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Abstract: Droughts are ranked among the most devastating agricultural disasters that occur naturally
in the world. East Africa is the most vulnerable and drought-prone region worldwide. In this
study, four drought indices were used as input variables for drought assessment from 1982 to 2015.
This work applied the SMDM algorithm to the integrated approach of OLR and Hurst exponent.
The Detrended Fluctuation Analysis (DFA) and Ordinary Least Square (OLR) were merged to
compute the trend and persistence (Hurst exponent) of the drought indices. Result indicates that the
OLR at time scale 1, 6, and 12 shows a similar distribution with positive (negative) trends scattered
in the Northwest (Northeast and Southern) parts of the study area which differs with the OLR
aggregated at a 3-month time scale. The percentage pixel distribution for OLR-1, OLR-3, OLR-6,
and OLR-12 is 18.2 (81.8), 72.5 (27.5), 32.9 (67.1), and 36.9 (63.1) for increasing (decreasing) trends
respectively. Additionally, results indicate that DFA-1 is highly persistent with few random pixels
scattered around Ethiopia, South Sudan and Tanzania, with percentage pixels as 88.7, 11.3 and 0.1
representing h > 0.5, h = 0.5, and h < 0.5, respectively. DFA-6 shows high (low) pixels representing
h > 0.5 (h > 1), respectively. Meanwhile, for DFA-3 and DFA-12, the distribution shows persistence and
a random walk, respectively. Drought conditions may eventually persist, reverse or vary drastically
in an unpredictable manner depending on the driving forces. Overall, the drought risk map at 1-,
3-, and 6-month aggregates has shown severe degradation in Southern Kenya and Tanzania while
noticeable improvements are seen in western Ethiopia and South Sudan.

Keywords: drought; SPI; SPEI; VCI; TCI; SMDM; DFA; East Africa

1. Introduction

Droughts are considered a serious natural hazard, especially in semi-arid regions
where devastating and catastrophic damages are recorded [1–15], and have been mainly
categorized (on the basis of duration, impact and recovery rate) into meteorological (de-
fined by a lack of precipitation over a certain period of time for a certain region), agricultural
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(defined by a period of declining soil moisture and reduced crop yields) and hydrolog-
ical (defined by a reduced surface and subsurface water availability for a given water
resource), and socio-economic drought, expressed to mean “a failure of water resource
management to meet the supply and demand of water, taken as an economic good” [16–19].
The socio-economic definition of drought is a perspective that has not been applied to
many studies/analyses of drought found in the literature as it is possibly seen as an out-
come/impact of drought rather than a category of drought. Global estimates on the impacts
of drought indicate that a total of 642 drought events were recorded globally between 1900
and 2013 resulting in the death of about 12 million people, directly affecting a popula-
tion of over 2 billion, with estimated economic damage of about USD 135 billion [20,21].
Love [22], Masih et al. [21], Funk et al. [23–25], and Yang [26] confirm that the East African
region ranks among the most vulnerable and drought-prone regions of the world with
a high potential for increased risk of agricultural droughts, and a recent event recorded
in 2016/2017. Hence, while the frequency and severity of drought within the region has
increased in the last couple of decades, the situation is forecast to increase over the coming
decades [27–29]. Therefore, it is considered necessary to continue investigations into better
methods of understanding drought occurrence within the East Africa region as a critical
step towards building resilience and adaptability among the population of the region, and
indeed other semi-arid regions in other parts of Africa [30–32].

Although different studies have been conducted on the topic of drought related to food
insecurity and poverty [21,22,24–26] and violence [33] within the region, Kalisa et al. [34]
recently studied and analyzed drought within the East African region specifically focusing
on the use of standardized precipitation index (SPI) as proposed by McKee et al. [35] and
applied by Pramudya and Onishi [36]. Recently, the introduction of fractal methodology
(Hurst exponent) in the study of long term memory in time series has been given significant
attention [37]. OLR is a common technique that has been frequently applied to time series
of environmental parameters to characterize trends over time [38]. The OLR is a simple
and fast technique, but it has many limitations which include: sensitivity to data outliers
and manifestation of symmetry around the high and low data values [37]. An integrated
approach combining OLR and the Hurst exponent has been used by Igbawua et al. (2019),
Tran et al. (2019), and Tong et al. (2018) to study persistence (sustainability) in vegetation
development in a tropical [37,39] and subtropical [40] regions.

Drought suitability study takes into account a variety of climate and non-climate
elements, such as natural system restrictions, compatibility with existing land uses, and
existing land use policies, among others. Multi-criteria decision analysis (MCDA) is used
to handle a wide range of difficulties in sustainable energy management, energy planning,
transportation, manufacturing systems, water resource management, military operations,
road safety, geographic information systems, budgeting and resource allocation, and a
wide range of other domains where many diverse stake holders with variety of goals are
brought together in participatory environments [41]. However, SMDM is considered most
suitable as it can be used not only to assess the importance of options, but also to obtain
insight into their spatial extent [42]. This capability can assist agriculturists in identifying
drought-prone zones for future management. It is especially important when planning
that tools do not give a prescriptive guidance for local planning and decision making. As
a result, the technique provided here takes a comprehensive look at the use of SMDM
approaches in local drought decision-making. Machine learning algorithms can also be
applied to AHP multi-criteria decision-making to assess prioritization of variables [43].

