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Abstract: Runoff forecasting is important for water resource management. Although deep learning
models have substantially improved the accuracy of runoff prediction, the temporal and feature
dependencies between rainfall–runoff time series elements have not been effectively exploited. In
this work, we propose a new hybrid deep learning model to predict hourly streamflow: SA-CNN-
LSTM (self-attention, convolutional neural network, and long short-term memory network). The
advantages of CNN and LSTM in terms of data extraction from time series data are combined with the
self-attention mechanism. By considering interdependences of the rainfall–runoff sequence between
timesteps and between features, the prediction performance of the model is enhanced. We explored
the performance of the model in the Mazhou Basin, China; we compared its performance with the
performances of LSTM, CNN, ANN (artificial neural network), RF (random forest), SA-LSTM, and
SA-CNN. Our analysis demonstrated that SA-CNN-LSTM demonstrated robust prediction with
different flood magnitudes and different lead times; it was particularly effective within lead times of
1–5 h. Additionally, the performance of the self-attention mechanism with LSTM and CNN alone,
respectively, was improved at some lead times; however, the overall performance was unstable. In
contrast, the hybrid model integrating CNN, LSTM, and the self-attention mechanism exhibited
better model performance and robustness. Overall, this study considers the importance of temporal
and feature dependencies in hourly runoff prediction, then proposes a hybrid deep learning model to
improve the performances of conventional models in runoff prediction.

Keywords: flood forecasting; long short-term memory; self-attention; data-driven model

1. Introduction

Floods are among the most common natural disasters, and extreme precipitation is
often the main cause of flood disasters. Thus, the rainfall–runoff model is important for
studies of basin hydrological processes with the goal of preventing flood disasters [1–3].
However, runoff prediction is highly complex, dynamic, and unstable; thus, it remains
challenging for hydrologists to achieve efficient and accurate runoff prediction [4–6]. Mod-
els for runoff prediction can be divided into two categories: physical process-based and
data-driven [7,8].

Physical process-based models are mathematical models that systematically describe
the hydrological processes of a basin. They can be subdivided into lumped and distributed
types. Lumped models generalize and assume the hydrological processes of a basin.
Such models perform calculations for the entire basin but they do not consider spatial
heterogeneity with respect to climate and underlying surface factors. Examples of lumped
models include HEC-HMS [9,10], HBV [11], and XAJ [12]. Distributed models solve the
problem of homogenization of watershed physical characteristics that exists in lumped
models. The watershed is divided into fine meshes for calculations of runoff generation
and concentration that can fully reflect the watershed physical characteristics and rainfall
spatial distribution. Examples of distributed models include SWAT [13,14], SHE [15,16],
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and Liuxihe [17–19]. Although distributed hydrological models have been applied to
watershed hydrological forecasting, they have some limitations. These models attempt to
simulate physical mechanisms of the hydrological process, thus improving interpretability;
however, the increase in model complexity creates a need for additional input data and
physical parameters, which leads to poor model portability and an increasing need for high-
precision physical property data [20]. Additionally, some processes of the hydrological cycle
cannot be accurately described, leading to necessary simplifications in the hydrological
model calculation process and the inevitable introduction of simulation error [21,22].

