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Abstract: The current study presents a methodology for water mapping from Sentinel-1 (S1) data and
a flood extent analysis of the three largest floodplains in Estonia. The automatic processing scheme
of S1 data was set up for the mapping of open-water flooding (OWF) and flooding under vegetation
(FUV). The extremely mild winter of 2019/2020 resulted in several large floods at floodplains that
were detected from S1 imagery with a maximal OWF extent up to 5000 ha and maximal FUV extent
up to 4500 ha. A significant correlation (r2 > 0.6) between the OWF extent and the closest gauge
data was obtained for inland riverbank floodplains. The outcome enabled us to define the water
level at which the water exceeds the shoreline and flooding starts. However, for a coastal river delta
floodplain, a lower correlation (r2 < 0.34) with gauge data was obtained, and the excess of river
coastline could not be related to a certain water level. At inland riverbank floodplains, the extent of
FUV was three times larger compared to that of OWF. The correlation between the water level and
FUV was <0.51, indicating that the river water level at these test sites can be used as a proxy for forest
floods. Relating conventional gauge data to S1 time series data contributes to flood risk mitigation.

Keywords: Sentinel-1; flood; climate change

1. Introduction

Near real-time and statistical information about flooded areas is essential for several
public services, i.e., emergency, rescue, recovery, spatial planning, habitat monitoring, and
adaption to climate change. Satellite remote sensing can provide timely and operational
data as well as statistical spatial information about inundated areas covered with water.
Two types of satellite imagery are available for monitoring surface flood dynamics: optical
and synthetic aperture radar (SAR). Optical satellite remote sensing can only be applied
in cloud-free situations. However, floods often occur during long-lasting periods of pre-
cipitation and persistent cloud cover. Therefore, SAR systems are usually a preferred tool
for the monitoring of floods from space. A smooth open water surface is characterized by
a low SAR backscatter, and this difference in backscatter response generally allows flood
mapping [1]. Over the last decade, various methods for deriving the flood extent from SAR
data have been proposed [2–18]. Based on summaries by Martinis et al. [18] and Liang and
Liu [8], the most commonly applied methodology for flood mapping from a single image is
histogram thresholding, which can be used in combination with different image processing
approaches. Temporal change detection techniques [19,20] and coherence analysis [21] have
also been used for open water mapping. However, temporal change detection approaches
require two images and can therefore be limited by the temporal coverage of satellite
imagery. To improve flood mapping accuracy, the advantages of ancillary data, such as the
DEM (digital elevation model) derived HAND (height above the nearest drainage) index
and the catchment derived DIST (distance from drainage) index as well as land use map,
have been demonstrated in several studies [17,18,20,22]. Most of the proposed approaches
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for flood mapping are semi-automatic. A fully automatic methodology that integrates split
thresholding and fuzzy logic classification has been proposed and applied by Martinis
et al. [18] for the processing of TerraSAR-X, and by Twele et al. [23] for the processing
of Sentinel-1 (S1).

Recent studies by Grimaldi et al. [24] and Tsyganskaya et al. [25] have summarized
the approaches of flood mapping under the forest canopy. The study by Grimaldi et al. [24]
shows that the most commonly applied method for the detection of flooded areas under
vegetation is the identification of increased backscatter values compared to other objects.
The penetration depth of the SAR signal into vegetation is higher for longer wavelengths, so
the use of the L-band has been recommended [26–28]. However, several studies [20,29,30]
have demonstrated the capabilities of C-band and X-band data in the identification of
flooded vegetation, especially in the case of sparse forests and leaf-off conditions. Co-
polarized signals (HH or VV) are preferred over cross-polarized signals for mapping water
under vegetation. Studies have indicated that the use of HH-polarization leads to more
accurate results compared to VV-polarization [31,32]. Moreover, the use of polarimetric
decomposition and/or interferometric SAR coherence has been utilized for the mapping of
floods under vegetation [33]. However, the availability of full polarimetric data is often
limited in terms of spatial extent and temporal coverage.

Estonia is known for its large seasonal riverside areas that are flooded over annually.
The surface area of the Estonian floodplain grasslands with a high nature conservation
value is estimated to be 16,000 hectares. According to the EU Habitats Directive, northern
boreal alluvial meadows (habitat type code 6450) are grasslands situated on the banks of
large rivers, in sections with slow flow, which are frozen in the winter and flooded in the
spring–summer period. However, extremely warm winters in Estonia during the last five
years have also caused large flooding during winter [34]. Extreme changes in inundation
extent, depth, and duration define phonological patterns, animal migration routes, and
human living spaces [35]. Therefore, it is important to monitor the temporal and spatial
changes in flooded areas.

