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Abstract: Hydrological signatures, i.e., statistical features of streamflow time series, are used to
characterize the hydrology of a region. A relevant problem is the prediction of hydrological signatures
in ungauged regions using the attributes obtained from remote sensing measurements at ungauged
and gauged regions together with estimated hydrological signatures from gauged regions. The
relevant framework is formulated as a regression problem, where the attributes are the predictor
variables and the hydrological signatures are the dependent variables. Here we aim to provide
probabilistic predictions of hydrological signatures using statistical boosting in a regression setting.
We predict 12 hydrological signatures using 28 attributes in 667 basins in the contiguous US. We
provide formal assessment of probabilistic predictions using quantile scores. We also exploit the
statistical boosting properties with respect to the interpretability of derived models. It is shown
that probabilistic predictions at quantile levels 2.5% and 97.5% using linear models as base learners
exhibit better performance compared to more flexible boosting models that use both linear models
and stumps (i.e., one-level decision trees). On the contrary, boosting models that use both linear
models and stumps perform better than boosting with linear models when used for point predictions.
Moreover, it is shown that climatic indices and topographic characteristics are the most important
attributes for predicting hydrological signatures.

Keywords: catchment hydrology; flow indices; flow metrics; hydrological processes; hydrological
uncertainty; large sample hydrology; prediction in ungauged basins; quantile regression; statistical
boosting; streamflow signatures

1. Introduction

Hydrological signatures are estimates of statistics that are used to characterize stream-
flow time series [1,2]. The concept of hydrological signatures was first introduced and
explicitly described in [3]. Relevant signature-based characterizations may be related, for
example, to the average or the extreme streamflow behavior, while some guidelines for
selecting hydrological signatures can be found in [2]. Examples of hydrological signatures
include the mean flow, the total runoff ratio, the baseflow index, the number of flow peaks
over a threshold, the time lag between rainfall and flow series and more [1].

Hydrological signatures are useful in ecological and hydrological applications, for
instance as proxies of hydrological processes [1] or in hydrological simulations [4]. In
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particular they are selected with the aim to exploit information about the hydrological
behavior, e.g., “to identify dominant processes, and to determine the strength, speed and
spatiotemporal variability of the rainfall-runoff response” [2]. Applications of hydrological
signatures include understanding hydrological processes in a given catchment, comparing
hydrological observations against model outputs, and estimating hydrological similarity
across time or space [2]. Multiple signatures can be ranked according to their importance
in characterizing the hydrology of a region, e.g., in clustering applications [5].

Streamflow data are unavailable for most catchments ([6], p. 2). In the case of un-
gauged catchments, streamflow signatures can be predicted using remote sensing data
in combination with hydrological models or statistical and machine learning algorithms
(e.g., [6–9]). Predicting the behavior of ungauged catchments, i.e., predicting their signa-
tures is a relevant problem of interest. Such predictions should be probabilistic, so that one
can understand their uncertainties (e.g., [10–14]). Furthermore, it is important to know the
relationships between attributes of catchments and hydrological signatures [15]. Machine
learning regression algorithms have been used to predict hydrological signatures [16–18].
Probabilistic predictions of hydrological signatures using regression algorithms can be
found in [16], where some variant of quantile regression forests seems to have been
used [19,20]. The procedure to predict hydrological signatures in ungauged basins using
regression algorithms includes the establishment of a relationship between the attributes
of the basin (predictor/independent variables) and the hydrological signature (dependent
variable). A key point is that the predictor variables are widely available through remote
sensing data, unlike the dependent variable.

Machine and statistical learning regression algorithms are great in establishing reliable
relationships due to their flexibility [21–23] and they have been used extensively in hy-
drology [24–28]. A key issue in their use is that there is a trade-off between flexibility and
interpretability ([23], p. 25). A second issue is that possible spatial dependencies cannot be
modelled directly by frequently used machine learning algorithms, albeit there are some
advancements towards this direction.

