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Abstract: This study assesses four Satellite-derived Precipitation Products (SPPs) that are corrected
and validated against gauge data such as Soil Moisture to Rain—Advanced SCATterometer V1.5
(SM2RAIN-ASCAT), Multi-Source Weighted-Ensemble Precipitation V2.8 (MSWEP), Global Precipi-
tation Measurement Integrated Multi-satellitE Retrievals for GPM Final run V6 (GPM IMERGF), and
Climate Hazards Group InfraRed Precipitation with Station (CHIRPS). We evaluate the performance
of these SPPs in Nepal’s Myagdi Khola watershed, located in the Kali Gandaki River basin, for the
period 2009–2019. The SPPs are evaluated by validating the gridded precipitation products using
the hydrological model, Soil and Water Assessment Tool (SWAT). The results of this study show that
the SM2RAIN-ASCAT and GPM IMERGF performed better than MSWEP and CHIRPS in accurately
simulating daily and monthly streamflow. GPM IMERGF and SM2RAIN-ASCAT are found to be
the better-performing models, with higher NSE values (0.63 and 0.61, respectively) compared with
CHIRPS and MSWEP (0.45 and 0.41, respectively) after calibrating the model with monthly data.
Moreover, SM2RAIN-ASCAT demonstrated the best performance in simulating daily and monthly
streamflow, with NSE values of 0.57 and 0.63, respectively, after validation. This study’s findings
support the use of satellite-derived precipitation datasets as inputs for hydrological models to address
the hydrological complexities of mountainous watersheds.

Keywords: GPM IMERGF; CHIRPS; SM2RAIN-ASCAT; MSWEP; mountainous Himalayan
watershed; SWAT

1. Introduction

Precipitation is an important component of the global terrestrial water cycle [1–6].
Precipitation data are essential for hydrological modeling [5,7,8], used in hydraulic stud-
ies [9], environmental studies [10–12], and climate change investigations [5]. Obtaining
accurate and reliable precipitation data in remote and rugged areas, such as mountainous
regions, is particularly challenging due to the high spatial and temporal variability of
data, the sparse and irregular distribution of rain gauge networks, the inadequate spatial
representation of in situ measurements, and the failure of climate stations due to natural
disasters [7,13,14]. Satellite products have gained popularity for estimating or measuring
precipitation and simulating streamflow in recent decades [6,8,15–17]. They are not limited
by complex terrain and can provide consistent, wider spatial coverage and higher temporal
resolution precipitation values compared with gauge-based datasets. Several studies have
demonstrated the benefits of satellite products in this regard, including those by [16,18–20].

The use of satellite-derived precipitation products (SPPs) is promising for supporting
improved water resources management in Nepal, particularly the Himalayan region. The
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Himalayas make up almost 85% of Nepal’s terrain, and the water reservoirs are the main
source of several rivers providing water to millions of people residing in the downstream
areas [14,21,22]. Due to Nepal’s complex geography, the summer monsoon system governs
most of the country’s precipitation [14,23,24]. The number of rain gauge-based stations in
most mountain areas, particularly in high-elevation areas of Nepal, is significantly lower
compared with low-elevation areas. This sporadic distribution poses difficulty in conduct-
ing hydro-meteorological studies, as noted by [25]. The lack of rain gauge observations
hinders the country’s ability to recognize precipitation patterns and conduct comprehensive
water management [26]. However, this issue can be solved by utilizing satellite-derived pre-
cipitation products. This approach is essential in the case of Nepal, where it can significantly
improve the country’s ability to manage water resources effectively.

There are two primary approaches commonly used to evaluate SPP performance: (1)
direct comparison of satellite-derived precipitation estimates with in situ precipitation data,
and (2) capability assessment of SPPs to simulate streamflow through hydrological models [7,
13]. Many researchers have used these approaches to assess various SPPs over different
climate regions [3,13,16,17,24,27–33]. The evaluation and validation of SPPs for a specific area
may not apply to others owing to the heterogeneity of the terrain, climate, soil, and land
cover [7]. Therefore, a separate evaluation is needed to test the reliability of selected SPPs over
any region.

Numerous regional studies have assessed the reliability of SPPs for hydrological
simulations [6,34]. Ref. [5] assessed the Tropical Rainfall Measuring Mission (TRMM)
and Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) datasets in the
catchment of the Gurupura River in India. They simulated streamflow using the Soil and
Water Assessment Tool (SWAT) model and validated the results against the streamflow
simulations using rainfall data from the India Meteorological Department (IMD). Similarly,
ref. [16] conducted an assessment of eight gauge-corrected and uncorrected precipitation
products, including Global Precipitation Measurement (GPM) Integrated Multi-satellitE
Retrievals for GPM (GPM-IMERG), Precipitation Estimation from Remotely Sensed Infor-
mation using Artificial Neural Networks (PERSIANNs), Tropical Rainfall Measurement
Mission Multi-satellite Precipitation Analysis (TMPA), and Climate Hazards Group In-
fraRed Precipitation (CHIRP). They combined direct comparison methods with in situ
precipitation data and hydrological simulation to comprehensively assess the performance
of rainfall products using a hydrological model across six river basins, each representing
different climatic regions in Vietnam.