The boreal forest encompasses approximately 30% of the global forest area and pro-
vides critical services to local, regional, and global populations. Communities benefit from
ecosystem services provided by forests for fishing, hunting, leisure activities, and economic
opportunities [36]. Countries such as Canada, Finland, Sweden, and Russia extract wood
from boreal regions for their forest industries [36]. Flooding causes disturbances in forest
management, resulting in economic losses. The vulnerability of the forest ecosystem in
a changing climate has been discussed in Gauthier et al. [36] and Hari and Kulmala [37].
Previous studies have expressed the importance of flood monitoring in areas with emerging
vegetation for a comprehensive evaluation of the economic and environmental costs of
floods [38–40]. Recent mild winters in Estonia have affected the forest industry. Forest
management is impossible due to unfrozen soils and floods [41]. However, the spatial
extent and duration of floods during the winter period in Estonia is still unknown.

At the European scale, two flood-monitoring services are provided. The (1) Copernicus
Emergency Management Service (EMS) [42] provides a free-of-charge mapping service in
cases of natural disasters, man-made emergencies, and humanitarian crises throughout
the world. This service can be triggered by request in the case of an emergency. The (2)
Copernicus Land Monitoring Service (CLMS) provides a pan-European, high-resolution
product known as Water and Wetness. This product shows the occurrence of water and
wet surfaces over the 2009–2018 period. Thematic maps were produced for the years 2015
and 2018. These layers are compiled from multi-temporal high-resolution optical and radar
satellite imagery [43].

However, these services do not provide information about the inter-annual variability
of water extent on the floodplains, nor information about the flooded forest areas. Therefore,
the current study was initiated with the following aims:

• Set up an optimal automatic workflow for open-water and flooded forest mapping
from S1 data.
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• Apply the workflow for the mapping of flood duration and extent on three of the
largest floodplains in Estonia during an extremely mild winter (1 November 2019–31
March 2020).

• Analyze the correlation between flood extent and the water level measured in the
closest hydrological station. Define the water level that indicates the occurrence of
flooding (river coastline excess) on floodplains.

2. Study Sites and Data
2.1. Study Sites

Floodplain grasslands can be found all over Estonia, and most of them lie on the
larger rivers—Emajõgi, Põltsamaa, Pedja, Kasari, Halliste, Raudna, Piusa, Koiva, Mustjõgi,
and Narva headwaters—but some also near lakes (Peipsi, etc.). We chose the three largest
floodplain grasslands (Alam-Pedja, Soomaa, and Matsalu) as our study sites. Figure 1
shows study areas with the areas of environmental restrictions, maps of natural grasslands
and forests (CLC 2018 from CLMS), and the official shoreline from the Estonian Topographic
Database (ETD). Matsalu is a coastal test site located at the River Kasari delta. The defined
region of interest used in the analysis of the current study was 1068 km2 (Figure 1). The
inland riverbank test sites of Alam-Pedja (located by the River Emajõgi) and Soomaa
(located by the Halliste and Navesti rivers) have regions of interest of 546 km2 and 255 km2,
respectively (Figure 1, Table 1).

Remote Sens. 2021, 13, x FOR PEER REVIEW 3 of 17 
 

 

• Set up an optimal automatic workflow for open-water and flooded forest mapping 
from S1 data. 

• Apply the workflow for the mapping of flood duration and extent on three of the 
largest floodplains in Estonia during an extremely mild winter (01.11.2019-
31.03.2020). 

• Analyze the correlation between flood extent and the water level measured in the 
closest hydrological station. Define the water level that indicates the occurrence of 
flooding (river coastline excess) on floodplains. 

2. Study Sites and Data 
2.1. Study Sites 

Floodplain grasslands can be found all over Estonia, and most of them lie on the 
larger rivers—Emajõgi, Põltsamaa, Pedja, Kasari, Halliste, Raudna, Piusa, Koiva, 
Mustjõgi, and Narva headwaters—but some also near lakes (Peipsi, etc.). We chose the 
three largest floodplain grasslands (Alam-Pedja, Soomaa, and Matsalu) as our study sites. 
Figure 1 shows study areas with the areas of environmental restrictions, maps of natural 
grasslands and forests (CLC 2018 from CLMS), and the official shoreline from the Estonian 
Topographic Database (ETD). Matsalu is a coastal test site located at the River Kasari delta. 
The defined region of interest used in the analysis of the current study was 1068 km2 (Fig-
ure 1). The inland riverbank test sites of Alam-Pedja (located by the River Emajõgi) and 
Soomaa (located by the Halliste and Navesti rivers) have regions of interest of 546 km2 
and 255 km2, respectively (Figure 1, Table 1). 

 
Figure 1. Location of the test sites. 

Natural grasslands along rivers have a high nature conservation interest (Figure 1). 
The habitats of floodplain grassland vegetation are considerably more variable in com-
parison to boreo-nemoral grasslands—26 different plant communities have been noted as 
opposed to the 13 found in boreo-nemoral grasslands. Approximately 20–22, maximally 
30, bird species are native to the floodplains in Estonia. The share of natural grassland 
differs between study sites—at Matsalu the share of natural grassland is 7.8% of the study 
area, while at Soomaa the natural grassland covers 0.8% of the total study area (Table 1). 