Here we aim to predict hydrological signatures (in particular mean daily discharge,
5% flow quantile, 95% flow quantile, baseflow index, average duration of high-flow events,
frequency of high-flow days, average duration of low-flow events, frequency of low-
flow days, runoff ratio, streamflow precipitation elasticity, slope of the flow duration
curve and mean half-flow date) using statistical boosting algorithms [29] in a regression
setting. Boosting is an ensemble learning algorithm that aims to improve the predictive
performance of weak base learners based on an iterative fitting procedure. We apply
the algorithms to a dataset consisting of 667 basins in the contiguous US (CONUS). This
dataset comprises 28 attributes (predictor variables, such as topographic characteristics
and climatic indices) and 12 hydrological signatures (such as low and high flow quantiles).

Compared to other machine learning models, boosting algorithms can be more in-
terpretable, as additive base learners (base learners are combined to form an ensemble
learning algorithm) can be used to model the effects of the predictor variables. Furthermore,
a variable and model selection procedure is applied, which is particularly important in
settings with a high number of predictor variables. In spite of their interpretability, boosting
algorithms still remain flexible. Properties of boosting algorithms can be found in [30].
Probabilistic predictions are provided (we note that a single study exists that delivers
probabilistic predictions in a regression setting, despite the large interest in quantifying
predictive uncertainty [16]), while compared to previous studies, a formal assessment of
the quality of probabilistic predictions is also presented.

The remainder of this paper is structured as follows. Section 2 presents the dataset
and methods used in the manuscript. Results are presented in Section 3, followed by their
discussion in Section 4. The paper closes with conclusions and recommendations for future
works in Section 5.
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2. Data and Methods

Here we present the dataset, the implemented boosting algorithms, the performance
metrics and an overview of the methodology. We address the problem of constructing a
model that will take basin attributes as inputs and provide probabilistic predictions of hy-
drological signatures. To this end, a boosting regression algorithm is fitted to available data
of catchments located in CONUS, and the quantile loss function is minimized. Furthermore,
the predictive performance of the algorithm is assessed in a 10-fold cross-validation.

2.1. Data

We used the Catchment Attributes and MEteorology for Large-sample Studies (CAMELS)
dataset [31], which includes 671 basins. This dataset is open and appropriate for bench-
marking and investigations in large-sample hydrology studies [32]. Furthermore, it is
appropriate for studying catchments with diverse characteristics (e.g., climatic and geo-
logical) due to the extended spatial coverage of CONUS. The data can be found online
in [33,34]. Documentation of the data is available in [31,35].

We selected 667 basins (the remaining ones had missing values) which cover the entire
CONUS, as presented in Appendix B. The basins are characterized by minimal human
influence; consequently, the use of regression algorithms is a reasonable option for the anal-
ysis. The spatial coverage is representative of the large range of hydroclimatic conditions
met in CONUS. An overview of the catchment attributes can be found in Table A1 and their
explanation can be found in Appendix A. The catchment attributes include hydrological
signatures as described in Table A2 (attributes were computed using data collected by
Newman et al. [35]), topographic characteristics as described in Table A3 (attributes were
computed using data from Newman et al. [35]), climatic indices as described in Table A4
(attributes were computed using data by Thornton et al. [36]), land cover characteristics
as described in Table A5 (attributes were computed using Moderate Resolution Imaging
Spectroradiometer (MODIS) data), soil characteristics as described in Table A6 (attributes
were computed using data by Miller and White [37] and Pelletier et al. [38]) and geological
characteristics as described in Table A7 (attributes were computed using data by Gleeson
et al. [39] and Hartmann and Moosdorf [40]) related to the basin of interest.

2.2. Boosting Algorithms

We are interested in boosting for statistical modelling [41] and, in particular, in some
further developments related to the interpretability of the model. These developments
are summarized in [29]. The overall approach is related to a general gradient descent
“boosting” paradigm developed for additive expansions and any loss function [42] (see
Algorithm 1 for this formulation).

Algorithm 1 Formulation of the gradient boosting algorithm, adapted from [29,30,42,43].

Step 1: Initialize f 0 with a constant.
Step 2: For m = 1 to M:
a. Compute the negative gradient gm(xi) of the loss function L at fm–1(xi), i = 1, . . . , n.
b. Fit a new base learner function hm(x) to {(xi, gm(xi))}, i = 1, . . . , n.
c. Update the function estimate fm(x)← fm–1(x) + ρ hm(x).
Step 3: Predict fM(x).