Ref. [6] thoroughly evaluated three SPPs for a sub-basin in the Mekong River Basin.
Additionally, several studies have been performed in Nepal using different SPPs. Ref. [14]
evaluated the spatial patterns in satellite-only and gauge-calibrated precipitation products
and compared them with 387-gauge measurements in Nepal. Ref. [17] assessed the aptness
of four SPPs, PERSIANNs, TMPA, CHIRPS, and Multi-Source Weighted-Ensemble Precipita-
tion (MSWEP), in capturing rainfall attributes across mountainous Himalayan watersheds.

The current literature on the use of SPPs in Nepal has focused on the comparison of
different SPPs for discharge simulations in Nepal and its river basins [13,15]. However,
due to the challenges associated with obtaining reliable and consistent climate data in the
Himalayan region, it is imperative that researchers evaluate various SPPs to assess the
performance of streamflow simulation in the Himalayan region of Nepal.

This study aims to evaluate four SPPs for predicting streamflow in the mountainous
watersheds of Nepal, where traditional gauge observations are difficult to obtain. This
study focuses on the Myagdi Khola watershed, a mountainous watershed that lacks climatic
data such as precipitation and temperature. The SPPs used in this study were selected
based on data availability, watershed characteristics, and resolution of data. The results of
this study fill knowledge gaps in the region and contribute to a better understanding of
Nepal’s mountain hydrology via the use of SPPs for streamflow simulation. Insight into
the best-performing SPPs will help inform improved water resource management practices
in the region by supporting additional hydrological modeling capabilities.



Remote Sens. 2023, 15, 4762 3 of 20

2. Study Area

The Kali Gandaki River originates from the Nhubine Himal Glacier in the Mustang
region of Nepal, at an elevation of 6268 m above mean sea level (amsl). The Kali Gandaki
River flows south through a steep gorge known as the Kali Gandaki gorge between the
Dhaulagiri Mountain range (8167 m amsl to the west) and the Annapurna I Mountain range
(8091 m amsl to the east). The Kali Gandaki Gorge is the deepest gorge in the world [35].
Myagdi Khola is one of the main tributaries of the Kali Gandaki River. It is a river with its
source at Mount Dhaulagiri, which then passes through the Myagdi district to meet the
Kali Gandaki River. The Myagdi Khola watershed was chosen to represent a mountainous
watershed (Figure 1) as this watershed has significant variability in terms of elevation,
ranging from about 830 to 8130 m amsl (Figure 2). The total area of the watershed is
approximately 1100 square kilometers (km2).

The majority of the Myagdi Khola watershed is encompassed by glaciers, snow, forests,
and grasslands (Figure 2). In some hilly areas and along the river, the land is used for
agricultural purposes, as indicated by cropland. The land cover map reveals a minimal
presence of developed (urban) areas in the study area, implying that the watershed is
largely in its natural state, except for some agricultural activities initiated by humans.
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3. Materials and Methods
3.1. Methodology

This study aims to evaluate the performance of SPPs in the Himalayan region of
Nepal by comparing simulated and observed streamflow. The flowchart of the research
methodology adopted in this study is shown in Figure 3.

First, the Digital Elevation Model (DEM), land cover, soil, and climate data were
processed into a suitable format for use as inputs to the hydrological model, SWAT. The
domain and inputs for the SWAT model were developed in the second step, and simulation
runs were performed using each SPP under consideration.

The third step involved assessing the simulated results from each SPP before the
model evaluation process. The quantitative assessment metrics NSE (Nash–Sutcliffe Ef-
ficiency), RMSE (Root Mean Square Error), PBIAS (Percent Bias), and R2 (Coefficient of
Determination) were used to evaluate the models’ performance. Similarly, time series and
scatter plots were used for the qualitative assessment.

In the fourth step, appropriate calibration parameters were identified based on pa-
rameters commonly used by other modelers for SWAT model calibration in similar regions
[35–41]. Next, the model was calibrated and validated using the SWAT-CUP tool. Lastly,
the model for each SPP was calibrated and validated using a similar approach to the
model evaluation.
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3.2. In Situ Data

This study used daily discharge data of one hydrological gauging station located at
the outlet/mouth of the Myagdi Khola, Nepal, from 1 January 2009 to 31 December 2019.
The streamflow data were obtained from the Department of Hydrology and Meteorology
(DHM), a department under the Nepalese government responsible for gathering and
disseminating official climate and hydrological data to the public.