The share of forest types according to CLC 2018 are shown in Table 1. The dominant 
forest type at Matsalu and Soomaa is the broad-leaf forest, while at Alam-Pedja the mixed 

Figure 1. Location of the test sites.

Table 1. Share of natural grassland and forest types at study sites according to CLC 2018.

Test Site
Total
Size

(km2)

Broad-Leaved
Forest Area

(%)

Coniferous
Forest Area

(%)

Mixed Forest
Area (%)

Natural
Grasslands

Area (%)

Alam-
Pedja 546 11.5 9.3 20.9 5.5

Soomaa 1068 2.0 4.4 3.8 7.8
Matsalu 255 17.2 11.1 11.3 0.8

Natural grasslands along rivers have a high nature conservation interest (Figure 1).
The habitats of floodplain grassland vegetation are considerably more variable in com-
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parison to boreo-nemoral grasslands—26 different plant communities have been noted as
opposed to the 13 found in boreo-nemoral grasslands. Approximately 20–22, maximally 30,
bird species are native to the floodplains in Estonia. The share of natural grassland differs
between study sites—at Matsalu the share of natural grassland is 7.8% of the study area,
while at Soomaa the natural grassland covers 0.8% of the total study area (Table 1).

The share of forest types according to CLC 2018 are shown in Table 1. The dom-
inant forest type at Matsalu and Soomaa is the broad-leaf forest, while at Alam-Pedja
the mixed forest type is dominant. The coniferous forest represents the smallest share of
forest (Table 1).

2.2. Satellite Data

The S1 mission that carries the C-band SAR sensor provides routine data in two imaging
modes: interferometric wide swath mode (IW) and extended wide swath mode (EW).
The spatial resolution of the IW mode data is 5 × 20 m, and the spatial resolution of the
EW mode data is 20 × 40 m [44]. The Sentinel-2 (S2) optical data are beneficial during
cloud-free conditions and have a spatial resolution of 10 × 10, 20 × 20, and 60 × 60 m
depending on the wavelength band [45]. The medium spatial resolution data and sufficient
repeat cycle of S1 (12 days with one satellite and 6 days with two satellites) and S2 (10 days
with one satellite and 5 days with two satellites) missions form a solid basis for statistical
flood mapping applications and the operational flood monitoring service [46].

S1 SAR and cloud-free S2 multispectral imager (MSI) data were downloaded from the
Copernicus Open Access Hub [47]. The dataset was divided into two parts: (1) algorithm
development/validation and (2) algorithm application for statistical analysis. The overview
of the data used for algorithm development is given in Table 2. The numbers of images
included in the statistical analysis per month at each test site are given in Table 3. To
eliminate the water lookalikes caused by thin ice cover, we excluded images that were
acquired in the case of negative air temperature from our analysis.

Table 2. Numbers of S1 (IW mode and EW mode), S2, and UAV (unmanned aerial vehicle) im-
ages used for algorithm development and validation in open water flood (OWF) and flood under
vegetation (FUV) conditions.

Purpose of Data S1 IW S1 EW S2 UAV

Algorithm development (sensitivity) 1 1
Algorithm development OWF (incidence

angle backscattering dependence) 7 12

Algorithm development FUV (incidence angle
backscattering dependence) 3

Validation 2 2 4 44

Table 3. Number of images included in analysis per month per test site. OWF represents the number
of images from which open-water flood was mapped. FUV represents the number of images from
which flood under vegetation was mapped.

Test Site Nov 2019
OWF/FUV

Dec 2019
OWF/FUV

Jan 2020
OWF/FUV

Feb 2020
OWF/FUV

March 2020
OWF/FUV

Alam-Pedja 13/7 18/11 19/14 14/9 19/13
Soomaa 18/10 19/13 20/12 15/9 21/11
Matsalu 10/8 12/8 14/6 10/8 18/9

2.3. Auxiliary Data

Auxiliary datasets used in the study include different maps and hydro-meteorological
information gathered during the study period.

Maps of wetlands, shorelines, inland waters, wooden areas, and buildings were
downloaded from the Estonian Topographic Database (ETD) (provided by the Estonian
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Land Board) [48]. Maps of areas with environmental restrictions were downloaded from
the Estonian Environment Agency WFS service [49]. The digital elevation model (DEM)
with a five-meter resolution was downloaded from the Estonian Land Board database [50].
CLC+ (2018) was downloaded from CLMS [43].

Air temperature and water level data measured at national hydro-meteorological
stations were obtained from the Estonian Environment Agency [51].

Observations at the time of flooding and UAV flight were performed on 22 March
2019 at the Soomaa test site. In total 44 observations were used for algorithm development.

