merged (SMAP+ASCAT and AMSR+ASCAT) and
parents (SMAP, AMSR2, and ASCAT) SM datasets are displayed in Figures 9 and 10.
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Note that, com1 refer to SMAP+ASCAT product.
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between merged (AMSR2+ASCAT) and parent (AMSR2 and ASCAT) SM datasets, where (Rcom2 minus
RAMSR2) (first row), (Rcom2 minus RASCAT) (second row): (a,b) for GLDAS and (c,d) for ERA5.
Note that, com2 refers to the AMSR2+ASCAT dataset.
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The SMAP+ASCAT and AMSR2+ASCAT are achieved improvement in temporal correlations
coefficients with GLDAS and ERA5 outperforming the parents datasets overall the world.
These correlations improvements spatially distributed over different land cover types of all most areas
of the world according to the spatial weights patterns of parents’ datasets. Over more dense vegetation
regions (forests, savannas, and crops) the SMAP and AMSR2 are displayed high R differences with
their merged datasets. Over these areas, the SMAP and AMSR2 were given the lower relative weights
than ASCAT products for merged products. Conversely, over moderate and less vegetation regions
(grassland, shrub, and desert) the ASCAT showed high R differences than their merged products.
Over these regions the ASCAT was given the lowest relative weights than SMAP and AMSR2 products
in their merged products. Although, the GLDAS is used as one of three datasets of TCM to calculate
fMSE however the SMAP+ASCAT and AMSR2+ASCAT SM products showed better performance
with ERA5 exceeds the performance with GLDAS. Box plots of correlation coefficients of merged and
parents SM datasets against the modeling SM products are presented in Figures 11 and 12.
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Figure 12. Box plots of correlation coefficients of merged (AMSR2+ASCAT) and parent (AMSR2 and
ASCAT) SM datasets against the modeling SM products (GLDAS and ERA5): (a) GLDAS; and (b) ERA5.

Box plots of correlations coefficients for SMAP+ASCAT, AMSR2+ASCAT, SMAP, ASCAT,
and AMSR2 products against GLDAS and ERA5 references datasets (see the median, the third
quantile Q3, and the first quantile Q1) outperformed the merged datasets their parent datasets all over
the world. The overall averages of temporal correlations coefficients for two merged and parents SM
datasets against the modeling SM products are presented in bar graphs of Figure 13.
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Figure 13. Bar graphs for the overall averages of temporal correlations coefficients for two merged and
parents SM datasets against the modeling SM products: (a) GLDAS; and (b) ERA5.

In terms of overall average correlations coefficients values, the SMAP+ASCAT and AMSR+ASCAT
merged SM datasets showed a high correlation with GLDAS and ERA5 which outperform the parents
SM datasets (SMAP, AMSR2, and ASCAT).

In this study, the second statistics metric was used to assess the performance of merged products is
RMSE. Box plots of RMSE of merged (SMAP+ASCAT and AMSR+ASCAT) and parents (SMAP, AMSR2,
and ASCAT) SM datasets against the modeling (GLDAS and ERA5) SM products are presented in
Figure 14.
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Figure 14. Box plots of RMSE of merged (SMAP+ASCAT and AMSR2+ASCAT) and parents
(SMAP, AMSR2, and ASCAT) SM datasets against the modeling SM products (GLDAS and ERA5),
where (SMAP+ASCAT) (first row), and (AMSR2+ASCAT) (second row): (a,b) for GLDAS, and (c,d) for
ERA5. Note that, com1 and com2 refer to SMAP+ASCAT and AMSR2+ASCAT, respectively.
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The overall averages RMSE values with GLDAS SM dataset were (0.081, 0.096, 0.083, 0.105,
and 0.119) m3m−3 for SMAP+ASCAT, AMSR2+ASCAT, SMAP, ASCAT, and AMSR2, respectively.
While the overall averages RMSE values with the ERA5 SM dataset are (0.093, 0.101, 0.101,
0.109, and 0.121) m3m−3 m3m−3 for SMAP+ASCAT, AMSR2+ASCAT, SMAP, ASCAT, and AMSR2,
respectively. In terms of overall average RMSE values, the merged SM datasets showed the lowest
overall average RMSE, with two modeling datasets that outperform the parents SM products. Box plots
of RMSE for SM products against GLDAS and ERA5 datasets displayed outperforming for the merged
datasets on the parents datasets overall the world (see the median, the 3rd quantile Q3, and the 1st
quantile Q1).