Here M is the number of iterations, hm(x) is the base learner fitted at each iteration and
ρ is the step-length factor. Explanation of the role of parameters M and ρ can be found in
the following.

An intuitive explanation of the concept of statistical boosting can be found in [44].
Statistical boosting can be seen as an algorithm to fit a regression model. Two properties
of statistical boosting are typical. The first one, is that one can model the effect of each
predictor variable (i.e., an element of the vector xi; see Algorithm 1) using simultaneously
different base learners, e.g., linear models or decisions trees (commonly base learners are
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weak regression algorithms, i.e., they can predict slightly better than random guessing).
The second one is that statistical boosting is in essence a function approximation procedure;
therefore, diverse loss functions can be used to fit a model and assess the degree of
approximation. Benefits related to the above two properties and the iterative fitting
procedure of Algorithm 1 [44,45] are related to our problem.

Regarding the iterative procedure of statistical boosting, the final fitted model is
additive with respect to the implemented base learners; therefore, it allows straightforward
interpretation [46]. In addition, a base learner can be used multiple times, while a predictor
variable can be modelled simultaneously by diverse base learners. The procedure of
Algorithm 1 will decide how many times each predictor variable and each base learner
will be included in the final additive model (we note that at step m, various base learners
hm(x) can be applied, e.g., a linear model or a smooth function, however a single base
learner will be selected, i.e., the one that minimizes the fitting error). Thus, statistical
boosting performs simultaneously variable and model selection [47]. Variable selection is
particularly important in the presence of multiple predictor variables (and more relevant
in the context of high-dimensional problems [48–50]), while model selection is important
when one does not know the type of appropriate model for the problem at hand.

Regarding the flexibility on the choice of loss functions, one may be interested in
average properties of the dependent variable, in which case the L2 (squared error) loss
function may be preferable amongst others [51]. In case one is interested in probabilistic
predictions, the quantile loss function is appropriate (see Section 2.4).

Another important property of statistical boosting algorithms is that they are robust
against multicollinearity issues due to regularizing the estimates of f using shrinkage
techniques [44,52]. This property is important in the presence of a high number of predictor
variables and in the context of high-dimensional problems.

The most important parameter to be estimated in statistical boosting is the number of
boosting iterations M. A low number of iterations may result in underfitting, while a high
number of iterations may result in overfitting. The optimal value of M can be estimated
with k-fold cross validation in which the empirical risk, i.e., the loss function averaged over
the observations, is minimized [52]. In particular, the early stopping optimizes predictive
performance by regularizing the estimates of f using shrinkage techniques [52]. The value
of ρ is of minor importance, while small values are preferable. Setting a small ρ, effect
estimates increase “slowly” in the boosting procedure, and they stop increasing after the
optimal stopping iteration. Here we set ρ = 1 [52].

Here, boosting algorithms were applied using the R programming implementations
by [52,53]. The mboost R package implements model-based boosting methods, while its
modular nature allows it to combine diverse base learners and loss-functions.

2.3. Base Learners

Boosting algorithms are designed to improve the predictive performance of weak
base learners based on the iterative framework of Algorithm 1, in the sense that weak
base learners are boosted to become strong ones [54]. Here we used linear models and
stumps (i.e., one-level decision trees) to model basin attributes. Geographical coordinates
were not explicitly modelled, because part of this information is included in other basin
attributes. The idea of using simple models to model basin attributes is consistent with the
basic concept of boosting algorithms.

2.4. Metrics

Our boosting algorithms were implemented by minimizing the quantile loss function
proposed by [55]. At level a ∈ (0, 1), the quantile loss function imposes a penalty equal to
L(r; x) to a prediction quantile r, when x materializes according to Equation (1):

L(r; x): = (r − x) (
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The quantile loss function is a proper scoring rule [56] and is especially useful when
one aims to predict conditional quantiles. It is related to linear-in-parameters quantile
regression (i.e., linear regression with quantile loss) [57,58]. Interval scores [59,60] are
special cases of quantile losses and are particularly useful when one provides prediction
intervals, but here we aim to evaluate separately predictive quantiles. The value of quantile
regressions in hydrology has been highlighted in [61].