3. Methodology
3.1. Sentinel-1 Data Processing

We evaluated the sensitivity of S1 polarizations for land and water discrimina-
tion [52,53]. The overall backscatter differences resulting from the sensitivity analysis
are summarized in Table 4. In the case of the IW imaging mode, the greatest difference
between terrestrial and open water signals was obtained for VH polarization (10.5 dB).
Data were acquired with an incidence angle of 39.5–47◦. In the EW mode, the differences
were the greatest for HV polarization (9.6 dB). The data were acquired with an incidence
angle of 37.5–46◦.

Table 4. Summary of sensitivity analysis for land and water discrimination for different S1 polarizations [52].

S1 Mode Polarization Water/Dry Land Difference
(dB)

Flooded Forest/Unflooded Forest
Difference (dB) Range of Incidence Angle

IW VH 10.6 0.17 39.5–47
IW VV 10.2 1.32 39.5–47
EW HH 7.7 4.5 37.5–46
EW HV 9.6 0.6 37.5–46

We also evaluated the sensitivity of S1 for the discrimination of flooded forests from
dry forest areas. The greatest differences were observed in the case of HH polarization
(a difference of 4.5 dB). The data were acquired with an incidence angle of 37.5–46◦.

Relying on the sensitivity analysis, the open water mapping algorithm was developed
for IW VH and EW HV datasets, and water under vegetation was mapped from EW HH
data in the current study.

Previous studies have shown the advantage of using multiple incidence angles for
water mapping [54]. Therefore, we established an empirical relationship between the local
incidence angle and surface water backscattering collected at our test sites. The dataset of
open water backscattering from known waterbodies was collected from 7 IW and 12 EW
mode images acquired at the time of flooding in October, November, December, and
April in three consecutive years (2017–2019). The relationships between the local incidence
angle (θ) and surface water backscattering (σ0) for polarizations with the greatest sensitivity
(Table 4 in the previous section) are shown in Figure 2a (original source of data [52]). An
established relationship was used for the water mapping algorithm (Table 5) dependency.
The algorithms for open water mapping from IW VH and EW HV polarizations are
summarized in Table 5.
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Table 5. Water mapping threshold conditions for different polarizations, imaging modes, and flood
types (FUV and OWF).

S1 Mode Polarization Threshold for Water Mapping SD No

IW VH Water < −0.30 × θ− 12.13 + 2 × SD 1.43 1
EW HV Water < −0.23 × θ− 19.12 + 2 × SD 2.26 2
EW HH Flooded forest > −3.15 − 1.06 1.06 3

A study by Lang et al. [55] showed the relationship between the incidence angle and
backscatter of water under vegetation. The study demonstrated a decrease in backscatter
by 2.45 dB at the incidence angle between 23.5◦ and 47◦, in the case of Radarsat data. For
the evaluation of the dependence of incidence angle on the backscattering in the case of
a flooded forest, the data were collected at the time of flooding from images acquired
on 08 November 2019, 13 November 2019, and 11 April 2018. However, analysis of our
dataset did not confirm the relationship between the incidence angle and backscattered
signal in a flooded forest (Figure 2b). Relying on our analysis, a threshold condition of
HH > −4.21dB was set for flooded forest mapping. The threshold was estimated on an
averaged backscattered signal (σ0) +1 standard deviation (SD) in flooded forest areas
determined from visual observations.

The data processing scheme was set up in a cluster computing environment. The data
processing setup is schematically shown in Figure 3. Pre-processing included the following
steps: radar signal calibration, noise filtering, terrain correction, and the image processing
technical processes of reading, cutting, and extracting data (Figure 3). Pre-processing
was performed using the processors from SNAP (Sentinel Application Platform) software.
Water mapping was performed according to Equations (1)–(3) presented in Table 5. The
automatic water mapping processes were set up in a cluster computing environment using
SHELL script to download the imagery from the Sentinel Open Data Hub and to run SNAP
based GPT for water mapping. A combination of the DIST and HAND approaches was
applied for the elimination of water lookalikes. The auxiliary data from the Estonian Land
Board, namely, the DEM dataset with 5 × 5 m resolution and the official inland water
body map (from ETD), were used to improve the mapping accuracy. In the first step of
post-processing, the data were polygonised. In the case of inland water bodies, open water
polygons (mapped from S1) that intersected with the inland waters map (ETD) with a
buffer zone of 100 m were extracted for further analysis. At the coastal zone of the Baltic
Sea, the open water polygons that intersected with a coastal area of up to a one meter
elevation were extracted for further analysis. GDAL (Geospatial Data Abstraction Library)
software processors were used for the post-processing of the data.
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In the post-processing of the water mapped under vegetation, the noise (false-positives)
from buildings was extracted by removing the polygons that intersected with the build-
ings map (from ETD). After removal of the areas with elevated backscattering caused by
buildings, the water polygons related to the wooden area map (ETD) were extracted for
future analysis.
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3.2. Sentinel-2 Data Processing

S2 data were used as a validation dataset for an accuracy estimation of the water
mapped from S1. S2 data processing is shown in the block scheme in Figure 3. The
modified normalized difference water index (MNDWI) was calculated as follows:

MNDWI = (Band 3 − Band 11)/(Band 3 + Band 11) (1)

where Band 3 is the top-of-atmosphere (TOA) reflectance of the green band of S2, and
Band 11 is the TOA reflectance of the shortwave infrared band of S2. Band 3 and Band 11
have different spatial resolutions of 10 and 20 m, respectively. For the estimation of the
MNDWI index, the spatial resolution of Band 11 was scaled to 10 m. In order to determine
the water-covered areas from the MNDWI map, the MNDWI > 0.6 condition was applied.
The condition was set by visually comparing the Sentinel-2 RGB images to the derived
MNDWI map. The relatively high MNDWI threshold is caused by the low values of Band
11 (shortwave infrared) during wintertime. A threshold of 0.6 was sufficient to avoid a
large number of false-positive detections.

3.3. Accuracy Evaluation

The accuracy of open-water flood mapping from S1 was evaluated against water
mapped from S2 by estimating the overall accuracy and kappa hat coefficient. For accuracy
assessment, the Semi-Automatic Classification Plugin in QGIS was used [56]. The kappa
hat coefficient (κc) was estimated for the evaluation of classification accuracy between
water mapped from S1 and S2 datasets as follows:

κc =
pa − pe

1 − pe
(2)

where pa represents the overall percentage of agreements between S1 and S2 data in raster
and pe represents the percentage of chance agreement of S1 and S2 data.

The evaluation of accuracy in the case of water mapped under the vegetation is a
complicated task, as water under vegetation cannot be directly mapped from the optical
satellite images. The evaluation of water mapped under the vegetation was performed
using drone photos and observations (44 observation points) collected at the Soomaa test
site on 22 March 2019.

4. Results
4.1. Mapping Accuracy

The open water mapping accuracy from EW HV polarization data was evaluated
against the MNDWI index estimated from S2 imagery at three test sites (Table 6, Figure 4).
The accuracy of open water mapped from S1 EW HV polarization data at the Matsalu test
site was 97.8% with a kappa hat coefficient of 0.94 (Figure 4a, Table 6). The accuracy and
kappa hat coefficient of S1 IW VH data from the Alam-Pedja (96.70% and 0.84, respectively;
Figure 4c) and Matsalu (95.90% and 0.86, respectively; Figure 4b) test sites were very high,
while at the Soomaa test site, the corresponding numbers were lower, 93.60% and 0.62,
respectively (Figure 4d).

Table 6. Validation results. Accuracy and κc values for different test sites and imaging modes.

Location Date Imaging Mode/Polarization Accuracy (%) κc

Matsalu 24 September 2019 IW/VH 95.90 0.86
Matsalu 3–4 April 2019 EW/HV 97.80 0.94
Alam-
Pedja 5 April 2019 IW/VH 96.70 0.84

Soomaa 16 November 2017 IW/VH 93.60 0.62
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Figure 4. Validation results. (a) Open water mapped from S1 EW HV data vs. S2 MNDWI (4 April 2019), (b) Open water
mapped from S1 IW VH data vs. S2 MNDWI (23 March 2019), (c) Open water mapped from S1 IW VH data vs. S2 MNDWI
(5 April 2019), (d) Open water mapped from S1 IW VH data vs. S2 MNDWI (16 November 2017) and (e) Comparison of in
situ validation points (22 March 2019) with open water mapped from S1 VH data (24 March 2019) and water mapped under
vegetation from S1 EW HH data (23 March 2019).

The evaluation of the water mapped under vegetation was performed using drone
photos and observations collected at the Soomaa test site on 22 March 2019. Figure 4e
shows the water mapped from S1 images and observation points of the water. As seen in
Figure 4e, the validation points coincide with mapped water under vegetation from the S1
EW mode HH data. However, it must be noted that the applied methodology for mapping
FUV is less accurate (incidence angle normalization is not applicable) (Figure 2b). Still, we
see that statistical analysis enables the identification of areas where water accumulates in
forested areas.

4.2. Flood Extent and Frequency for Winter 2019/2020 in Estonian Floodplains

In Figure 5, open water and water under vegetation mapped from S1 data for winter
2019/2020 at our test sites are presented. The winter of 2019/2020 was extremely warm
in Estonia. The monthly average temperatures from November 2019 to March 2020 were
above zero (Figure 6). Climatological averages for December, January, February, and March
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have been negative in Estonia in the past (Figure 6). Due to positive air temperatures in
the 2019/2020 winter, the soils did not freeze, there was no permanent ice cover on inland
waters, and the precipitation was mostly rain. Due to the environmental conditions of
winter 2019/2020, open water could be mapped throughout the winter. The flooded area
(in hectares—ha) was estimated as the extent of water-covered area outside the official
shoreline within the region of interest shown in Figure 1.
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At the Alam-Pedja test site, open-water floods occurred near the Emajõgi river. The 
frequency of flood in pixel varied mainly between 5 and 25%; however, in some areas it 
reached over 50% (Figure 5a). Figure 5c also shows the water level measured at the Tartu 
hydrological station on the Emajõgi river and the estimated open-water flood extent. From 
mid-February, the water covered area repeatedly exceeds the shoreline, and the maximum 
open-water flood extent (>1000 ha) lasted from February 29 until 15 March 2020 (Figure 
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tion at the Alam-Pedja test site are also shown. The extent of the flooded area under the 