In the regions of unreliable triple collocation analysis, as mentioned, we proposed four scenarios
based on the determinations of correlations between all three SM products of TCM at significance levels
(i.e., p-values < 0.05). These scenarios include, either a passive SM dataset only, or using an active SM
dataset only, or using an unweighted average method, or excluding the pixels without any retrieval
skills. The independent ERA5 reference product was used to make sure from the reliability of the
selected scenario according to the suggested criteria. The SMAP+ASCAT and AMSR2+ASCAT merged
products produced by using the scenarios of using the single sensor (i.e., either active only or passive
only) displayed a significant correlation with ERA5. Also, the SMAP+ASCAT and AMSR2+ASCAT
datasets were produced by using an unweighted average scenario in the case of the significant
correlations for both parent SM products with GLDAS, but not with each other, showed a high overall
correlation with ERA5. At high latitudes, the two merged products produced by using an unweighted
average scenario when both active and passive correlate insignificantly with GLDAS, but correlate
significantly with each other, showed a much lower overall correlation value ERA5. The pixels at
which the correlations between all three SM of TCM are insignificant with each other were excluded
from SMAP+ASCAT and AMSR2+ASCAT products. Where these pixels also showed an insignificant
correlation against the ERA5 dataset by applying the scenarios of both using a single sensor and an
unweighted mean method.

5. Discussion

In this research, we introduce a new scheme that takes advantage of both active and passive
satellite SM products to produce improved SM product. This scheme is based on maximizing signal
to noise ratios by using least-squares theory. The proposed scheme does not require a specific land
surface model in combination process like other previous studies, which calculated the relative weights
of parent satellite SM datasets, based on increasing correlations or decreasing error with specific land
surface model [13,17,18,75]. TCM enables us to estimates the sensitivity of the datasets to SM changes
in two terms SNR or fMSE. The weights in the proposed scheme are calculated based on fMSE which
has a specific range values (i.e., from 0 to 1) not like the SNR term [20,68]. The proposed scheme was
applied to SM retrieval from SMAP, AMSR2, and ASCAT datasets to produce SMAP+ASCAT and
AMSR2+ASCAT SM datasets.

The proposed scheme maintains the TCM assumptions and not violated it. These assumptions
include the errors independency, the availability of datasets in the long temporal period, and stationarity
of signal and error estimates [20,64]. To maintain on the assumption of independent errors we selected
triplet items with different derivation because the similarly derived datasets may have partially
correlated errors [13,14]. This was achieved by calculating TCM twice: Once with ASCAT, SMAP,
and GLDAS and once with ASCAT, AMSR2 and GLDAS. While, the assumption of long time series is
necessary to reduce the sampling errors of TCM estimates. It is noted that the better results of TCM
estimates could be obtained with long time series datasets [75]. This was achieved in our study by
applying the proposed scheme using datasets in the period from June 2015 to December 2017 (two years
and a half). In this study, we calculated weights based on the stationarity of signal over the working
time, and the merged datasets showed better results with reference datasets, as we demonstrated
above. However, further studies are recommended, as working studies during different seasons may



Remote Sens. 2020, 12, 3804 17 of 23

give better results due to seasonal variations (i.e., rainfall and temperature changes over most regions
of the world).

In the proposed scheme, the pixels of high retrieval SM quality are only used from the SMAP,
AMSR2, and ASCAT SM products. This was achieved by masking these datasets according to retrieval
quality flags as mentioned in Section 2 before merging it. Also, the used threshold at fMSE equal to
0.5 increased the performance of merged products, where this threshold helps us to select the pixels of
high quality before the merging process.