The aims of this study are (1) to carry out a critical assessment of drought onset using
drought indices at different time scales, (2) to determine the persistence and suitability of
drought indices to understanding the largely unnoticed creeping drought which usually
affects agriculture, and (3) to apply the SMDM process to produce a drought risk map of
the study area. There is no single technique for characterizing drought conditions, and also
there are a variety of drought indices that are available for drought studies. The variables
required for use during the computation of agricultural, meteorological, and hydrological
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drought indices include: precipitation, temperature, potential evapotranspiration, and
NDVI. These variables vary depending on the drought index and geographical location.
Persistence, which employs Detrended Fluctuation Analysis (DFA), describes how the
correlation between successive points in the monthly drought variables evolve as the
temporal span increases. In summary, most drought episodes are not easy to detect at
lower time scales; thus, fractal scaling methods are useful in this regard because they are
able to assess changes in the data records both at long and short intervals of time covering
the study period. An important advantage of DFA with respect to other conventional
methods is that it considers the time series as whole and not as independent units.

2. Materials and Methods
2.1. Study Area

In this work, the study area selected across East Africa covers an area of about 4.32 mil-
lion km2 from 11◦43′52.58” S to 14◦52′46.32” N and 24◦7′17.6” E to 51◦25′1.34” E compris-
ing of Rwanda, Uganda, South Sudan, Tanzania, Ethiopia, Kenya, Somalia, and Burundi
(Figure 1). The study area is bordered to the north, south, east, and west by North African
countries, Southern Africa countries, the Indian Ocean, and Central African countries,
respectively. The countries that directly border the Indian Ocean include Somalia, Tanzania,
and Kenya. The region has an arid and semi-arid climate with an average annual rainfall
between 800 and 1200 mm [44]. The region comprises Lake Victoria (70,000 km2) extending
across the equator and some high mountains which include Mt. Kilimanjaro (5894 m),
Mt. Kenya (5199 m), and Mt. Ruwenzoris (5120 m) [45]. The difficult and varying terrain
affects the temperature in East Africa and the highland regions are cooler than the low
land regions [46]. The influence of topography on rainfall is employed by its effect on the
low-level flow and, in the highlands directs into a steady southerly current during the
boreal summer [44]. Agriculture is the major source of land use in the study area and most
individuals rely on it for their livelihood. Documented reports have shown that droughts
tend to be more persistent, longer, and more serious in the boreal spring and summer over
the study area with an abrupt decrease in the overall precipitation and water storage [47].
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2.2. Data

The data sets used in this study include: climatic data from the Climatic Research Unit
(CRU) of University of East Anglia; and Advanced Very High-Resolution Radiometers
(AVHRR) Global Inventory Modeling and Mapping Studies (GIMMS) third generation
(NDVI3g). The CRU data are a collection of observation stations from meteorological
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stations of the world which is gridded into a global high resolution data set [48] and
obtained from https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.01/cruts.1709081022.v4
.01/ retrieved on 22 April 2020. The GIMMS NDVI3g data records were obtained from
https://ecocast.arc.nasa.gov/data/pub/gimms/3g.v1/ (30 August 2021) [49]. The 15-day
data was composited into monthly values through a process known as Maximum Value
Composite and pixels with annual values of less than 0.1 were considered non-vegetated
and were subsequently expunged from study area. All the data sets were resampled to
same resolution as NDVI. The summary of the data sets is shown in Table 1.

Table 1. Data sets in this study.

Data Quantity Resolution Temporal Span

CRU
Precipitation 0.5 × 0.5 1982–2015

Potential Evapotranspiration 0.5 × 0.5 1982–2015
Temperature 0.5 × 0.5 1982–2015

AVHRR GIMMS NDVI 0.083 × 0.083 1982–2015

2.3. Methods
2.3.1. Drought Indices

Four (4) drought indices were used in this work. The performance of each index
during drought conditions over the whole study area was assessed and the four drought
indices were used in this report to combine and produce a spatial drought risk map through
a spatial multi-criterion decision making process. The indices include: standardized precip-
itation index (SPI), standardize precipitation evapotranspiration index (SPEI), temperature
condition index (TCI), and vegetation condition index (VCI). SPI is ranked as the most
importance drought parameter over the region according to [50]. The spatial maps of
trend (slope) and persistence (DFA) from the drought indices were also computed. The
criteria weighting technique according to Saaty’s [51] was done based on the statistical
performance evaluation methods before the application of SMDM. SMDM was applied
to merge the four drought indices into a single drought risk map for easy analysis and
interpretation. Finally, a superimposed sustainability map of persistence (SMDM) and
slope (SMDM) was obtained to capture drought changes at larger and shorter time scales.
The flowchart of the work is show in Figure 2.