Figure 5. Floods mapped at test sites; (a) Open water frequency (%) at Alam-Pedja, (b) Frequency of water under vegetation
(%) at Alam-Pedja, (c) Extent of open-water flood (ha) and water level (cm) at Alam-Pedja, (d) Extent of flood under
vegetation (ha) and water level (cm) at Alam-Pedja, (e) Open water frequency (%) at Soomaa, (f) Frequency of water under
vegetation (%) at Soomaa, (g) Extent of open-water flood (ha) and water level (cm) at Soomaa, (h) Extent of flood under
vegetation (ha) and water level (cm) at Soomaa, (i) Open water frequency (%) at Matsalu, (j) Frequency of water under
vegetation (%) at Matsalu, (k) Extent of open-water flood (ha) and water level (cm) at Matsalu, (l) Extent of flood under
vegetation (ha) and water level (cm) at Matsalu.
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At the Alam-Pedja test site, open-water floods occurred near the Emajõgi river. The
frequency of flood in pixel varied mainly between 5 and 25%; however, in some areas it
reached over 50% (Figure 5a). Figure 5c also shows the water level measured at the Tartu
hydrological station on the Emajõgi river and the estimated open-water flood extent. From
mid-February, the water covered area repeatedly exceeds the shoreline, and the maximum
open-water flood extent (>1000 ha) lasted from February 29 until 15 March 2020 (Figure 5c).
In Figure 5, the flood frequency (Figure 5b) and extent (Figure 5d) under the vegetation at
the Alam-Pedja test site are also shown. The extent of the flooded area under the vegetation
was about three times larger than that of the open-water flood, reaching up to 3500 ha on
13 March 2020 (Figure 5d). However, the frequency of FUV was lower than that of the
open-water flood, between 5 and 25%.

At the Soomaa floodplain, the largest flood extent was detected at the beginning of
the study period on 7 November 2019, when the open-water flood reached up to 230 ha
and the flooded area under the vegetation was 4400 ha (Figure 5g,h). Starting from mid-
November, the open-water flood decreased, and the following flood events occurred in
mid-December and mid-January. The last flood event lasted from mid-February until mid-
March (Figure 5g). The maximal water level measured at the Riisa hydrological station
corresponds well to the maximal open-water flood events (Figure 5g). The frequency of
open-water flooding remained below 50% in Soomaa. The flood extent analysis revealed
that floods detected under the vegetated area lasted through the winter. In the forested area
at the Soomaa test site, the floods were absent only during the second half of November
(Figure 5h). The flood frequency map presented in Figure 5f indicates the forested areas
(dark blue denotes flood frequency >75%) where floods occurred throughout almost the
whole duration of the winter.

At the Matsalu test site, large open-water floods outside the official shoreline (ETD)
could be detected throughout almost the whole duration of the winter (Figure 5k). The max-
imum open-water flood extent was detected in March, reaching up to 3000 ha (Figure 5k).
In Figure 5i, there is a highlighted area (red rectangle) where open-water floods were
observed most frequently (on more than 70% of images). The Matsalu test site has fewer
forested areas than the Alam-Pedja and Soomaa test sites. However, there are large areas
covered with coastal reed at this test site. The largest floods under the vegetation at this
test site are related to an area with coastal reeds (Figure 5j, red rectangle). At the Matsalu
test site, the floods under the vegetated area were smaller at 1300 ha (Figure 5k), compared
to the open area floods at 3000 ha (Figure 5l).

4.3. Causation Analysis between Flood Extent and Water Level Measured at Hydrological Stations

An analysis was performed with the aim of defining the critical water level at the
closest hydrological station that indicates the start of a flooding event (shoreline excess),
and to find site specific relationships between the measured water level and flood extent.
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At the Alam-Pedja test site, a polynomial relationship between the flooded area extent
and water level measured at the Tartu hydrological station (HS) was observed (Figure 7).
The correlation (r2) with water level was most significant (0.94) for the open-water flood
extent estimated from IW VH data; the correlation (r2) for EW HV was 0.85 (Figure 7).
The r2 between the flooded area extent under vegetation and the water level measured
at the Tartu HS was 0.51 (Figure 7). Our analysis indicated that open-water floodings at
the Alam-Pedja floodplain occur when the water level at the Tartu HS increases above
120 cm (Figure 7, red line). Additionally, there was a significant correlation (0.51) between
the extent of the flooded area under vegetation and the water level measured at the Tartu
HS. It was not possible to define the precise critical water level for the Tartu HS at which
flooding under vegetation starts (Figure 7).