3.3. Spatial Data for SWAT

In this study, NASADEM was chosen as the DEM for SWAT input. This DEM dataset
has a spatial resolution of 30 × 30 m (NASA JPL, 2021; accessed on 5 November 2022)
(Figure 2). NASADEM is a modernized version of the DEM, generated from Shuttle Radar
Topography Mission (SRTM) data, and has been used in several studies with SWAT [8,42,43].
The slope was estimated and the watershed boundary was delineated using NASADEM
data (https://opentopography.org/, accessed on 5 November 2022). Land cover data at
a resolution of 30 × 30 m were obtained from the RDS (Regional Database System) of
the International Centre for Integrated Mountain Development (ICIMOD) (http://rds.
icimod.org/Home/DataDetail?metadataId=1972729; (FRTC/ICIMOD, 2022) accessed on
5 November 2022). The NLCMS (National Land Cover Monitoring System) has mapped
Nepal’s annual land cover from 2000 to 2019. Using a standardized classification method,
NLCMS uses remote-sensed Landsat images and applies machine learning techniques
in the GEE (Google Earth Engine) environment to generate land cover maps annually
(FRTC/ICIMOD, 2022). The NLCMS was devised by the FRTC (Forest Research and
Training Centre), Ministry of Forests and Environment, Government of Nepal, with support
from the ICIMOD. The land cover data were divided into eleven classes, as shown in
Figure 2. The 30 m spatial resolution data related to soil information, which were resampled
from the original spatial resolution of 30 arc-s (~1 km), were retrieved from the Food and
Agriculture Organization of the United Nations (FAO) database called Harmonized World
Soil Database (FAO, 2009) (https://www.fao.org/; accessed on 5 November 2022). Table 1
describes spatial data used as input in the SWAT model setup. The threshold limit to

https://opentopography.org/
http://rds.icimod.org/Home/DataDetail?metadataId=1972729
http://rds.icimod.org/Home/DataDetail?metadataId=1972729
https://www.fao.org/
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delineate 55 sub-basins (Figure 1) was 10 km2. The selection of a threshold limit to delineate
55 sub-basins was based on the criterion of achieving an optimal number of sub-basins for
the watershed and their centroid points. This approach effectively displayed the spatial
distribution of the watershed under study. This choice was also made to facilitate the use
of climate data uniformly represented spatially and temporally as input for the model.

Table 1. Description of spatial data used in the SWAT model setup.

Spatial Data Spatial Resolution Temporal Coverage Data Source References

Elevation map 30 m 2000 NASADEM [44]

Land use map 30 m 2000–2019 ICIMOD [45]

Soil map 30 arc-seconds;
resampled to 30 m N/A FAO Harmonized

World Soil Database [46]

3.4. Satellite-Derived Precipitation Products

Table 2 shows the description of selected SPPs used in this study. Given the relatively
small size of the study area (watershed), the SPPs were configured to have a finer spatial
and temporal resolution to enhance the efficiency of the analysis and the accuracy of the
expected results [6,16,18,19].

Table 2. Description of the selected SPPs.

SPPs Spatial
Resolution Spatial Coverage Temporal

Coverage
Temporal

Resolution References

GPM IMERGF-V6B 0.1◦ 60◦N–60◦S 2000–2021 Daily [47]

MSWEP V2.8 0.1◦ 60◦N–60◦S 1979–2020 Daily [48]

SM2RAIN–ASCAT V1.5 0.125◦ 60◦N–60◦S 2007–2021 Daily [49]

CHIRPS V2.0 0.05◦ 50◦N–50◦S 1981–near present Daily [50]

3.4.1. GPM IMERGF

GPM IMERG Final run (GPM IMERGF) is a satellite-derived rainfall product that
utilizes a set of instructions for estimation and seeks to internally incorporate, interpolate,
and calibrate various microwave precipitation estimations [47,51]. GPM IMERGF utilizes
analyses from precipitation gaging stations, estimates from calibrated infrared satellites, and
other estimators. The IMERGF precipitation data has a 0.1◦ spatial resolution, is available
for areas covering latitudes ranging from 60◦S to 60◦N, and has a short time interval of
about 30 min compared with the TMPA product [47]. This study used the IMERG Final
run rather than the Early or Late runs, as many fine-tuning and validation approaches
have been considered to generate this dataset. The daily gridded GPM IMERGF dataset
was downloaded from the Giovanni website (https://giovanni.gsfc.nasa.gov/giovanni/,
accessed on 8 November 2022).

3.4.2. MSWEP

MSWEP is a recently launched global precipitation product with 0.1◦ spatial resolution
and a temporal resolution of 3 h available from 1979 to near real time [48,52]. The MSWEP
uniquely combines rain gauge data, satellite data from Global Satellite Mapping and Precipi-
tation Moving Vector with the Kalman filter (GSMaP-MVK), the CPC MORPHing technique
(CMORPH), and TMPA 3B42RT, and data from the Japanese 55-year Reanalysis (JRA-55)
and European Centre for Medium-Range Weather Forecasts Re-Analysis (ERA)-Interim to
obtain the highest quality precipitation estimates at every location. The Climate Hazards
Precipitation Climatology (CHPClim) dataset was used to obtain MSWEP (V1.0) data using
long-term average values but was replaced with more precise regional datasets [48,52]. The

https://giovanni.gsfc.nasa.gov/giovanni/
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adjustment for under-catch of gauge and rain shadow effects was first proposed by [3] using
average catchment rainfall and streamflow measurements at 13,762 sites globally. Since then,
notable changes have been made to MSWEP (V2.8), such as improved finer spatial resolution,
corrected frequency for precipitation, different cumulative distribution functions applied, and
the use of a satellite-derived thermal infrared imaging estimator to obtain the precipitation
estimates. This study obtained the daily gridded MSWEP dataset downloaded from the
GloH2O website (http://www.gloh2o.org/mswep/ (accessed on 9 November 2022)).