Compared with process-based hydrological models, data-driven models are com-
pletely based on internal relationships between the data fitting input and the output;
because such models lack a clear understanding of the internal physical mechanisms,
they avoid generalization of the hydrological runoff generation and concentration pro-
cesses [23–25]. These models have been widely used for runoff prediction. In early research
regarding data-driven hydrological models, ARMA and its improved models were of-
ten used to predict runoff time series [26,27]. However, because these models are linear,
they have considerable limitations in complex hydrological applications. Nonetheless,
advances in machine learning allowed some nonlinear models to become popular. In 1986,
Rumelhart proposed a backpropagation algorithm to train the network, which solved the
problem of artificial neural network (ANN) parameter training [28]. Thus, ANN models
have been widely used in hydrological forecasting [29,30]. However, ANNs have problems
such as overfitting, gradient disappearance, and sequence information loss; accordingly,
these simple models are inappropriate for complex hydrological processes [31]. With the
exponential growth of sample data and improvements in computing power, complex deep
learning models (e.g., convolutional neural network [CNN] and long short-term memory
network [LSTM]) have demonstrated strong capabilities and robust performance in the
field of hydrology. Because of their excellent feature extraction abilities, CNNs can extract
repetitive patterns hidden in hydrology time series [32,33]. Recurrent neural networks
(RNNs) transform hidden nodes into a cyclic structure, serialize the input data when learn-
ing nonlinear relationships between input and output, and adequately capture temporal
dynamics [34]. However, RNNs are susceptible to problems of gradient disappearance
or gradient explosion during backpropagation. A variant of the RNN approach, LSTM
models use a gate mechanism and introduce memory cells to store long-term memory,
thereby solving the RNN bottleneck involving long-term dependence; accordingly, LSTMs
have been studied in the field of hydrology [35–37]. Kratzert et al. tested the effect of
LSTM in ungauged watersheds using K-fold cross-validation in the CAMELS dataset. The
experiment showed that the data-driven model had better performance than the traditional
physical model under out-of-sample conditions [38]. Mao et al. proved the importance of
hydrological hysteresis to LSTM runoff simulation by experiments [39].

In recent years, with the continuous development of research on rainfall–runoff data-
driven models, some ensemble models or hybrid models began to appear. Francesco
et al. proposed a novel simpler model based on the stacking of the Random Forest and
Multilayer Perceptron algorithms, which performed similar to the excellent performance of
the bidirectional LSTM, but had the notable advantage of much shorter computation times
than the bidirectional LSTM [40]. Kao et al. proposed a Long Short-Term Memory based
Encoder-Decoder (LSTM-ED), and compared it with a feed forward neural network-based
Encoder-Decoder (FFNN-ED) model to prove the superiority of the model for multi-step-
ahead flood forecasting [41]. Cui et al. developed a data-driven model by integrating
singular spectrum analysis (SSA) and a light gradient boosting machine (LightGBM) to
achieve the high-accuracy, real-time prediction of regional urban runoff [42]. Yin et al.
proposed a novel data-driven model named LSTM-based multi-state-vector sequence-
to-sequence (LSTM-MSV-S2S) rainfall–runoff model, which contained m multiple state
vectors for m-step-ahead runoff predictions, and compared it with two LSTM-S2S models
by testing them on CAMELS data set. The results showed that LSTM-MSV-S2S model has
better performance [43]. Chang et al. proposed a novel urban flood forecast methodology
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framework by integrating the advantages of Principal Component Analysis (PCA), Self-
Organizing Map (SOM), and Nonlinear Autoregressive with Exogenous Inputs (NARX)
to mine the spatial–temporal features between rainfall patterns and inundation maps for
making multi-step-ahead regional flood inundation forecasts [44].

Although the new proposed hybrid rainfall–runoff models constantly has greatly
improved the accuracy of runoff prediction, previous research regarding data-driven
models has not effectively used temporal and feature dependencies between rainfall–runoff
time series elements. Temporal dependencies reflect the importance of variation in time
series data according to time frequency. Additionally, rainfall station observations, an
important input feature, often indicate that rainfall frequency is closer when the distance
is smaller. To improve model accuracy, temporal and feature dependencies should be
exploited, rather than ignored [45–47].

In this study, we consider temporal and feature dependencies. CNN and LSTM
models are used to extract the characteristics of rainfall–runoff, and explore the temporal
and feature dependencies of rainfall–runoff input with the self-attention mechanism. We
propose a new hybrid streamflow prediction model, namely SA-CNN-LSTM, that considers
interdependences between timesteps and features of the rainfall–runoff series; this model
can improve the performance of hourly predicted runoff.