(1) Standard Precipitation Index (SPI)

The SPI was developed by McKee et al. [35] and uses only precipitation data for its
calculation. It fits a mathematical function to the time series of historical precipitation
records. The algorithm for the computation of SPI fits the gamma distribution function
which is given by Haroon et al. [4] and Kalisa et al. [34] as:

g(x) =
1

αβΓ(β)

∫ x

o
xβ−1e

x
a dx (1)

where α and β are the scale and shape parameters, respectively. Γ(β) is an ordinary gamma
function of β.

The probability distribution function is given by

g(x) =
∫ x

o
g(t)dt (2)

A composite distribution function H(x) is used in case the precipitation distribution
contains zero values, and q represents the probability of a zero evaluated by N

n , in which N
is the number zeros in the precipitation series with a temporal span of n.

H(x) = q + (1− q)g(x) (3)

Finally, SPI is estimated by

https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.01/cruts.1709081022.v4.01/
https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.01/cruts.1709081022.v4.01/
https://ecocast.arc.nasa.gov/data/pub/gimms/3g.v1/
https://ecocast.arc.nasa.gov/data/pub/gimms/3g.v1/
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SPI = −t +
C0 + C1t + C2t2

1 + d1t + d2t2 + d3t3 (4)

where 0 < H(x) ≤ 0.5.
or

SPI = t− C0 + C1t + C2t2

1 + d1t + d2t2 + d3t3 (5)

where 0.5 < H(x) ≤ 1.0.
The constants are given as

C0= 2.515517, d1 = 1.432788

C1= 0.802853, d2 = 0.189269

C2 = 0.010328, d3 = 0.001308
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(2) Standard Precipitation Evapotranspiration Index (SPEI)

SPEI is a drought index that is based on temperature and precipitation data which
accounts for the water requirement due to evapotranspiration [52]. The difference between
precipitation and potential evapotranspiration (PET) indicates a measure of water surplus
or deficit for a particular time period and this is compared over time and subsequently
standardized to obtain the value of SPEI. Firstly, the water budget was estimated by:

di = pi − PETi (6)

where pi is the precipitation data records.
After estimating the water budget di using Equation (6), the value of di was replaced

by precipitation adopting the same algorithm earlier explained in Equations (1)–(5). The
estimation of SPEI is similar to SPI. A three-parameter gamma distribution which can
accommodate both positive and negative values since the value of di in Equation (6) can
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be either positive or negative. Further details about the algorithm are given by Ogun-
rinde et al. [53].

(3) Vegetation Condition Index (VCI)

The Vegetation Condition Index is given by [54–56]

VCI =
NDVIi − NDVImn

NDVImx − NDVImn
(7)

where NDVIi is the NDVI at any time period i. NDVImx and NDVImn are the long term
maximum and minimum NDVI records, respectively. We used VCI-1, VCI-3, VCI-6, and
VCI-12 aggregated at 1, 3, 6, and 12 months, respectively.

(4) Temperature Condition Index (TCI)

The Temperature Condition Index (TCI) [54–56]

TCI =
Tmx − Ti

Tmx − Tmn
(8)

where Ti is the temperature at any time period i. Tmx and Tmn are the long term maximum
and minimum temperature records, respectively. We used TCI-1, TCI-3, TCI-6, and TCI-12
aggregated at 1, 3, 6, and 12 months, respectively. The ranges of values and their respective
classes for the indices are shown in Table 2.

Table 2. Drought indices and their classes.

Class SPI, SPEI, Values TCI, VCI (%)

Extremely wet ≥2.00 90–100
Severely wet 1.50–1.99 80–90

Moderately wet 1.00–1.49 70–80
Mildly wet 0.50–0.99 60–70

Normal 0.49–−0.49 40–60
Mildly dry −0.5–−0.99 30–40

Moderately dry −1.00–−1.49 20–30
Severely dry −1.50–−1.99 10–20

Extremely dry ≤−2.00 0–10

2.3.2. Detrended Fluctuation Analysis (DFA)

In this work, the detrended fluctuation analysis (DFA) was applied to the monthly
drought indices. The DFA technique, which is robust for detecting long-term memory in
time series, was developed by Kantelhardt et al. [57], a modification of the method reported
by Peng et al. [58]. Considering a monthly time series of drought indices D̃i, i = 1, 2, 3 . . . N,
then the following methods were adopted:

1. Subtract the seasonal trend from the data.

2. Create a profile G(i) =
i

∑
k=1

D̃k, i = 1, 2 . . . , N.

3. Divide the time series into Ns equal non-overlapping segments of fixed length to
determine the fluctuations in G.

4. Compute the ideal polynomial fit fv(i) of the profile and obtain the variance (Equa-
tion (1)) around the fit for each segment v = 1, 2 . . . Ns,

F2
s (v) =

1
s

s

∑
j=1

[G((v− 1)s + j)− fv((v− 1)s + j)]2 (9)

5. Take the mean of F2
s (v) over all the segments (Ns) to get the value of the fluctuation

function F(s).

The relationship between F(s) and s [58], according to Equation (10) indicates the
presence of power law (fractal) scaling. The value of h represents the scaling Hurst exponent.
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If h > 0.5 the series is persistent (long range correlated), when h < 0.5 the series is non-
persistent (long range anti-correlated), and for h = 0.5 the series is random.