2.5. Summary of Methods

Here we summarize the framework of our study. Firstly, selected attributes and
signatures are transformed using the logarithm or the square root function before perform-
ing any computations. The selection of those attributes and signatures is based on some
preliminary exploratory data analysis that seeks for possibly skewed data and aims to
approximately normalize the data. The inverse transform is applied to all final predictions,
and all results on predictive performance are reported with respect to back-transformed
values. We note here that data preprocessing is a purely empirical procedure aiming to
improve predictive ability of the algorithm. A summary of variables that are transformed
can be found in Section 2.1.

The sample of 667 basins is divided randomly into 10 folds. Then the boosting
algorithm is trained in nine folds and tested in the remaining fold. The procedure is
repeated 10 times, so that all folds are included in the test set. All predictive performances
are reported for the test set.

Now assume that one aims to predict a specific hydrological signature at all basins
included in a single random fold. The boosting algorithm is trained in the remaining
nine folds in a 10-fold cross-validation framework (this 10-fold cross-validation aims
to estimate the optimal stopping parameter M and should not be confused with the
10-fold cross-validation mentioned in the previous paragraph). The procedure terminates
in 2000 iterations. Predictions of negative sign are transformed to 0, for hydrological
signatures that are known to be a priori positive (e.g., frequency of high-flow days).

Two cases are examined, i.e., boosting (a) using linear models to model each predictor
variable and (b) using a linear model and a stump to model each predictor variable. The
predictive performances of both boosting algorithms on the test set are reported for quantile
levels equal to 2.5%, 50.0% and 97.5%. Furthermore, the procedure (b) (see paragraph
above) is repeated by fitting the boosting algorithm in the full sample in a 10-fold cross-
validation and the frequency of included predictor variables in the final model (i.e., the
model obtained by implementing the optimal parameter M) is reported for providing an
explanatory model.

3. Results

Here we present the results of the fitting problems. In particular, we provide some
exploratory analysis in Section 3.1. Sections 3.2–3.4 present the probabilistic predictions
for three categories of hydrological signatures, each one including four hydrological signa-
tures from Table A1. An overall assessment of the implemented methods is presented in
Section 3.5.

3.1. Exploratory Analysis

It is important to understand the relationships between hydrological signatures and
basin attributes. To this end, a correlogram between all variables is presented in Figure 1.
Most features are relatively uncorrelated. Regarding a few correlated variables, we note
that statistical boosting can discriminate important variables with little consequence on
predictive performance, due to its internal mechanism.
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Figure 1. Correlations between attributes and hydrological signatures. High absolute correlations between attributes
and hydrological signatures may be related to possible strong inter-relationships in linear settings. Transformed values
as presented in Table A1 have been used for the attributes. Vertical and horizontal black solid lines classify variables
(hydrological signatures and attributes) according to their type; see Table A1.

To better understand what Figure 1 depicts, we here note that variables were sorted
according to their type (in both the horizontal and vertical directions); see Table A1. As
regards the horizontal direction, hydrological signatures are placed in the bottom-left
corner of Figure 1, being followed by climatic indices and the remaining types of variables
(as we move from the left to the right). Some hydrological signatures are highly correlated
(e.g., mean daily discharge, 5% flow quantile, 95% flow quantile and baseflow index). This
does not pose problems for our approach, because hydrological signatures are modelled
separately.

Another important note on Figure 1 is that possible low correlations between attributes
and hydrological signatures may explain potential low predictability of the signatures.
Consequently, estimating the uncertainty of the predictions is important. We also note that
Pearson’s correlation is a linear metric; therefore, selection frequency of predictor variables
given by boosting algorithms (see Section 3.5) may not be identical to a ranking of predictor
variables according to the magnitude of Pearson’s correlation.