2. Methodologies
2.1. Self-Attention Mechanism

The attention mechanism is currently widely used in various deep learning tasks,
such as natural language processing, image recognition, and speech recognition [48–50].
In accordance with the selective attention aspect of human vision, it considers extensive
available information, then selects information that is more relevant to the current task goal
by assigning different weights [51]. In this study, the self-attention mechanism was used in
the output matrix of LSTM and CNN to extract interdependences between timesteps and
features. The attention mechanism can be regarded as the contribution of source to target,
which represents the mapping of a query vector to a series of key-value pair vectors [52].
The process can be divided into three steps: (1) calculation of similarity between query and
key vectors to obtain target weight; (2) normalization of weight; and (3) multiplication of
the value vector by the weight vector to assign weight. The special case in which the source
equals the target constitutes the self-attention mechanism.

Suppose that an output vector h ∈ Rm×k of LSTM is selected as the input of the
self-attention mechanism. In the expression, m represents the number of features in a single
timestep, and k represents the number of timesteps.

hm×k =
[

h(1)m , h(2)m , . . . h(i)m , . . . , h(k)m

]
(1)

The attention weight α of each hidden layer output vector is computed by

Si = F(Wqh(i)m , Wkh(i)m ) (2)

αi = So f tmax(Si) =
exp(Si)

∑k
j=1 exp

(
Sj
) (3)

V =
[
Wvh(1)m ∗ α1, Wvh(2)m ∗ α2, . . . Wvh(i)m ∗ αi, . . . , Wvh(k)m ∗ αk

]
(4)

where Wq, Wk, and Wv are the query, key, and value weight matrix, respectively (all
obtained by training); F is usually a scaled dot product; αi is the weight of timestep I; and V
represents the result of assigning weight to each timestep.
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2.2. Neural Network
2.2.1. Long Short-Term Memory Network

LSTM models are RNN variants that add or delete time series memory information
by adjusting gate states [53]. The LSTM unit calculation process contains three inputs: the
memory cell state (Ct−1) and hidden state (ht−1), passed down from the previous timestep,
respectively, which represent long-term memory and short-term memory, as well as the
current timestep, Xt. According to Xt and ht−1, there are four internal states, zi, z f , zo,
and z, which are estimated as follows:

z = tanh(wxt + wht−1 + b) (5)

zi = Sigmoid(wixt + wiht−1 + bi) (6)

z f = Sigmoid
(

w f xt + w f ht−1 + b f

)
(7)

zo = Sigmoid(woxt + woht−1 + bo) (8)

In Equations (5)–(8), w and b represent the weight and the deviation, respectively;
tanh and sigmoid represent the activation function; and zi, z f , zo, and z represent the
input gate, forget gate, output gate, and input information, respectively. Figure 1 shows
the internal structure of the LSTM, which mainly progresses through three stages:

Remote Sens. 2023, 15, x FOR PEER REVIEW 4 of 26 
 

 

2.2.1. Long Short-Term Memory Network 

LSTM models are RNN variants that add or delete time series memory information 

by adjusting gate states [53]. The LSTM unit calculation process contains three inputs: the 

memory cell state (𝐶𝑡−1) and hidden state (ℎ𝑡−1) , passed down from the previous 

timestep, respectively, which represent long-term memory and short-term memory, as 

well as the current timestep,  𝑋𝑡. According to  𝑋𝑡 and ℎ𝑡−1, there are four internal states, 

𝑧𝑖 ,  𝑧𝑓,  𝑧𝑜, and  𝑧, which are estimated as follows: 

𝑧 = 𝑡𝑎𝑛ℎ (𝑤𝑥𝑡 + 𝑤ℎ𝑡−1 + 𝑏) (5) 

𝑧𝑖  = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝑤𝑖𝑥𝑡 + 𝑤𝑖ℎ𝑡−1 + 𝑏𝑖) (6) 