3.4.3. SM2RAIN-ASCAT

Soil Moisture to Rain—Advanced SCATterometer V1.5 (SM2RAIN-ASCAT) is a newer
satellite-derived global precipitation product incorporating soil moisture conditions collected
by the operational satellite MetOp from the European Meteorological Satellite (EUMETSAT)
Organization (Darmstadt, Germany). This product utilizes an advanced algorithm called
SM2RAIN using a bottom-up approach to obtain precipitation estimates using soil moisture
data [49,53–55]. It was generated using the soil WAter Retrieval Package (WARP) algorithm
and ASCAT soil moisture data obtained from MetOp-A and MetOp-B satellites [54]. The
0.125◦ spatial resolution SM2RAIN–ASCAT daily gridded data were extracted from the link
https://zenodo.org/record/6136294 (accessed on 10 November 2022).

3.4.4. CHIRPS

CHIRPS is a quasi-global precipitation dataset, with spatial coverage from 50◦S to
50◦N and temporal coverage from 1981 to the present. The 0.05◦ spatial resolution dataset
is calibrated and validated using data from rainfall gauges to create gridded precipitation
data (Funk et al., 2015). CHIRPS integrates several data sources, including the CHPClim,
the TRMM 3B42 from NASA, atmospheric rainfall models from NOAA, Thermal Infrared
(TIR) satellite observations, and ground rainfall measurements from various meteorological
offices around the globe [50]. This U.S. Geological Survey (USGS) dataset, generated
in collaboration with the Climate Hazards Group at the University of California, Santa
Barbara, is organized in a grid format. It can be accessed using the link https://data.chc.
ucsb.edu/products/CHIRPS-2.0/ (accessed on 12 November 2022).

3.4.5. SWAT Model

SWAT is a semi-distributed physical hydrological model that can incorporate climate
data of daily, monthly, and annual time steps to predict streamflow, study sediment move-
ment, and assess water quality of watersheds of any given scale and complexity [56]. The
model was developed by the Agriculture Research Service (ARS) and the U.S. Department
of Agriculture (USDA) [57]. SWAT’s small spatial unit is known as the Hydrologic Re-
sponse Unit (HRU). For estimating streamflow, it is anticipated that runoff will be predicted
separately for each Hydrological Response Unit (HRU) with detailed explanation provided
by [58]. In recent years, the SWAT tool has become popular in modeling the river basins of
the United States, Europe, and other regions [36,37,59] as the model has the capability to
handle complex hydrological problems [60]. Other efforts have been made that employed
the SWAT model regarding the effects of land use [4,61], climate change impacts [6,43,62],
validating DEM products [63], or determining the robustness of SPPs [16,42].

A daily timestep was chosen for the model run with two years (2007–2008) as a period
for warm-up over the selected simulation period of 11 years (2009–2019). The calibration
period was set between 2009 and 2014 (6 years). The validation period was established
between 2015 and 2019 (5 years). Based on the literature review findings on the parameters
often used by other modelers to calibrate their SWAT models in similar regions, twenty-nine
parameters were selected for calibration and validation as shown in the Supplementary
Materials, Table S1, including their short name, methods applied, full name, and their
normal range in this study [35–41]. The number of SWAT parameters for calibration was
kept the same for all SPPs to ensure consistency when evaluating the modeled data. The

http://www.gloh2o.org/mswep/
https://zenodo.org/record/6136294
https://data.chc.ucsb.edu/products/CHIRPS-2.0/
https://data.chc.ucsb.edu/products/CHIRPS-2.0/
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calibration was first run using the range of values in the Supplementary Materials, Table S1
(the SWAT-CUP tool defines the maximum and minimum values for the listed parameters).

After the first calibration run, the newly fitted range for each parameter was used
for the final calibration run. The fitted range from the last calibration run was used for
validation. The streamflow observed from 2009 to 2019 at the Myagdi Khola station was
obtained and used for calibration and validation. The observed streamflow data had
several gaps from 2000 to 2008; therefore, the 2009–2019 period was selected for this study.
The calibration run was from 2009 to 2014 (6 years), and the validation run was from
2015 to 2019 (5 years). In this study, the calibration and validation were performed using
the Sequential Uncertainty Fitting version 2 (SUFI-2) technique and an objective function
Nash-Sutcliffe Efficiency (NSE) via SWAT-CUP software (V5.2.1) mentioned by [64,65]. The
calibrated parameters used in this study can be found in the Supplementary Materials,
Table S1.

3.5. Evaluation Metrics

Table 3 shows the equation and optimal value of the model performance metrics
used. The performance of the model, driven by the selected Satellite-derived Precipitation
Products (SPPs) for accurate streamflow prediction, was assessed using NSE, PBIAS, RMSE,
and R2 [12,66,67]. The R2 values indicate the correlation strength between observed and
simulated streamflow values. NSE reflects how well the simulation aligns with the obser-
vations. RMSE values indicate the absolute errors of the SPPs. PBIAS assesses the extent to
which the simulated streamflow overestimates or underestimates the observations at the
gauging station. Specifically, a positive PBIAS value indicates an overestimation relative to
the gauging observations, while a negative PBIAS value indicates an underestimation [17].