F(s) ∝ sh (10)

2.3.3. Spatial Multi-Criterion Decision Making (SMDM)

Spatial multi-criteria decision-making (SMDM) is a technique that is employed in
combining and converting spatial data into a decision making tool, an approach based on
pairwise comparisons which was proposed by Saaty [51]. The SMDM method involves
input data to be of geographical origin. The analytic hierarchy process (AHP) is the most
widely accepted method and is considered by many as the most reliable multi-criteria
decision making method. A recent report by Karleuša et al. [59] indicated that AHP is one
of the best methods for multi-criterion decision making. The Analytical Hierarchy Process
is one of the frequently used SMDM techniques applied in decision making. More details
about the AHP method can be obtained from the following documented reports [60].

According to Saaty [51], the Eigen weight equation is given as:

A′w′ = λmaxw (11)

where A is the matrix obtained from pairwise comparison, λmax is the maximum Eigen
value, and w is the eigenvector [51]. The coordinates of the eigenvectors are divided by
their sum (normalized) to produce the weights of the criteria.

The consistency of AHP is given by the consistency ratio (CR). CR shows the probabil-
ity that the pairwise selection was done without bias. A CR of less than 10% indicates that
a reasonable level of consistency was ensured.

CR =
CI
RI

(12)

where CI and RI are the consistency and random indices [60,61].
Prior to the application of the AHP, we applied correlation (r) analysis to study the

relationship among the drought indices.

r =
∑n

k=1
(
yj − y

)(
αj − α

)√
∑n

k=1
(
yj − y

)2. ∑n
k=1 (αj − α)2

(13)

After generating the AHP criterion weights, OLR, and DFA analysis were superim-
posed at different time scales via SMDM to produce the final drought risk map of the study
area. OLR measures the trends in the droughts indices while the DFA measures the long
term memory of the data records (persistence) which describes the tendency of the records
to reverse strongly or converge in a particular direction. The Hurst exponent (h) from DFA
is used in fractal methodology to study persistence of data series [57,58].

The slope (trend) from an OLR is given as

slope =
∑n

k=1
(
yj − y

)(
αj − α

)√
∑n

k=1 (αj − α)2
(14)

where y and α are the dependent and independent quantities, respectively.
The proposed drought trends based on SPEI, SPI, VCI, and TCI at p < 0.05 integrated

with the Hurst exponent are shown in Table 3.
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Table 3. Future drought trends based on SPEI, SPI, VCI, and TCI at p < 0.05 integrated with the Hurst exponent.

Hurst/Trend OLR

DFA

Persistence 0.5 < h < 1 Sustainability/Improvement Sustainability/Degradation

Persistence 0 < h < 0.5 Unsustainability/Improvement Unsustainability/Degradation

Persistence h = 0.5 Random/Improvement Random/Degradation

Persistence h > 1 Unpredictable/Improvement Unpredictable/Degradation

3. Results and Discussion
3.1. Precipitation Records of 34 Years over East Africa

Figure 3 shows the geographical distribution of precipitation in the study area. The
northwestern and western regions and parts of the southern region received a high amount
of precipitation compared to the northeastern region over the course of 34 years. Gen-
erally, the northwestern and western regions (high latitudes) received a high amount of
precipitation compared to the southern region (low latitudes).
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3.2. Analysis of Drought Indices

In Figure 4, the well-known historic drought episodes of 2005/06, 2009/10, and
2011/12 and the flood episode of 1997 [50,62–64] are well captured and represented by the
SPEI and SPI compared to VCI and TCI. Meanwhile, VCI and TCI displayed more dry condi-
tions between 2000 and 2015 compared to the other drought indices. The drought episodes
of 1984/85, 2002/03, and 2010/11 were clearly outlined and discussed by Haile et al. [47].
It is on record that the 2011/12 drought was the worst recorded drought year in East Africa
in recent decades, when countries such as Somalia, Kenya, and Ethiopia received low
precipitation and the episode extended to 2013. In addition, the 1997/98 flood year which
was caused by El Nino has been well captured by SPEI and SPI including all the other
indices, as shown in Figure 4.

In Figure 5, the result shows mean spatial 1–12 month aggregated VCI and TCI
grouped according to the ranges given in Table 2. The spatial representation of SPEI and
SPI (though not displayed in Figure 5) indicated normal values for all the time scales. VCI-1
indicated mean drought conditions from severely dry to mildly wet while VCI-3, 6, and 12
indicated mean drought conditions from severely dry to moderately wet. In addition, TCI-1,
3, and 12 indicated drought conditions from mildly dry to mildly wet while TCI-6 ranged
from normal to mildly wet conditions. Arguably, normal drought conditions dominated
the study area for all the time scales followed by mildly dry. Other drought conditions,
such as severely dry, moderately dry, and moderately wet conditions, were found in small
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percentages. Mildly dry conditions were located in parts of Ethiopia, Kenya, South Sudan,
and a few scattered pixels in Uganda and Tanzania while for VCI-12, mildly dry pixels
were distributed in South Sudan, northern Ethiopia, northern Kenya, and some few pixels
scattered in Uganda. The rest of the pixels showed normal drought conditions.
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In Table 3, the values for all drought indices do not appear to be in the same range.
Prior to the analysis, all the variables were scaled and normalized within the same range
to avoid the effects that might arise from gradient descent. Having data records within a
similar scale can help the gradient move smoothly for all data points at the same rate. From
Table 4, SPEI at all-time aggregate shows significant positive correlation with SPI while
SPEI shows significant positive correlation with VCI at all-time scales except SPEI versus
VCI-6 and VCI-12. Further, SPEI-1, SPEI-6, and SPEI-12 show significant correlations with
TCI, except SPEI-3 versus VCI-1 to 6. Additionally, for SPI versus VCI, there exist high
positive correlations at almost all the time scales, but low insignificant correlations in VCI
versus TCI, except TCI-1 versus VCI-3 with a significant correlation coefficient of 0.40.
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Table 4. Correlation coefficient between different drought indices across East Africa. The asterisk * and ** shows significance
at p < 0.05 and p < 0.001, respectively.