𝑧𝑓  = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝑤𝑓𝑥𝑡 + 𝑤𝑓ℎ𝑡−1 + 𝑏𝑓) (7) 

𝑧𝑜  = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝑤𝑜𝑥𝑡 + 𝑤𝑜ℎ𝑡−1 + 𝑏𝑜) (8) 

In Equations (5)–(8), w and b represent the weight and the deviation, respectively; 

tanh and sigmoid represent the activation function; and 𝑧𝑖 ,  𝑧𝑓,  𝑧𝑜,  and 𝑧 represent the 

input gate, forget gate, output gate, and input information, respectively. Figure 1 shows 

the internal structure of the LSTM, which mainly progresses through three stages: 

Forget stage: 𝑧𝑓, as the forget gate signal, controls the 𝐶𝑡−1 passed down from the 

last timestep to perform selective forgetting. 

Memory stage: 𝑧𝑖, as the input gate signal, selectively remembers from the current 

timestep 𝑥𝑡. 

Output stage: 𝑧𝑜 , as the output gate signal, selectively outputs from the updated 

memory cell state 𝐶𝑡 to obtain the hidden state  ℎ𝑡 at the current timestep. 

The mathematical expressions of processes in the three stages are as follows: 

𝐶𝑡 = 𝑧𝑓𝐶𝑡−1 + 𝑧𝑖z   (9) 

ℎ𝑡 = 𝑧𝑂 tanh 𝐶𝑡  (10) 

𝑦𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤𝑡ℎ𝑡) (11) 

where 𝐶𝑡 and  ℎ𝑡  represent the updated memory cell state and updated hidden state in 

the current timestep, respectively; 𝑦𝑡  is an output of the current timestep. ⊙ represents 

matrix multiplication. 

 

Figure 1. LSTM structure. 
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Forget stage: z f , as the forget gate signal, controls the Ct−1 passed down from the last
timestep to perform selective forgetting.

Memory stage: zi, as the input gate signal, selectively remembers from the current
timestep xt.

Output stage: zo, as the output gate signal, selectively outputs from the updated
memory cell state Ct to obtain the hidden state ht at the current timestep.

The mathematical expressions of processes in the three stages are as follows:

Ct = z f � Ct−1 + zi � z (9)

ht = zO � tanhCt (10)

yt = sigmoid(wtht) (11)

where Ct and ht represent the updated memory cell state and updated hidden state in
the current timestep, respectively; yt is an output of the current timestep. � represents
matrix multiplication.

2.2.2. Convolutional Neural Network

CNNs are deep neural network models based on the cognitive mechanism of natural
biological vision; they are particularly successful in image recognition [54] and object
detection [55]. Sparse connection and parameter sharing are the most prominent features of
CNNs, which have excellent feature extraction capabilities that distinguish them from con-
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ventional ANN models [56]. CNNs extract features through convolution operations, which
usually scan entire datasets according to input order, as well as preset convolution core size,
convolution stride size, and padding size. At each step of scanning, the convolution kernel
and the input data of corresponding rows and columns are used for matrix multiplication
and matrix addition. CNN-based time series prediction methods all use one-dimensional
convolution operations to study the trend of the time series itself. The one-dimensional
convolution operation process focused on time series data is shown in Figure 2.
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2.3. SA-CNN-LSTM Model