3.2. Streamflow Signatures

Here we present probabilistic predictions of signatures related to discharge volumes,
i.e., mean daily discharge, 5% flow quantile, 95% flow quantile and baseflow index at
quantile levels 2.5%, 50.0% and 95.0% in a 10-fold cross-validation procedure for the
full sample of catchments. Similar analysis for the remaining signatures is presented in
Sections 3.3 and 3.4. Values of the variables are presented in Figure A1, while probabilistic
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predictions are presented in Figure 2. Two cases are examined, i.e., boosting with linear
models as base learners and boosting with a combination of linear models and stumps as
base learners. We note that 5% and 95% flow quantiles should not be confused with their
2.5%, 50.0% and 97.5% prediction quantiles. In particular, the problem is set so as to provide
2.5%, 50.0% and 97.5% prediction quantiles for 5% and 95% flow quantile hydrological
signatures.
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Figure 2. Probabilistic predictions of 5% flow quantile, mean daily discharge, 95% flow quantile and baseflow index (from
top to bottom) at quantile levels 2.5%, 50.0% and 97.5% for statistical boosting with linear models as base learners (see
“linear boosting” in the legend) and combination of linear models and stumps as base learners (see “full boosting” in the
legend).
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In general, we observe that predictions at quantile level 50% (i.e., predictions that
aim to minimize the mean absolute error with respect to the observations) approximate
well the observations. Moreover, prediction intervals seem to contain observed values
for both implemented algorithms. It seems that both algorithms can provide probabilistic
predictions that, in general, agree with the spatial heteroscedastic nature (i.e., the large
and diverse variations) of the dependent variables. For instance, in catchments with high
mean daily discharge the predictive quantiles at level 97.5% are also high. We note that
predictive quantiles at level 2.5% seem not to follow the fluctuations of the observations.
This is more evident in predictions of the 5% flow quantile and is due to the truncation
at 0. Furthermore, boosting with linear models seems to be smoother with regards to
model heterogeneity compared to boosting with linear models and stumps. For instance,
when looking at the 97.5% predictive quantiles of the 5% flow quantile, boosting with
linear models and stumps seems to provide less efficient variable predictions compared to
boosting with linear models. A formal assessment of both algorithms using proper scoring
rules will be presented in Section 3.5.

3.3. Signatures of Duration and Frequency of Extreme Events

Maps of values of high-flow events, frequency of high flow events, average duration
of low-flow events and frequency of low-flow days are presented in Figure A2, while
the respective probabilistic predictions are presented in Figure 3. Similar results as those
reported in Section 3.2 regarding the comparison between the two implemented algorithms
also hold here in the 10-fold cross-validation. In particular, signatures are well predicted
by both algorithms, while prediction intervals contain the observed values. Boosting with
linear models and stumps as base learners seems to be less variable at the 97.5% quantile
level while the truncation effect at 0 is also evident.
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3.4. Remaining Signatures

Remaining signatures include runoff ratio, streamflow precipitation elasticity, slope
of the flow duration curve and mean half-flow date as presented in Figure A3, while
respective probabilistic predictions are presented in Figure 4. While similar results to
Sections 3.2 and 3.3 also hold here, we note that heteroscedasticity of mean half-flow date
is not well predicted, since both algorithms seems to give predictions that are relatively
constant at quantile levels 2.5% and 97.5%.

3.5. Assesment and Importance of Predictor Variables

Figure 5 presents an assessment of both algorithms in predicting hydrological sig-
natures at 2.5%, 50.0% and 97.5% quantile levels in a 10-fold cross-validation framework.
At quantile levels 2.5% and 97.5%, boosting with linear models as base learners seems
to perform better than boosting with linear models and stumps as base learners. On the
other hand, the combination of linear models and stumps as base learners seems to provide
better results when the interest is in point predictions of hydrological signatures.

We are interested in obtaining some explainable models when predicting hydrological
signatures. To this end, we fitted a statistical boosting model with linear models and stumps
as base learners to predict a given hydrological signature at quantile level 50.0%. The final
fitted model, i.e., the model with the optimal number of iterations (i.e., the model provided
when trained in the full sample in a 10-fold cross-validation) includes predictor variables
in frequencies reported in Figure 6. The procedure is repeated for every hydrological
signature.
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Figure 4. Probabilistic predictions of runoff ratio, streamflow precipitation elasticity, slope of the flow duration curve and
mean half-flow date (from top to bottom) at quantile levels 2.5%, 50.0% and 97.5% for statistical boosting with linear models
as base learners (see “linear boosting” in the legend) and combination of linear models and stumps as base learners (see
“full boosting” in the legend).
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To understand Figure 6, we note that attributes in the vertical axis are reported
with regards to their type, i.e., topographic characteristics, climatic indices, land cover
characteristics, soil characteristics and geological characteristics (from lower to upper). In
general, topographic characteristics and climatic indices seem to be most important when
predicting hydrological signatures. Further discussion on the results of Figure 6 related to
the selection frequency of the predictor variables can be found in Section 4.