SPEI-3 SPEI-6 SPEI-12 SPI-1 SPI-3 SPI-6 SPI-12 VCI-1 VCI-3 VCI-6 VCI-12 TCI-1 TCI-3 TCI-6 TCI-12

SPEI-1 0.62 ** 0.44 ** 0.28 ** 0.86 ** 0.62 ** 0.39 ** 0.20 ** 0.19 ** 0.12 * 0.06 −0.03 0.20 ** 0.13 * 0.13 * 0.18 **

SPEI-3 0.61 ** 0.33 ** 0.70 ** 1.00 ** 0.70 ** 0.42 ** 0.35 ** 0.32 ** 0.23 ** 0.12 * 0.01 −0.01 −0.08 −0.12 *

SPEI-6 0.66 ** 0.36 ** 0.61 ** 0.91 ** 0.59 ** 0.32 ** 0.42 ** 0.46 ** 0.26 ** 0.13 * 0.17 ** 0.21 ** 0.21 **

SPEI-12 0.17 ** 0.33 ** 0.54 ** 0.89 ** 0.17 ** 0.26 ** 0.39 ** 0.46 ** 0.11 * 0.14 * 0.18 * 0.25 **

SPI-1 0.70 ** 0.45 ** 0.23 ** 0.18 ** 0.13 * 0.07 0.00 0.03 −0.03 −0.08 −0.11 *

SPI-3 0.70 ** 0.42 ** 0.35 0.32 ** 0.23 ** 0.12 * −0.00 −0.02 −0.08 −0.12

SPI-6 0.65 ** 0.33 ** 0.42 ** 0.47 ** 0.31 ** −0.02 −0.02 −0.06 −0.14 *

SPI-12 0.18 ** 0.26 ** 0.42 ** 0.51 ** −0.06 −0.08 −0.12 * −0.18 **

VCI-1 0.69 ** 0.47 ** 0.35 ** 0.11 * −0.18 ** −0.02 0.03

VCI-3 0.69 ** 0.51 ** 0.40 ** 0.13 * 0.04 0.04

VCI-6 0.81 ** 0.06 0.12 * 0.11 * 0.01

VCI-12 −0.05 −0.05 −0.07 −0.07

TCI-1 −0.76 ** −0.42 ** −0.39 **

TCI-3 −0.72 ** −0.49 **

TCI-6 −0.69 **

3.3. Persistence in Drought over East Africa

Figure 6 shows the DFA values of the four drought indices. DFA describes persistence
in data records. Persistence is referred to as time series fluctuations of data which are
expected to be succeeded by subsequent deviations in a similar manner [65]. Persistence
(anti-persistence) means that any increases in data records are more likely to be succeeded
by increases (decreases) over time [34,66]. The DFA approach measures the direct and
indirect changes which are very hard to be explained by an ordinary least square regression
model (Figure 7). Therefore, when the fractal Hurst exponent from DFA and ordinary least
square regression are superimposed, more details concerning sustainability are exposed
and better visualized.

In Figure 7, the spatial ordinary regression of the four drought indices has been
presented at different time scales. The result shows that the spatial distribution of SPEI-3
with positive (negative) trends in the upper (lower) sections of the study area correlates
with SPI-1 to 12 while the spatial distribution of SPEI-6 and 12 correlates with VCI-1 to 12.
The positive trends in VCI-1 to 12 are scattered around the North West and Western regions
of East Africa over South Sudan, parts of Ethiopia, Uganda, and Lake Victoria. Meanwhile,
TCI-1 to 12 shows negative trends in OLR domain-wise. Table 5 shows percentage changes
in pixels for DFA and OLR revealing negative (positive) trends for SPEI-1, SPEI-3, SPEI-6,
and SPEI-12 including 81.8 (18.2), 27.5 (72.5), 67.1 (32.9), and 63.1 (36.9)%, respectively, and
negative (positive) trends for SPI-1, SPI-3, SPI-6, and SPI-12 including 30.2 (69.8), 27.6 (72.4),
29.6 (70.4), and 28.1 (71.9)%, respectively. For VCI-1 to 12, about 59.3 (40.7), 60.0 (40.0), 60.2
(39.8), and 59.6 (40.4)% pixels indicated negative (positive) trends, respectively.
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Table 5. Percentage distribution of pixels for (a) OLR and (b) DFA for all the four indices.