Table 3. Performance metrics to evaluate hydrological models.

Model Performance
Evaluation Metrics Equation Optimal Value

1 RMSE
√

1
n

n
∑

i=1

(
Qobs,i − Qsim,i

)2 0

2 NSE 1 − ∑n
i=1(Qobs,i−Qsim,i)

∑n
i=1(Qobs,i−Qobs)

2
1

3 PBIAS ∑n
i=1(Qobs,i−Qsim,i)

∑n
i=1 Qobs,i

∗ 100 0

4 R2
1 − ∑n

i=1(Qobs,i−Qsim,i)
2

∑n
i=1(Qobs,i−Qobs)

2
1

Note: n represents the total amount of data used for evaluation; Qsim,i is the simulated while Qobs,i is the observed
streamflow (m3/s) for the ith day. Qobs is the average observed streamflow (m3/s).

The Root Mean Square Error (RMSE) is a popularly used metric to quantify the
variations between values predicted by a model and the actual values observed in the
modeled environment. RMSE aggregates these individual differences, also referred to as
residuals, into a single measure of the model’s predictive capability. It essentially quantifies
the discrepancy between two datasets, thus comparing the predicted values with the known
or observed values.

The Nash–Sutcliffe efficiency (NSE) is a normalized metric that measures the difference
between the variance in residuals (variance in the model residuals or errors) and the
variance in the observed data [68]. It assesses how closely observed vs. simulated data
align with the identity (1:1) line. An NSE of 1 denotes a perfect fit between the modeled
and the observed data. An NSE between negative infinity and 0 suggests the mean of the
observed data is a worthier predictor than the modeled one, while an NSE of 0 indicates
that the model’s predictions are as accurate as the mean of the observed data.

Percent bias (PBIAS) measures the bias of the simulated values to be bigger or smaller
than their observed counterparts. Low magnitudes of PBIAS indicate a more accurate
model simulation, with 0.0 being the optimal value. Negative values of PBIAS signify
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a bias toward model underestimation, whereas positive values indicate a bias toward
model overestimation.

The coefficient of determination (R2) is a value between 0 and 1 that quantifies how
well a statistical model predicts an outcome, with the dependent variable in the model
representing the outcome. R2 can range from as low as 0 to as high as 1. The closer to 1,
the more accurate it is. R2 is a more refined measure of the goodness of fit of a model. It
represents the proportion of the variance in the dependent variable that is explained by
the model.

4. Results
4.1. Qualitative Assessment
4.1.1. Model Evaluation Results

Figures 4 and 5 show the time series plot of daily and monthly mean simulated versus
observed streamflow before calibration. The daily simulated streamflow is challenging to
interpret against observed data due to the high noise in the streamflow values, leading
to many attenuation peaks that impede qualitative assessments and make it harder to
identify any discernible patterns or trends. On the other hand, the monthly simulated
versus observed streamflow time series is more straightforward to interpret than its daily
counterpart. The monthly time series provides a broader and more generalized view of
the water flow patterns over a more extended period. The figures below represent an
assessment of the quality of model simulation runs for each SPP. Although the simulation
failed to capture the flood peak in all SPPs considered for the study, the SM2RAIN-ASCAT
and GPM-IMERGF products could simulate higher monthly streamflow than the MSWEP
and CHIRPS products. The simulated flood volume is lower than the observed flood
volume in all SPPs, leading to the assumption that the model failed to predict the streamflow
of the watershed from the model accurately.
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Similarly, the simulated low flows are comparable and are somewhat closer to the
observed data for each SPP, in contrast to the notable difference observed in the case of
simulating peak flows. SM2RAIN-ASCAT can simulate the low flows much better than the
other products, as the simulated flows are close to the observed flows.

Furthermore, the models are capable of capturing the seasonality of the flows. It can be
inferred that the SPPs considered in this study can simulate the seasonality of streamflow
of the watershed but failed to simulate flood peak and volume, which may indicate that
the hydrological model has inadequately simulated some key hydrological components.
These findings were noted before the calibration process was carried out on the models.

Figures 6 and 7 depict the scatter plots that compare daily and monthly simulated
versus observed streamflow for the four SPPs before the calibration process. The poor
correlation between the simulated and observed data in the figures is primarily attributed
to the inability of the models to simulate flood volume and capture peak flows accurately.
Additionally, the plots highlight notable differences in simulated and observed streamflow
for all four SPPs. However, SM2RAIN-ASCAT shows a relatively better correlation with
an R2 value of 0.53 in daily flows compared with other products. Although the value of
0.53 is lower than the optimal value of 1, it demonstrates a relatively better correlation than
other products. An interesting observation is that MSWEP exhibits a better correlation
coefficient value of 0.36 than GPM-IMERGF (R2 = 0.27). Referring to Figure 5, GPM-
IMERGF produces better-simulated results, with better-predicted flow peaks than those
from the MSWEP product. However, the scatter plot shows that MSWEP exhibits more
consistent and comparable simulated values than GPM-IMERGF. Meanwhile, CHIRPS
demonstrates a very low correlation coefficient value (R2 = 0.14) between simulated and
observed streamflow.