The proposed scheme maintains on the variability and seasonal dynamics of SM for the parents and
reanalysis references SM products. Where SMAP+ASCAT and AMSR2+ASCAT merged, the products
showed the same spatiotemporal variability of the parents and reference datasets.

In SMAP+ASCAT and AMSR2+ASCAT merged products, the ASCAT product was given a high
relative weight than SMAP over more dense vegetation (forests, savannas, and crops), which mostly
spatially distributed in the high-temperature regions below and above the equator. This is because
the ASCAT has a high signal to noise ratios than SMAP and AMSR2 products over these regions.
Also, these results agree with previous studies that found the performance of C-band active SM
retrievals exceeds the passive SM retrievals in the areas with dense vegetation. Moreover, in extensively
high-temperature areas, the active sensors displayed less susceptibility to surface temperature than
passive sensors. Therefore, over more dense vegetation regions, the ASCAT retrievals showed less
sensitivity to surface temperature change [13,14,23,63,76]. On the other hand, the SMAP and AMSR2
datasets were given high relative weights in SMAP+ASCAT and AMSR2+ASCAT merged datasets than
ASCAT product over the areas of moderate and less vegetation (grassland, shrub, and desert). That is
because the SMAP and AMSR2 showed high signal to noise ratios over these areas than the ASCAT
product. However, previous studies found that the passive SM datasets have better performance over
less and moderate vegetation with achieving the highest signal to noise ratios and the lowest error
variance than an active sensor [13,14]. The SMAP was given a high relative weight than AMSR2 in
their merged datasets because the SMAP has better performance than AMSR2 with achieving a high
signal to noise ratios. However, these results agree with previous studies that found that the SMAP
SM retrievals are outperformed generally the AMSR2 SM data [2,13,15].

The SMAP+ASCAT and AMSR2+ASCAT products showed significant improvements with
achieving the highest R and lowest RMSE values with ground SM measurements over different
networks of ISMN than parents products. These improvements provide evidence about the reliability
of the proposed scheme. The ground measurements have limitations in spatial and temporal coverage
in the world. Therefore, the best alternative to a full evaluation of SM datasets in the world is
comparing it with reanalysis datasets [43]. GLDAS and ERA5 atmospheric reanalysis datasets were
used for this purpose. The SMAP+ASCAT and AMSR2+ASCAT datasets were achieved a high overall
average temporal R-value and less overall average RMSE value with GLDAS and ERA5 references
datasets, which exceeds the parents products s over different land cover types in most regions of
the world. Demonstrating the proposed scheme assures improved performance. The correlations
improvements spatially distributed over different land cover types of all most areas of the world
according to the spatial weights patterns of parents’ datasets. Over more dense vegetation regions, the
SMAP and AMSR2 are given the lowest relative weight than ASCAT products in their merged products,
therefore, displayed high R differences with their merged datasets. Conversely, over moderate and
less vegetation regions the ASCAT was given the lowest relative weights than SMAP and AMSR2
products in their merged products. Therefore, high differences, R, with their merged products were
demonstrated. These improvements change according to the weight differences between parents’
datasets, which provide evidence for the accuracy of the estimated weights.

Although, the GLDAS is used as an item in three datasets of TCM to calculate fMSE,
the SMAP+ASCAT and AMSR2+ASCAT products showed better performance with ERA5 exceeds
the performance with GLDAS, which provides evidence about the independently of merged datasets.
In recent studies [48,49,57], the different generations of commonly used global model products
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were evaluated with observations on global and regional scales. The results showed that the ERA5
atmospheric reanalysis outperforms other models by achieving a high correlation and less RMSE with
ground measurements. Therefore, the high correlation of merged SM datasets with ERA5 gives an
advantage for the proposed scheme.