(a) SPEI-1 SPEI-3 SPEI-6 SPEI-12

Slope < 0 81.8 27.5 67.1 63.1
Slope > 0 18.2 72.5 32.9 36.9

SPI-1 SPI-3 SPI-6 SPI-12

Slope < 0 30.2 27.6 29.6 28.1
Slope > 0 69.8 72.4 70.4 71.9

VCI-1 VCI-3 VCI-6 VCI-12

Slope < 0 59.3 60.0 60.2 59.6
Slope > 0 40.7 40.0 39.8 40.4

TCI-1 TCI-3 TCI-6 TCI-12

Slope < 0 100.0 100.0 100.0 100.0
Slope > 0 0.0 0.0 0.0 0.0

(b) SPEI-1 SPEI-3 SPEI-6 SPEI-12

h < 0 0.0 0.0 0.0 0.0
h = 0 0.1 0.0 0.0 0.0
h > 0 99.9 100.0 84.9 0.0
h > 1 0.0 0.0 15.1 100.0

SPI-1 SPI-3 SPI-6 SPI-12

h < 0 8.8 0.0 0.0 0.0
h = 0 5.9 0.0 0.0 0.0
h > 0 85.3 100.0 83.6 0.0
h > 1 0.0 0.0 16.4 100.0

VCI-1 VCI-3 VCI-6 VCI-12

h < 0 18.9 5.8 0.0 0.0
h = 0 6.5 1.7 0.0 0.0
h > 0 74.6 92.5 78.5 0.0
h > 1 0.0 0.0 21.5 100.0

TCI-1 TCI-3 TCI-6 TCI-12

h < 0 45.2 9.6 0.0 0.0
h = 0 10.9 2.2 0.0 0.0
h > 0 43.9 88.3 97.7 0.0
h > 1 0.0 0.0 2.3 100.0

3.4. Spatial Multi-Criterion Decision Making

The performance-based statistical analysis has been done in the previous section to
show the indices that have more influence so that a decision matrix with linear weights
will be produced to actually overlay the different indices to produce a single drought
sustainability map for use by agriculturists and policy makers. In the application of AHP,
the basic requirement is the determination of weights for the selected input variables [60].
Criterion weights were computed by comparing and contrasting two variables at a time
using pairwise comparison matrix according to Saaty’s method [51]. We applied the model
statistics comparison techniques earlier discussed in previous sections to prepare and
discriminate the input variables according to their level of influence. The pairwise criterion
matrix with the respective weights is given in Table 6. The consistency ratio CR was
obtained as 2.1%, which is within the acceptable limit of <10%.
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Table 6. Pairwise criterion matrix with weights.

Variables SPEI SPI VCI TCI Weights

SPEI 1 2.0 3.0 5.0 46.9
SPI 0.5 1 2.0 5.0 29.7
VCI 0.3 0.5 1 3.0 16.6
TCI 0.2 0.2 0.3 1 6.8

The SMDM was achieved by the weighted linear combination overlay toolbox in
ArcGIS 10.5.1, with the additive weights computed using the AHP method. The pairwise
criterion matrix and derived weights for the four drought indices are also shown in Table 6.
A final composite map of slope, Hurst exponent, and the superimposed map of slope and
Hurst exponent were produced based on the overlay capability of the software. Figure 8
shows the drought slope and Hurst exponent while the final superimposed map at different
times is shown in Figure 9. Results from Figure 8a–d show the overlayed map of DFA
at different time scales. For example, DFA-1 shows the overlayed map of SPEI-1, SPI-1,
VCI-1, and TCI-1 (same pattern is applied to the other times scales). Results show that
DFA-1 is highly persistent with few random pixels scattered around Ethiopia, South Sudan,
and Tanzania with percentage pixels as 88.7, 11.3, and 0.1 representing h > 0.5, h = 0.5, and
h < 0.5, respectively. DFA-6 shows high (low) pixels representing h > 0.5 (h >1). Meanwhile,
for DFA-3 and DFA-12, the distribution is purely persistent and a random walk, respectively.
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Figure 8e–h show overlayed OLR results of the four indices at different time scales.
OLR-1, OLR-6, and OLR-12 show a similar distribution with positive (negative) trends
scattered in the north west (Northeast and Southern) parts of the study area. OLR-3 shows
positive trends scattered in the northern parts, northeast and northwest, while negative
trends are distributed in the southern parts, covering Sothern Kenya and Tanzania. The
percentage pixel distribution for OLR-1, OLR-3, OLR-6, and OLR-12 is 18.2 (81.8), 72.6
(27.4), 33.2 (66.8), and 36.7 (63.3) for decreasing (increasing) trends, respectively.