Remote Sens. 2023, 15, 4762 11 of 20Remote Sens. 2023, 15, x FOR PEER REVIEW 12 of 21 
 

 

 
Figure 6. Daily simulated vs. observed streamflow scatter plot before calibration for 4 SPPs with a 
trend line showing R2 values and a 1:1 linear line (dashed line) drawn as a reference line. 

 
Figure 7. Monthly simulated vs. observed streamflow scatter plot before calibration for 4 SPPs with 
a trend line showing R2 values and a 1:1 linear line (dashed line) drawn as a reference line. 

Figure 6. Daily simulated vs. observed streamflow scatter plot before calibration for 4 SPPs with a
trend line showing R2 values and a 1:1 linear line (dashed line) drawn as a reference line.

Remote Sens. 2023, 15, x FOR PEER REVIEW 12 of 21 
 

 

 
Figure 6. Daily simulated vs. observed streamflow scatter plot before calibration for 4 SPPs with a 
trend line showing R2 values and a 1:1 linear line (dashed line) drawn as a reference line. 

 
Figure 7. Monthly simulated vs. observed streamflow scatter plot before calibration for 4 SPPs with 
a trend line showing R2 values and a 1:1 linear line (dashed line) drawn as a reference line. 
Figure 7. Monthly simulated vs. observed streamflow scatter plot before calibration for 4 SPPs with a
trend line showing R2 values and a 1:1 linear line (dashed line) drawn as a reference line.

The correlation coefficient values are higher for monthly flows compared with daily
flows. The values increased for all SPPs. Monthly data are aggregated and averaged over
the daily data, resulting in significantly lesser variability in daily flows while aggregating
into monthly flows, as observed in Figure 7. MSWEP showed the highest correlation
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coefficient value of 0.76, followed by SM2RAIN-ASCAT, with a correlation value 0.75.
GPM-IMERGF and CHIRPS correlation coefficient values significantly increased to 0.69
and 0.66, respectively.

Furthermore, while aggregating the daily flows into monthly flows, the uncertainty
associated with daily flows significantly decreases, resulting in a significant increase in the
correlation coefficient values. Aggregating the data produced better results and facilitated
the interpretation of findings in this study.

4.1.2. Streamflow Evaluation

This study re-evaluated the model performance by examining the peak flow, low flows,
time of peak flow, seasonal trend, and flood volume using newly calibrated and validated
simulated and observed streamflow data. Time series plots of daily and monthly mean
simulated vs. observed streamflow were generated after the calibration and validation
processes, as shown in Figures 8 and 9. The calibration process, which involved considering
all the essential calibration parameters for a mountainous watershed, calibrating the models
with 1000 simulation runs, and narrowing the range of fitted values of the calibrated
parameters, led to a slight improvement in the model’s performance of all SPPs.

While the peak simulated flows slightly increased, they underestimated the observed
streamflow. However, the daily data showed less attenuation of peaks when compared
with the plots before calibration, as observed in Figure 8. The SM2RAIN-ASCAT product
exhibited improved performance in simulating peak flows and flood volume, while the
GPM IMERGF product showed improvements in the calibration period but did not fare
better in the validation period, as seen in Figure 9. The MSWEP and CHIRPS models also
improved their performance but did not fare well compared with the SM2RAIN-ASCAT
and GPM-IMERGF models.
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Furthermore, the seasonal trend is closely related to the observed trend, as seen in
Figure 9, which indicates that the hydrological dynamics are accurate but not precise
enough for a mountainous watershed in Nepal. All models simulated the time to peak
flow when compared against observed data, indicating that the streamflow seasonality was
simulated accurately. Lastly, it can be deduced that the calibration process helped improve
the model performance by improving the simulations to capture higher flood peaks and
increase the flood volume of the watershed.

4.2. Quantitative Assessment

Tables 4 and 5 present the model performance metrics in model evaluation (before
calibration), calibration, and validation stages for evaluating simulated daily and monthly
streamflow from four SPPs. The performance evaluation metrics, especially R2 and NSE,
showed a significant increase after calibration, which adds confidence to the modeled data.
GPM IMERGF performed better in the calibration process, whereas SM2RAIN-ASCAT
performed better in the validation process, as indicated in the tables below. MSWEP and
CHIRPS did not perform well in the calibration and validation periods.

After calibration of daily data, GPM IMERGF and SM2RAIN-ASCAT were found to
be the better-performing models, with higher NSE values (0.48 and 0.46, respectively) com-
pared with CHIRPS and MSWEP (NSE values of 0.34 and 0.32, respectively). In addition,
R2 values increased for all models after calibration, indicating improved performance with
increased correlation between simulated and observed daily streamflow data.