The SA-CNN-LSTM model integrates the excellent abilities of CNNs and LSTMs
to extract feature patterns. The self-attention mechanism is used to learn temporal and
feature dependencies from the output feature matrix, then assign weights. The model
mainly progresses through two stages of processing from data input to output. In the
first stage, the input matrix is sent to the LSTM to obtain information regarding each
timestep; the transposed input matrix (timestep dimension and feature dimension trans-
position) is sent to the CNN for a one-dimensional convolution operation that yields
information regarding each input feature. The self-attention mechanism is used to as-
sign weights to features extracted by the two models. This mechanism assigns weights
to the output matrices of the two models in their respective timesteps and feature di-
mensions. In the second stage, in addition to the above nonlinear relationship, the
model adds an autoregressive layer to consider the linear relationship with respect to
runoff [57,58]. Finally, the output results of the two stages are summed and input into
the feedforward neural network to yield the final prediction results. A flowchart of
the SA-CNN-LSTM is shown in Figure 3. In the Figure, the input matrix is a batch of
data samples. A single input sample is Input(1) =

[
X(1), X(2), · · · , X(t), · · · , X(T), Q(1)

]
,

where X and Q represent meteorological and hydrological stations data, respectively, and
T is the timestep. X =

[
X(1), X(2), X(3), . . . , X(T)

]
is the historical rainfall sequence of

T timestep, and Q =
[

Q(1), Q(2), Q(3), . . . , Q(T)

]
is the historical runoff sequence of T

timestep. The output matrix is a batch of prediction results. A single output sample is
Output(1) =

[
Y(1), Y(2), · · · , Y(m)

]
, where Y(m) represents the result of predicted runoff in

the next m hours.
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2.4. Network Structure Optimization

The time of confluence at the outlet point is closely related to the physical character-
istics of the basin. To determine the timestep of the input model, the Pearson correlation
coefficient is used to calculate the correlation between rainfall and runoff. The calculation
formula is as follows:

R(δ) =
∑N

i
[(

Fi+δ − F
)
∗
(

Ri − R
)]√

∑N
i
(

Fi+δ − F
)2 ∗

√
∑N

i
(

Ri − R
)2

(12)

where F, F, R, and R represent runoff, average runoff, precipitation, and average precipita-
tion, respectively; δ represents the offset between runoff and rainfall time. The correlation
coefficient curves of different offsets are shown in Figure 4. The impact of hourly rainfall
on change in runoff first increases and then decreases; it eventually reaches the same
magnitude as the starting point after 60 h, indicating that hourly rainfall can effectively
influence the change in runoff in the basin over the next 60 h.
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Based on the results of the correlation coefficient curve calculated above, we set the
timestep to 60 h for prediction of runoff at the outlet of the basin in the next 7 h. The Adam
optimizer was chosen as the model optimization algorithm [59,60], and mean square error
was regarded as the loss function. Other super-parameters of the model (e.g., LSTM hidden
layer dimension, CNN layer dimension, autoregression layer dimension, attention layer
dimension, and learning rate) need to be set in advance before training. The parameter
optimization of the deep learning model has always been a very complex problem. In this
experiment, we choose to use the Hyperopt library provided by python to help optimize
the super-parameters, where fmin() is the function to call the parameter optimization. This
function mainly contains four parameters. The first parameter is to set the target function as
MSE, the second parameter is to set the parameter optimization range, as shown in Table 1,
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the third parameter is to set the number of iterations as 1000, and the fourth parameter is to
set the parameter optimization method as random search method.

Table 1. Ranges of model super-parameters used in optimization.

Super-Parameter Range

LSTM layer 8–256
Autoregressive layer 8–256

CNN layer 8–256
Attention layer 8–256
Learning rate [0.1, 0.01, 0.001, 0.0001, 0.00001]

2.5. Evaluation Statistics

In this study, the Nash efficiency coefficient (NSE), root mean square error (RMSE),
mean absolute error (MAE), mean relative error (MRE), and peak error (PE) were used to
evaluate the performance of the proposed model.