Figure 9 shows the superimposed map of slope (OLR) and Hurst exponent (DFA)
at different time scales to reveal the final drought risk map which is an approach for
mapping drought sustainability. For example, at a 1-month time scale OLR-1 and DFA-1
were superimposed to produce the final drought risk map. The results indicate that
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drought conditions may eventually persist, reverse, or vary drastically depending on the
driving forces. At the 1-month time scale, about 73.0, 8.8, 15.7, 2.5, 0.1, and 0.0% pixels
showed sustainability/degradation, random/degradation, sustainability/improvement,
random/improvement, unsustainability/degradation, and unsustainability/improvement,
respectively as shown in Figure 9a. Regions with severe drought but considerable im-
provement are located around parts of Ethiopia, Somalia, eastern Kenya, southern Uganda,
Rwanda, Burundi, and some parts of Tanzania while regions with random drought distri-
bution and considerable degradation at the 1-month time scale include eastern Ethiopia,
eastern South Sudan, and southern Tanzania. At the 3-month time scale (Figure 9b), about
72.6 (27.4) % pixels showed sustainability/improvement (sustainability/degradation).
Areas with sustainable/improvement are distributed in Ethiopia, Somalia, South Sudan,
Uganda, Rwanda, parts of Tanzania, Burundi and Kenya while regions with sustainable and
degraded portions are located in southern Burundi and Tanzania. In addition, at a 6-month
time scale, about 54.2, 32.8, 12.6, and 0.4% of pixels showed sustainability/degradation,
sustainable/improvement, unpredictable/degradation, and unpredictable/improvement,
respectively (Figure 9c). Regions with sustainable and improved pixels are located in
Northwest Ethiopia, South Sudan, Uganda, and Western Kenya while pixels with sus-
tainable and degradation are majorly distributed in Northeast Ethiopia, parts of Kenya,
Rwanda, and the entire landmass of Tanzania. Meanwhile, regions that were unpredictable
but showed considerable degradation were scattered over Somalia and Eastern Kenya.
More so, at the 12-month timescale (Figure 9d), about 36.70 (63.30) % of pixels were
unpredictable/improved (unpredictable/degraded) over the study area.
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4. Discussion

Overall, the northeastern region received a lesser amount of precipitation in the study.
The amount of precipitation decreases as the distance from the lower longitudes decreases
towards the Indian Ocean from longitude 14◦ E to 75◦ E (Figure 3). The region with the
lowest precipitation on record is the northeast, around Somalia and parts of Ethiopia, while
the highest precipitation occurs around Lake Victoria and the mountainous regions [44,67].
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The hydrological climate comprises of two rainy seasons, one from March to May (MAM)
and another from October to December (OND) [68]. According to Gebrechorkos et al. [8],
regions located nearer to the equator are characterized by a long and short rainy season
with higher amounts of precipitation during MAM and OND, while in JJAS precipitation is
high around the Ethiopian highlands. Further, precipitation from January to February (JF)
is low with high temperature values. The main reasons for high precipitation around the
northwest and equatorial regions include local topographic factors, regional circulation,
coastal influences, and remote forcing [44]. While some of the northeastern regions also
experience precipitation, the magnitude and frequency are less than the areas around the
equatorial and mountainous regions. The monthly evolution of precipitation makes this
region more susceptible to drought. Therefore, the impacts of drought are more experienced
in the northeastern parts compared to other regions.

Figure 4 shows the four drought indices (SPEI, SPI, VCI, and TCI) used in evaluating
drought at four different time scales (1, 3, 6, and 12 months). While SPEI and SPI can both
be used in studying droughts, the difference between the two indices is that the SPEI uses
potential evapotranspiration (which serves a good purpose in revealing the net moisture
balance in the soil) while the SPI, evaluated as a single numeric value, is described as
the amount of standard deviations that the observed cumulative precipitation within a
given time period would fluctuate from the long term average [50]. It is appropriate for
monitoring short term impacts on soil moisture, snow pack, and stream flow [69] and it is
generally agreed that a minimum data length of 30 yrs is needed for its computation. On
the whole, a good drought index should be adapted to the climate and be induced locally
to describe the drought of the region.

Figure 5 reveals that majority of the pixels show normal drought conditions in VCI
and TCI (especially TCI-6 and -12). Our findings mainly show normal conditions in all
drought indices when average creeping drought values are considered. Even so, there is
a varying degree of correlation between the mean VCI and TCI values at the pixel scale.
Despite the fact that VCI mean values correlate with TCI in some regions, there is no direct
relationship between the two. In addition, Figure 4 depicts the lack of a linear relationship
between meteorological, hydrological, and vegetative droughts. Furthermore, drought
frequency and duration vary in a variety of ways at the pixel scale. As a result, it is not
uncommon for one drought indicator to indicate drought in one place while another index
indicates normal conditions at the same location and time. Because SPI is a meteorological
index, it can detect drought, but the values cannot distinguish between locations that are
more prone to drought than others. Equal SPEI and SPI values at two separate grid points
may not always suggest a similar water deficit at these two grid sites. Furthermore, direct
comparisons of occurrences with similar SPI and SPEI at different temperature conditions
may be challenging. This is why the study used a combination of drought indicators,
including meteorological (SPI and SPEI), temperature (TCI), and vegetation (VCI).