Remote Sens. 2021, 13, x FOR PEER REVIEW 13 of 17 
 

 

(Figure 7, red line). Additionally, there was a significant correlation (0.51) between the 
extent of the flooded area under vegetation and the water level measured at the Tartu HS. 
It was not possible to define the precise critical water level for the Tartu HS at which 
flooding under vegetation starts (Figure 7). 

The relationship between the water level at the Riisa HS and the flooded area extent 
at Soomaa was polynomial (Figure 7). The correlation coefficient (r2) between the Soomaa 
open-water flood extent and the water level measured at the Riisa hydrological station 
was 0.62 for EW HV data and 0.57 for IW VH data (Figure 7). The correlation (r2) between 
the water level measured at the Riisa hydrological station and the flooded area extent 
under vegetation was 0.29 (Figure 7). Our analysis showed that open-water floodings oc-
cur when the water level at the Riisa HS increases above 160 cm (Figure 7, red line). 

While the relationship between the water level and the extent of the flooded area was 
polynomial at the Alam-Pedja and Soomaa test sites, the relationship was linear at the 
Matsalu test site. The r2 between the open-water flood extent at the Matsalu site and the 
water level measured at the Kasari hydrological station was 0.34 for IW VH data and 0.38 
for EW HV data (Figure 7). There was no correlation between the water under vegetation 
and the water level measured at the Kasari HS (Figure 7). At the Matsalu test site, floods 
occurred throughout the winter, and it was not possible to define a precise critical water 
level at the Kasari HS that could be related to the beginning of flooding. 

Open water Water under vegetation 
EW + IW EW IW EW 

Alam-Pedja flood vs. water level at Tartu HS 

    
Soomaa flood vs. water level at Riisa HS 

    
Matsalu flood vs. water level at Kasari HS 

    

Figure 7. Correlation between flooded area and water level at the closest hydrological station. FA: flooded area extent; 
WL: water level. Red line denotes the critical water level at which coastline excess occurs and flooding starts. 

5. Discussion 
Previous studies have shown the advantages of incidence angle dependent thresh-

olding in the case of TerraSAR-X and Envisat ASAR datasets [18,54]. Our operational 
setup for flood mapping from S1 data for Estonian floodplains integrates incident angle 
dependent water thresholding and post-processing using auxiliary information from the 
Estonian Topographic Database. Post-processing using information from the ETD enables 
the elimination of water lookalikes. We evaluated the open water mapping accuracy for 

Figure 7. Correlation between flooded area and water level at the closest hydrological station. FA: flooded area extent; WL:
water level. Red line denotes the critical water level at which coastline excess occurs and flooding starts.

The relationship between the water level at the Riisa HS and the flooded area extent
at Soomaa was polynomial (Figure 7). The correlation coefficient (r2) between the Soomaa
open-water flood extent and the water level measured at the Riisa hydrological station was
0.62 for EW HV data and 0.57 for IW VH data (Figure 7). The correlation (r2) between the
water level measured at the Riisa hydrological station and the flooded area extent under
vegetation was 0.29 (Figure 7). Our analysis showed that open-water floodings occur when
the water level at the Riisa HS increases above 160 cm (Figure 7, red line).

While the relationship between the water level and the extent of the flooded area was
polynomial at the Alam-Pedja and Soomaa test sites, the relationship was linear at the
Matsalu test site. The r2 between the open-water flood extent at the Matsalu site and the
water level measured at the Kasari hydrological station was 0.34 for IW VH data and 0.38
for EW HV data (Figure 7). There was no correlation between the water under vegetation
and the water level measured at the Kasari HS (Figure 7). At the Matsalu test site, floods
occurred throughout the winter, and it was not possible to define a precise critical water
level at the Kasari HS that could be related to the beginning of flooding.
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5. Discussion

Previous studies have shown the advantages of incidence angle dependent thresh-
olding in the case of TerraSAR-X and Envisat ASAR datasets [18,54]. Our operational
setup for flood mapping from S1 data for Estonian floodplains integrates incident angle
dependent water thresholding and post-processing using auxiliary information from the
Estonian Topographic Database. Post-processing using information from the ETD enables
the elimination of water lookalikes. We evaluated the open water mapping accuracy for
IW mode VH polarization at our test sites. There was good agreement between the water
mapped from IW VH data and the S2 MNDWI index, with an accuracy as high as 96.70%
and a kappa hat of 0.86 (Table 6). The accuracy of flood mapping using S1 VH polarization
has also been evaluated by Twele et al. [23], who obtained a kappa hat coefficient of 0.88
and an accuracy of 94%. While their operational methodology applied for flood mapping
differs from that used in our study, the overall accuracy of the flood mapping is comparable.
In the study conducted by Twele et al. [23], the split based thresholding for water mapping
was used together with the HAND index in the post-processing step.