After calibration of monthly data, the model runs using GPM IMERGF and SM2RAIN-
ASCAT were found to be the better-performing models, with higher NSE values (0.63 and
0.61, respectively) compared with CHIRPS and MSWEP (0.45 and 0.41, respectively). In
addition, R2 values increased for all models except for MSWEP after calibration, indicat-
ing improved performance with increased correlation between simulated and observed
monthly streamflow data.
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Table 4. Model performance metrics before and after calibration for evaluating simulated daily and
monthly streamflow from 4 SPPs.

Product

Before Calibration After Calibration

R2 NSE RMSE PBIAS R2 NSE RMSE PBIAS

Daily

MSWEP 0.36 0.07 96.9 63.2 0.50 0.32 77.6 50.4
SM2RAIN-ASCAT 0.53 0.38 79.5 42.3 0.59 0.46 69.0 39.7

CHIRPS 0.14 −0.25 112.3 62.5 0.60 0.34 76.3 53.7
GPM-IMERGF 0.27 0.04 98.5 55.5 0.61 0.48 67.5 41.1

Monthly

MSWEP 0.76 0.14 83.6 63.1 0.69 0.41 61.8 50.5
SM2RAIN-ASCAT 0.75 0.49 64.7 42.4 0.79 0.61 50.4 39.8

CHIRPS 0.66 0.16 82.7 62.5 0.83 0.45 59.6 53.8
GPM-IMERGF 0.69 0.31 74.9 55.5 0.82 0.63 48.7 41.2

Table 5. Model performance metrics after validation for evaluating simulated daily and monthly
streamflow from 4 SPPs.

Product

Validation

R2 NSE RMSE PBIAS R2 NSE RMSE PBIAS

Daily Monthly

MSWEP 0.64 0.27 92.3 61.4 0.78 0.30 84.6 61.5
SM2RAIN-ASCAT 0.74 0.57 70.5 36.0 0.83 0.63 61.5 36.1

CHIRPS 0.64 0.22 95.8 62.9 0.76 0.24 88.1 63.0
GPM-IMERGF 0.66 0.29 91.4 60.9 0.81 0.33 82.9 61.0

SM2RAIN-ASCAT demonstrated the best performance in simulating daily and monthly
streamflow in the validation period, with NSE values of 0.57 and 0.63, respectively, as indi-
cated in Table 5. The GPM IMERGF model, on the other hand, displayed poor performance
during the validation stage, in contrast to the calibration stage, with NSE values of only
0.29 and 0.33 for daily and monthly data, respectively. Notably, R2 values were higher for
all models during validation, indicating an increased correlation between simulated and
observed daily and monthly streamflow data.

Other performance metrics, such as RMSE and PBIAS, could not provide definitive
evidence and support for model performance evaluations in any given scenario and period.
Thus, the quantitative assessment for the model performance evaluation using RMSE
and PBIAS values was inconclusive. However, NSE and R2 metrics proved adequate for
evaluating model performance and drawing reasonable conclusions for this study.

5. Discussion

Nepal’s mountain hydrology is complex due to the heterogeneous topography. The
various hydrological processes, such as precipitation, snow, and groundwater, are inextri-
cably linked to the topography [69]. Nepal also experiences diverse climatic conditions
owing to the heterogeneity in the country’s topography. The country’s diverse climatic
conditions can be attributed to the heterogeneity in topography, with low-lying plains
or areas having tropical and sub-tropical climates and high-elevation regions such as the
Himalayas having tundra and polar frost climates [69,70]. Summer monsoons and west-
erlies are Nepal’s two dominant weather systems [70]. Most of the annual precipitation
in Nepal falls during the monsoon period (June–September), and the rest falls during the
pre-monsoon (March–May), post-monsoon (October–November), and winter (December–
February) periods [14,70]. Due to the topographical differences, Nepal’s mountainous
regions receive less rainfall than other regions. However, these areas possess ample snow-
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packs, glaciers, and ice that are crucial in driving and regulating the hydrological processes.
To understand the hydrological patterns in Nepal’s mountainous terrain, it is essential to
grasp the intricate interactions among different hydrological processes and the utilization
of SPPs in hydrological modeling applications.

The variation in the SPPs themselves also presents limitations to the study. Each
satellite product considered in this study varies in terms of its inherent characteristics
for processing the estimates. The SPPs have different spatial and temporal resolutions.
Differences in capturing the rainfall data in each product and how the estimates are
calibrated and validated using ground observations also make a difference in simulating
results and performing a model evaluation. Furthermore, due to complex topography,
the high variability of precipitation patterns observed in both temporal and spatial scales
within the watershed could affect the rainfall estimates from these products.

In this study, the SM2RAIN-ASCAT product performed better in predicting streamflow
in the Myagdi Khola watershed. This can be attributed to the satellite’s rainfall retrieval
algorithm incorporating a soil moisture dataset to detect rainfall events [55]. Since forests,
snow, and glaciers largely cover the watershed, soil must be saturated to predict better
surface runoff estimates. When the soil is saturated in the watershed, there is less infiltration,
and most of the rainfall becomes surface runoff, ultimately reflecting on the river streamflow.
The simulated streamflow obtained from the model utilizing the rainfall data from the
SM2RAIN-ASCAT product closely aligns with the observed discharge, thereby supporting
the above deductions.