In general, the results on Tables 3 and 4 show a good agreement between SPEI and
SPI that may indicate the existence of drought or wet conditions as the aggregate time
increases. The correlation analysis reveals that all pairs of the indices at different time
scales have a more or less positive or negative correlation ranging from −0.4 to 1. We can
thus apply the four drought indices concurrently in assessing drought and wet conditions
over the study area. The research work adopts a spatial multicriterion decision-making
model coupled with an analytical hierarchy process (AHP) to determine a drought risk
map that shows the persistence or anti-persistence of drought at different time scales over
the study area. This method takes into consideration the importance and effectiveness of
each drought index to determine drought over the study area.

From Figure 6, drought indices that indicated persistent (h > 0.5) behavior were higher
than anti-persistence indices; they include SPEI-1 to 3, SPI-1 to 6, VCI-1 to 6, and TCI-1
and TCI-6. For anti-persistence (h < 0.5), TCI-1 showed the highest percentage of pixels
representing h < 0.5, while few pixels indicated a random behavior (h = 0.5) over the study
area. The high persistence over the area shows that wet (dry) regions are getting wetter
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(dryer) while the few regions that indicated random behavior are those with transition from
wet to dry conditions and vice versa. Regions with h > 1 (random walk) are those whose
current condition (whether wet or dry) cannot be predicted by the previous data records.
Generally, the Hurst exponent ranges from 0 to 1 and any higher value of h falls outside
the predicted values. Overall, the result suggests that at low time scales (1–3 months), the
records are random, persistent, or anti-persistent and any aggregation from lower to higher
timesscales (6–12) may result to majorly persistent or random walk behavior of the drought
time series (Figure 6).

Furthermore, the outcome of this study as presented in Tables 5 and 6 and Figures 7–9,
reveal creeping drought at a one-month time interval, indicating positive changes in
Kenya, Uganda, and Ethiopian Highlands while Somalia and Tanzania shows worsening
conditions in drought in line with Haile et al. [70] with little disagreement from the
outcomes in South Sudan at monthly time scales. Part of the area in Somalia indicated
slight improvement in drought conditions while other areas remained unchanged. Over
South Sudan, our work disagrees with Haile et al. [70], but agrees with Yagoub et al. [71].
Yagoub et al. used SPI to detect drought cycle patterns and their one-month SPI indicted
more wet conditions than higher SPI (3 and 6) indices.

5. Conclusions

Drought is a slow-moving phenomenon that affects many different sectors of the
economy and operates on a variety of time frames. This work applied the SMDM algorithm
to the integrated approach of OLR and Hurst exponent drought assessment over East Africa
at different time scales from 1982 to 2015. Four drought indices were used in this report
to combine and produce a spatial drought risk map. The indices include SPEI, SPI, VCI,
and TCI. OLR-1 represents merged trends of the drought indices at a 1-month time scale
while DFA-1 represents merged Hurst exponent maps at a 1-month time scale. The OLR
was employed to study trend changes while the DFA was used to study persistence in the
drought indices. The DFA approach can be helpful in characterizing the direct and indirect
changes which are very hard to be explained by an ordinary least square regression model.

Results from this analysis reveal both decreasing and increasing trends for SPEI, SPI,
and VCI. TCI showed only decreasing trends. For DFA, all the indices displayed persistent,
anti-persistent, and random behavior as captured by the Hurst exponent. OLR-1, OLR-6,
and OLR-12 shows a similar distribution with positive (negative) trends scattered in
the Northwest (Northeast and Southern) parts of the study area. OLR-3 shows positive
trends scattered in the Northern parts, Northeast and Northwest while negative trends are
distributed in the Southern parts covering Sothern Kenya and Tanzania. The percentage
pixel distribution for OLR-1, OLR-3, OLR-6, and OLR-12 is 18.2 (81.8), 72.5 (27.5), 32.9
(67.1), and 36.9 (63.1) for decreasing (increasing) trends respectively. Result DFA-1 is
highly persistent with few random pixels scattered around Ethiopia, South Sudan, and
Tanzania with percentage pixels as 88.7, 11.3 and 0.1 representing h > 0.5, h = 0.5, and
h < 0.5 respectively. DFA-6 shows high (low) pixels representing h > 0.5 (h > 1) respectively.
Meanwhile, for DFA-3 and DFA-12, the distribution is purely persistent and a random
walk, respectively.

The SMDM was achieved by the weighted linear combination using the AHP method
and a final composite map of slope, Hurst exponent and the superimposed map of slope
and Hurst exponent was produced. However, interpreting and predicting the magnitude
of drought at 1-month intervals can be challenging because precipitation varies greatly
across the geographical regions as well as time scales. Thus only the immediate impacts
of drought such as restriction to flow and changes in hydrological cycle maybe observed
short times periods, whereas the actual changes may be visible at longer time intervals.
At higher time scales, dry/wet conditions become pronounced and can be easily detected
and mapped. Overall, the drought risk map at 1-, 3-, and 6-month aggregates have shown
severe degradation in Northwest Ethiopia, parts of South Sudan and and Tanzania while
noticeable improvements are seen in Uganda, Eastern Kenya, and South Sudan.
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The method applied in this work is helpful in characterizing future trends in drought.
It will be valuable for future work in drought mitigation and environmental management
as it can be applied in any region of the world. The results obtained from this work can
help policy makers formulate appropriate drought monitoring policies in both tropical and
subtropical regions.
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