4. Discussion

We note here that interpretation and accurate prediction in algorithmic modelling
may be two conflicting objectives [62,63]. Therefore, some concessions should be accepted,
since there is no free lunch in modelling [64], so that one obtains a model that provides
acceptable predictions and is interpretable simultaneously. For instance, one could combine
multiple models and obtain more accurate points [65,66] or probabilistic [67,68] predic-
tions. However, in this case, interpretability would be lost for the sake of generalization.
Furthermore, one could also use several models and compare them (see a discussion on the
value of doing multiple comparisons using big datasets in general [69], and in hydrology
in particular [70,71]). An example of comparison of multiple regression algorithms for
providing point predictions of hydrological signatures can be found in [18]. Here we focus
on exploiting the benefits of statistical boosting and we are less interested in comparing
multiple algorithms.

With regards to studies providing probabilistic predictions of hydrological signatures,
we note that [16] used some variant of quantile regression forests (which belong to the
wider class of random forests algorithms). Compared to random forests, statistical boosting
can be more interpretable. In particular, random forests use variable importance metrics
to measure the relative importance of predictor variables in explaining the dependent
variable [72]. On the other hand, statistical boosting is additive with respect to the predictor
variables (which are modelled by linear regression algorithms), while their importance
can be related to the frequency of the appearance of the predictor variables in the final
model (see Figure 6). The finding that climatic indices are the most important variables for
predicting hydrological signatures, is also confirmed by an earlier study [16]. We note that
compared to [16], here a formal assessment of probabilistic predictions is provided based
on quantile losses.

Uncertainties of hydrological signatures are provided by [13,14] using Monte Carlo
sampling; however, the approach is not based on regression algorithms and the focus is to
characterize distributional properties of hydrological signatures.

Moreover, regarding the properties of the implemented algorithm related to the
problem at hand, we note that boosting performs model selection in the sense that the
model is not known a priori and, therefore, several models are tried (e.g., linear models
and stumps for each base learner) and boosting selects the most informative ones. This
problem is especially relevant when many predictor variables exist. We also note that
boosting with linear models is better than boosting with linear models and stumps for
probabilistic predictions, perhaps due to the structure of stumps, which does not allow for
optimal probabilistic modelling. On the other hand, most flexible models that include both
linear models and stumps seem to perform better for point predictions, i.e., prediction at
the 50.0% quantile level.

Regarding the importance of attributes for predicting hydrological signatures, snow
fraction seems to be very important for predicting hydrological signatures, based on
the number of red coloured tiles in Figure 6. The significance of snow fraction for the
prediction of hydrological signatures has also been merely discussed by [16]. Catchment
mean slope and catchment mean elevation (topographic characteristics) are also generally
very important, based on the same criterion. Catchment mean slope and catchment mean
elevation are highly correlated and, therefore, if one characteristic is omitted the other
one may gain more importance. Mean daily precipitation (i.e., another climatic index) is
also important.
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Beyond topographic attributes and climatic indices, clay fraction (a soil characteristic),
maximum monthly mean of the leaf area index (a land cover characteristic), forest fraction
(another land cover characteristic) also seem to be important. Geological characteristics
seem to not be particularly useful for predicting hydrological signatures. We note that these
findings hold for the examined sample and, therefore, perhaps a different summarization
of geological or other type of information may result in completely different conclusions.
Among the examined hydrological signatures, the 5% flow quantile, runoff ratio, and
the mean half-flow date seem to depend on fewer attributes (see Figure 6) compared to
alternative hydrological signatures.