After applying the weighted-average method in the regions which achieving significant correlations
between all three SM datasets of TCM we proposed four scenarios in the regions of unreliable triple
collocation analysis, based on the determinations of correlations between all three SM products of
TCM at significance levels (p-values < 0.05). These scenarios include, either using a passive SM dataset
only, or using an active SM dataset only, using an unweighted average method or excluding the
pixels without any potential skills. Since the errors of the reference product are not correlated with
those of the satellite retrievals, hence, the quality of the reanalysis dataset does not affect relative
calculated correlations [63,77]. Therefore, the independent ERA5 reference product was used to make
sure from the reliability of the selected scenario according to the suggested criteria. The two merged
products produced by using the scenarios of using the single sensors (i.e., either active only or passive
only), or by using an unweighted average scenario in the case of the significant correlations for both
parent SM products with GLDAS, but not with each other provides prove the proposed scenarios
assures the performance, where these products displayed a significant correlation with ERA5. The two
merged products were produced by using an unweighted average scenario when both active and
passive correlate insignificantly with GLDAS, but where they correlated significantly with each other,
they showed a much lower overall correlation value with ERA5 at high latitudes. The reasons for these
may be due to the unreliability of GLDAS and ERA5 in these regions. In addition, it is known that the
land surface models are characterized by poor quality at very high latitudes [78]. For these reasons,
we kept the pixels at these regions and consider the significant correlation between active and passive
products as an indication the parents products, perhaps still contain valuable SM retrieval data even
though the very low correlation with the ERA5 reference dataset. Therefore, we applied an unweighted
average scenario in these regions. To obtain high-quality merged SM products we excluded the pixels
which don’t have any potential skills. These are achieved by excluding the pixels from SMAP+ASCAT
and AMSR2+ASCAT products at which the correlations between all three SM of TCM are insignificant
with each other. In addition to, these pixels displayed an insignificant correlation against the ERA5
product by applying the scenarios of both using a single sensor and an unweighted mean method.

As discussed in this section the novel proposed scheme improved the performance of satellite SM
retrieval over different land cover in most regions of the world.

6. Conclusions

In this study, we developed and evaluated a new merging scheme, based on maximizing
signal-to-noise ratios that take the advantage of both active and passive satellite soil moisture (SM)
products to produce an improved SM product. Where the fractional mean-squared-error (fMSE) is
derived from the triple collocation method (TCM) is used to estimate weight, based on the least-squares
theory. The proposed scheme was applied by using a threshold between signal and noise at fMSE
equal to 0.5 to maintain the high-quality SM observations. In the regions where TCM is unreliable,
we proposed four scenarios based on the determinations of correlations between all three SM products
of TCM at significance levels (i.e., p-values < 0.05). The proposed scheme was applied to SM retrievals
from ASCAT, SMAP, and AMSR2 at a global scale in the period from June 2015 to December 2017 to
produce SMAP+ASCAT and AMSR2+ASCAT SM datasets. The performances of merged SM datasets
were assessed against independent reference datasets include in-situ measurements, GLDAS, and ERA5.
The proposed scheme maintains on the variability and seasonal dynamics of SM for the parents and
reanalysis references SM products. The merged SM datasets showed better performance with a high
average temporal R with in-situ measurements over different networks of ISMN than parents products.
Moreover, these datasets showed significant improvements with achieving a high average temporal R
value and less RMSE value with GLDAS and ERA5 datasets which exceeds the parents’ datasets over
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different land cover types in most regions of the world. In the regions of unreliable TCM, the suggested
four scenarios improved the performance of SM retrievals. The proposed scheme has the potential to
be applied existing microwave satellites as well as to new missions.

Further studies are recommended to calculate the relative weights of parent SM products, based on
maximized signal-to-noise ratios, at different seasonal scales, and it maybe gives better results due to
seasonal variations. Also, studies need to be performed on the possibilities of merging SM retrievals
from more than two satellites. Finally, TCM has been applied successfully in different fields include
oceanography, hydrometeorology, and ecology [79–82]. Therefore, our proposed demonstrated scheme
for SM has flexibility and can be applied to other biogeophysical variables.
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