It is worth noting that while the SM2RAIN-ASCAT product has been shown to perform
well in the given watershed, several studies [8,49,55] have highlighted its limitations in
providing accurate precipitation estimates in mountainous regions, particularly those
covered by snow and glaciers. Thus, it is important to acknowledge that the SM2RAIN-
ASCAT product may not be the optimal choice for every mountainous watershed, and
alternative products should be considered based on the specific characteristics of the region
under study.

The GPM IMERG product also uses an algorithm that attempts to intercalibrate,
combine, and interpolate satellite microwave precipitation estimates, as well as microwave-
calibrated infrared satellite estimates, rain gauge analyses, and other precipitation estimates
at finer temporal and spatial scales [47]. This data product is further processed using
monthly gauge data, providing precipitation estimates with more accuracy and reliability
that ultimately reflects the model performance observed in this study. Because of the
usage of microwave-calibrated estimates incorporated into the product’s algorithm, GPM
IMERGF can easily detect light rainfall and snowfall, leading to better precipitation esti-
mates. This is particularly useful for mountainous watersheds such as the Myagdi Khola
watershed. Watersheds in mountainous regions typically receive light rainfall and snowfall.
Therefore, advanced functionalities incorporated into the algorithm of the GPM-IMERG
give more confidence to the model output and provide trust in accurately estimating river
discharge in the complex mountainous Himalayan watersheds.

Despite the calibration process, the model simulation runs failed to increase the
baseflow and peak flow, and it is worth delving into why the models failed to simulate
groundwater or snowmelt components in the Myagdi Khola watershed. The complex
topography of this watershed, where most mountain areas are covered by glaciers and
snow followed by forest cover, may be responsible for the failure to estimate or simulate
groundwater and snowmelt flows. The land cover data used as a model input might
not accurately represent the watershed, adding more uncertainties and limitations to the
simulations. The precipitation product alone might not be sufficient to simulate the runoff in
the watershed, and this might be why the model could not simulate enough flow even after
calibrating the model with important groundwater and snow parameters. Further, SPPs
that were considered might not have incorporated solid precipitation into their estimates,
causing a big difference in the simulated and observed streamflow.
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The results highlight that setting up a hydrological model for a mountainous Hi-
malayan watershed is complex. There was an underperformance of modeled results with
all four SPPs used in this study. There were some notable limitations when carrying out
this study, which contributed to the underperformance of the models. Our study area has
no observed rainfall data; thus, we rely only on precipitation from SPPs as model inputs.
SPPs make many assumptions, and the data may not be accurate due to cloud cover or
missing data from equipment malfunctions.

Additionally, the Myagdi Khola watershed is regarded as an ungauged watershed,
with the only streamflow values available at the watershed’s outlet. The watershed was
assessed using selected SPPs with limited observations. Utilizing observed climate data to
calibrate and validate the satellite rainfall products before establishing a hydrological model
to evaluate streamflow would likely have yielded more accurate results and definitive
conclusions. Moreover, this study might have improved the simulation of streamflow
results and higher accuracy in the model performance metrics if a larger watershed was
considered for this kind of study, as carried out by [15,29].

The sensitivity analysis for the selected calibration parameters was not performed here
as this study’s main objective was to evaluate different SPPs, keeping model parameters and
model characteristics the same so that the results or output from the model show consistency
and are capable of comparison across all SPPs that are under consideration. Different
calibration parameters will be sensitive across four different SPPs under consideration,
making it challenging to evaluate models fed by these SPPs’ precipitation estimates. The
simulation, calibration, and validation period considered in this study was short to obtain
accurate predictions on the river discharge; therefore, taking a more extended period would
provide better prediction results.

6. Conclusions

This study aimed to evaluate the performance of SPPs in predicting the streamflow of
a complex mountainous watershed in Nepal. The following are the main findings from
this study:

(1) The hydrological modeling approach using SPPs effectively predicts streamflow in
mountainous watersheds with limited or no observed precipitation data. These
products can be used to study hydrological processes in ungauged mountainous
watersheds, albeit with some limitations.

(2) Four finer-resolution SPPs were assessed, and SM2RAIN-ASCAT exhibited the best
overall performance among other SPPs, followed closely by the GPM IMERGF in
simulating streamflow more accurately when compared with observed streamflow at
the outlet of the watershed.

(3) Monthly streamflow simulations driven by SPPs outperformed daily streamflow
simulations, and gauge-corrected satellite precipitation products fed into the model
outperformed in simulating discharge estimates in the watershed. The study found
that gauge-corrected SPPs can effectively simulate discharge in Himalayan water-
sheds, even with limited ground truth data.

(4) Although the performance metrics did not show promising results as anticipated
even after the extensive calibration process, they were within satisfactory to good
performance levels.

Overall, this study highlights the capability of SPPs in predicting the streamflow
of a mountainous watershed with minimal data available for validating estimates. The
study’s findings suggest that SPPs can address hydrological complexities in mountainous
watershed regions with some limitations. This study supports and highlights the use of
SPPs for hydrological studies in mountainous watersheds.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs15194762/s1.
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