5. Conclusions

We provided probabilistic predictions at quantile levels 2.5%, 50.0% and 97.5% of 12
hydrological signatures, namely (1) mean daily discharge, (2) 5% flow quantile, (3) 95%
flow quantile, (4) baseflow index, (5) average duration of high-flow events, (6) frequency of
high-flow days, (7) average duration of low-flow events, (8) frequency of low-flow days, (9)
runoff ratio, (10) streamflow precipitation elasticity, (11) slope of the flow duration curve
and (12) mean half-flow date using statistical boosting in a regression setting. The sample
includes 28 predictor variables, i.e., attributes of 667 basins in the contiguous US. Two
boosting models were tested, i.e., (a) a model with linear models as base learners, and (b) a
model with both linear models and stumps as base learners. Boosting modes were trained
to minimize quantile loss at levels 2.5%, 50.0% and 97.5%.

Regarding prediction performances, model (a) provided better predictions at quantile
levels 2.5% and 97.5%, while model (b) showed better performance in providing predic-
tions at quantile level 50.0% (i.e., better point predictions). Boosting models can be more
interpretable compared to other machine learning regression algorithms. By exploiting this
latter property of theirs, we found that climatic indices and topographic characteristics are
better predictors of hydrological signatures than characteristics of other types.

Uncertainty estimation of hydrological signatures is the focus of some published
studies; however, a formal assessment of delivered results is missing. In particular, most
studies use visual tools (e.g., q-q plots) or estimate reliability and coverages; however, a
“proper scoring rule” (which may combine properties of reliability scores and coverages)
can be more informative when the interest is in ranking probabilistic predictions. Machine
learning algorithms can provide probabilistic predictions if designed to minimize some
type of proper score (e.g., quantile scores and intervals scores), while delivered results
can be more accurate compared to simple linear models, due to the flexibility of machine
learning algorithms. Future work can include a comparison of more probabilistic regression
models, as well as their combinations for providing more accurate predictions.
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Appendix A

Table A1 provides an overview of the selected basin features examined in the study.
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Table A1. Predictor (topographic, climatic, land cover, soil and geology attributes) and dependent (hydrological) variables
of the 667 basins obtained from [31], classified according to the transformation applied to them for being imported in the
statistical boosting framework. A detailed description of the variables can be found in Tables A2–A7.

Type of Variables Value as Is (Untransformed) Transformed Using Log Transformed Using Square Root

Attribute Attribute Attribute

Signature Baseflow index Mean daily discharge 5% flow quantile
Runoff ratio 95% flow quantile

Streamflow precipitation elasticity Average duration of high-flow events
Slope of the flow duration curve Frequency of high-flow days

Mean half-flow date Average duration of low-flow events
Frequency of low-flow days

Topographic Catchment mean elevation
Catchment mean slope

Catchment area

Climatic Seasonality and timing of precipitation Mean daily precipitation
Snow fraction Mean daily PET

Frequency of high precipitation events Aridity
Average duration of high precipitation

events Frequency of dry days

Average duration of dry periods

Land cover Forest fraction
Maximum monthly mean of the leaf

area index
Green vegetation fraction difference

Dominant land cover fraction

Soil Depth to bedrock
Soil depth

Maximum water content
Sand fraction
Silt fraction

Clay fraction
Water fraction

Organic material fraction
Fraction of soil marked as other

Geology Carbonate sedimentary rock fraction
Subsurface porosity

Subsurface permeability

In Tables A2–A7 we describe the signatures and attributes of the basins.

Table A2. Hydrological signatures computed over the period 1989/10/01 to 2009/09/30 (adapted from [31]).

Attribute Description

Mean daily discharge Mean daily discharge (mm/day)
5% flow quantile 5% flow quantile (low flow, mm/day)

95% flow quantile 95% flow quantile (high flow, mm/day)

Baseflow index Ratio of mean daily baseflow to mean daily discharge, hydrograph
separation using Landson et al. (2013) digital filter

Average duration of high-flow events Number of consecutive days >9 times the median daily flow (days)
Frequency of high-flow days Frequency of high-flow days (>9 times the median daily flow) (days/year)

Average duration of low-flow events Number of consecutive days <0.2 times the mean daily flow (days)
Frequency of low-flow events Frequency of low-flow days (<0.2 times the mean daily flow (days/year)

Runoff ratio Ratio of mean daily discharge to mean daily precipitation

Streamflow precipitation elasticity Streamflow precipitation elasticity (sensitivity of streamflow to changes in
precipitation at the annual time scale)

Slope of the flow duration curve Slope of the flow duration curve (between the log-transformed 33rd and 66th
streamflow percentiles)

Mean half-flow date Date on which the cumulative discharge since October first reaches half of
the annual discharge (day of year)
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Table A3. Topographic characteristics (adapted from [31]).