During the winter season, the default imaging mode of S1 over the Baltic Sea region is
the EW regime. To delineate the information about flooded areas in Estonia, an algorithm
for open water mapping for the EW regime was established and applied. The open water
mapping accuracy from EW HV polarization data was 97.8%. By including the information
from EW data, we could delineate the flood maps approximately using 55 images from
each test site. Combining the information from IW and EW regimes, we analyzed 83 images
from the Alam-Pedja test site, 93 from the Soomaa test site, and 64 from the Matsalu test
site for open water mapping for the period of 1 November 2019–31 March 2020 (Figure 5).
Thus, the proposed flood mapping method was tested on a large and diverse dataset.
The method developed and proposed in the current study has potential for operational
mapping of floods in Estonia and neighboring countries (e.g., Latvia).

The winter of 2019/2020 was extremely mild in Estonia, and there was no permanent
ice on the rivers, nor was there snow cover. The monthly averaged air temperature was
above 0 ◦C at all meteorological stations. Our analysis of flood duration and extent showed
that in the winter of 2019/2020, floods were observed almost through the whole period of
winter. However, the dynamics of the floods differed between the test sites. The maximum
flooding observed at Alam-Pedja occurred in March, while at Soomaa and Matsalu several
flood events were detected during the winter of 2019/2020. Analysis of the open-water
flood extent and water level measured at the closest hydrological station confirmed the
correlation between these variables. The correlation was more significant (r2 < 0.6) for
the inland riverside floodplains of Alam-Pedja and Soomaa. For the coastal floodplain at
Matsalu, the correlation was 0.34, indicating that the river gauge data cannot be used as
proxy for flood extent as the coastal flood was significantly influenced by marine processes
(not only by riverine hydrology and precipitation). The analysis also revealed that at
Alam-Pedja, floods occur when the water level rises above 120 cm at the Tartu HS. At the
Soomaa test site, floods occur when the water level rises above 170 cm at the Riisa HS. At
the Matsalu test site, open water outside the official coastline could be observed throughout
the winter, and we could not define the precise water level at the Kasari HS that results in a
flooding at the floodplain. The Matsalu floodplain is located at the outflow to the Baltic
Sea; therefore, it is also influenced by the water level in the sea.

Defining the water level at the closest hydrological station from which the floods
start (shoreline excess occurs) can provide information for risk mitigation. Hydraulic
modelling is a common tool used in flood risk estimation [57]. However, for hydraulic
and hydrological modelling, detailed information about riverbed topography, a digital
elevation model of the landscape, and a flow rate are needed. These datasets are not
always available; therefore, analysis of remote sensing information in combination with
standard gauge data can give valuable information from a single source. S1 time series
analysis with local gauge data has been used to determine the positional accuracy of
riverside embankments [58]. A study conducted by Wood et al. [58] also pointed out the
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possibility of determining the positional accuracy of embankments using only a sequence
of S1 imagery and gauge data without using topographic data.

In the winter of 2019/2020, several floods in forested areas that harmed economic
activities were also reported in the Estonian press [41]. However, the economic loss caused
by wintertime flooding in Estonia is unknown. The current study indicated that at the
inland riverside floodplains of Soomaa and Alam-Pedja, the flooded areas under vegetation
reached up to 4500 ha and were about three times larger than open-water floods at these
test sites. Voormasik et al. [30] analyzed the flood extent at Alam-Pedja from TerraSAR-X
imagery and estimated the area of flooded forest to be about three times larger than the
extent of the open-water flood. Studies indicate that an evaluation of the extent of flooded
forest near inland riverbank floodplains is necessary for the estimation of the total flood
extent and its economic consequences. Our analysis also revealed that in the case of the
inland water floodplains of Alam-Pedja and Soomaa, flood under vegetation could be
correlated with the water levels measured at the closest hydrological station.

6. Conclusions

The current paper presents an automatic water mapping method for S1 EW and IW
modes by compiling local incident angle thresholding and the application of ancillary
information from the Estonian Topographic Database in a post-processing scheme. The
proposed method was used to analyze the flood duration and extent in Estonian floodplains
during the extremely mild winter of 2019/2020. Our analysis revealed the areas that are
most frequently inundated in Estonian floodplains. The observed flood maps allowed us
to evaluate the connections between the extent of the flooded area and the water level
measured at the closest hydrological station. The study enabled us to determine the water
level at which floods occur at the floodplains and to provide valuable information for risk
mitigation purposes (standard water level readings from automatic stations are available
with a ten-minute interval). The analysis of the extent and frequency of wintertime floods
can form the basis for various economic analyses, evaluations of revenue foregone in the
forest industry due to mild winters, and evaluations of stress to northern boreal alluvial
meadows. The analysis also contributes to the implementation of flood risk assessment and
management directive in Estonia [59]. Moreover, the proposed method can be implemented
for operational flood mapping in Estonia and neighboring countries.
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