Attribute Description

Catchment mean elevation Catchment mean elevation (m)
Catchment mean slope Catchment mean slope (m km–1)

Catchment area Catchment area (GAGESII estimate) (km2)

Table A4. Climatic indices (adapted from [31]).

Attribute Description

Mean daily precipitation Mean daily precipitation (mm day–1)

Mean daily PET Mean daily PET, estimated by N15 using Priestley–Taylor formulation calibrated for
each catchment (mm day–1)

Aridity Aridity (PET/P, ratio of mean PET, estimated by N15 using Priestley–Taylor
formulation calibrated for each catchment, to mean precipitation)

Seasonality and timing of precipitation

Seasonality and timing of precipitation (estimated using sine curves to represent the
annual temperature and precipitation cycles; positive (negative) values indicate that

precipitation peaks in summer (winter); values close to 0 indicate uniform
precipitation throughout the year)

Snow fraction Fraction of precipitation falling as snow (i.e., on days colder than 0 ◦C)
Frequency of high precipitation events Frequency of high precipitation days (≥5 times mean daily precipitation) (days year–1)

Average duration of high precipitation events Average duration of high precipitation events (number of consecutive days ≥5 times
mean daily precipitation) (days)

Frequency of dry days Frequency of dry days (<1 mm day–1) (days year–1)
Average duration of dry events Average duration of dry periods (number of consecutive days < 1 mm day–1) (days)

Table A5. Land cover characteristics (adapted from [31]).

Attribute Description

Forest fraction Forest fraction
Maximum monthly mean of the leaf area index Maximum monthly mean of the leaf area index (based on 12 monthly means)

Green vegetation fraction difference Difference between the maximum and minimum monthly mean of the green
vegetation fraction (based on 12 monthly means)

Dominant land cover fraction Fraction of the catchment area associated with the dominant land cover

Table A6. Soil characteristics (adapted from [31]).

Attribute Description

Depth to bedrock Depth to bedrock (maximum 50 m) (m)
Soil depth Soil depth (maximum 1.5 m; layers marked as water and bedrock were excluded) (m)

Maximum water content Maximum water content (combination of porosity and soil_depth_statsgo; layers
marked as water, bedrock, and “other” were excluded) (m)

Sand fraction Sand fraction (of the soil material smaller than 2 mm; layers marked as organic
material, water, bedrock, and “other” were excluded) (%)

Silt fraction Silt fraction (of the soil material smaller than 2 mm; layers marked as organic material,
water, bedrock, and “other” were excluded) (%)

Clay fraction Clay fraction (of the soil material smaller than 2 mm; layers marked as organic
material, water, bedrock, and “other” were excluded) (%)

Water fraction Fraction of the top 1.5 m marked as water (class 14) (%)
Organic material fraction Fraction of soil_depth_statsgo marked as organic material (class 13) (%)

Fraction of soil marked as other Fraction of soil_depth_statsgo marked as “other” (class 16) (%)
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Table A7. Geological characteristics (adapted from [31]).

Attribute Description

Carbonate sedimentary rocks fraction Fraction of the catchment area characterized as
“carbonate sedimentary rocks”

Subsurface porosity Subsurface porosity
Subsurface permeability Subsurface permeability (log10) (m2)

Appendix B

Figures A1–A3 present the geographic location of the basins included in the dataset
and values of their respective hydrological signatures.
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Appendix C

We used the R programming language [73] to implement the algorithms of the study,
and to report and visualize the results.

For data processing, we used the contributed R packages data.table [74], gdata [75],
reshape2 [76,77], stringr [78].

The algorithms were implemented by using the contributed R packages caret [79],
mboost [80].

Visualizations were made by using the contributed R package ggplot2 [81,82],
wesanderson [83].

Reports were produced by using the contributed R packages devtools [84],
knitr [85–87], rmarkdown [88,89].
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