NSE = 1− ∑N
i=1(Oi − Pi)

2

∑N
i=1
(
Oi −O

)2 (13)

RMSE =

√√√√ 1
N

N

∑
i=1

(Oi − Pi)
2 (14)

MAE =
∑N

i=1|Oi − Pi|
N

(15)

MRE =
1
N

N

∑
i=1

|(Oi − Pi|
Oi

(16)

PE =

∣∣∣O f − Pf

∣∣∣
O f

(17)

where Oi, O, Pi, O f and Pf represent the runoff observation value, observation average
value, prediction value, observation peak value, and prediction peak value, respectively.
NSE is in the range of−∞ to one. When the value of NSE is >0.9, the model fit is perfect. An
NSE value in the range of 0.8–0.9 is considered indicative of a fairly good model, whereas
a value < 0.8 indicates an unsatisfactory model [61]. The RMSE represents the deviation
between observation data and simulation data; the MAE and MRE represent the average
absolute error and relative error between observation data and simulation data, respectively.
When these values are closer to 0, the model simulation value is more consistent with the
observed value [62]. PE is used to evaluate the prediction accuracy of peak flow in actual
flood performance.

3. Case Study
3.1. Study Area and Data

We tested the performance of the SA-CNN-LSTM model in the Mazhou Basin, Jiangxi
Province, southeast China, which has a subtropical monsoon climate with high temperature
and humidity. From March to June, frontal rain, sometimes persisting for >2 weeks,
often occurs because of the influence of cold air moving from north to south. Typhoons,
with heavy rainfall intensity, may affect the region from July to September. The Mazhou
hydrological station (25◦30′54′ ′N, 115◦47′00′ ′E) was established in January 1958. It controls
a basin area of 1758 km2, and the gradient of the main river is 1.53‰. The average annual
flow at the Mazhou station is 47.3 m3/s, the average annual rainfall is 1560 mm, and
the average annual evaporation is 1069 mm. The observation data used in this study
include hourly precipitation data of 35 rainfall stations and the hourly runoff data of
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the Mazhou hydrological station, both acquired during the period of 2013–2021. The
geographical location of the Mazhou watershed and the distribution of each station are
shown in Figure 5.
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The dataset was obtained by sliding the window in chronological order through the
whole rainfall–runoff sequence. The size of the sliding window was set according to
the timestep. The process of dataset preparation is shown in Figure 6. The dataset was
divided into training and testing sets, which constituted 80% and 20% of the total records,
respectively. The training set was used to calibrate the model parameters, whereas the
testing set was used to evaluate model performance. To ensure consistent model input and
enhance convergence speed during model training [63], the rainfall and streamflow were
normalized before the training process:

DNorm
i =

DOrg
i − DOrg

MIN

DOrg
MAX − DOrg

MIN

(18)

where DOrg
i is the original input data; DMAX and DMIN are the maximum and minimum

values of the input data, respectively; and DNorm
i is the normalized input data.
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3.2. Open-Source Software

This study relied on open-source libraries, including sklearn, NumPy, Math, and
Matplotlib. Keras 2.1.5 and Python 3.7 were used to implement deep learning methods.
The sklearn library was used to implement the random forest method. Matplotlib was used
to draw figures. NumPy and Math were used for matrix operations. All experiments were
conducted on a workstation equipped with an Intel E5-2680V3 CPU, 32 GB of RAM, and a
NVIDIA GTX Geforce 2080 Ti GPU.

4. Results and Discussion

To explore the performance of the SA-CNN-LSTM model, four forecast models were
compared: LSTM, CNN, ANN, and RF (random forest), along with the SA-LSTM and
SA-CNN models. Additionally, SA-LSTM and SA-CNN models were used to discuss
the impact of temporal and feature dependencies on runoff prediction respectively, and
LSTM, CNN, ANN and RF were used as the benchmark models. Among these, the super-
parameters of the CNN, LSTM, ANN, SA-LSTM, and SA-CNN models were optimized
through the random search method; RF was set as the default recommended parameter.

In Section 4.1, the performance of the SA-CNN-LSTM model is compared with the
performances of other models on the basis of different evaluation indicators. Comparisons
of scatter plots and streamflow prediction in three categories are shown in Sections 4.2
and 4.3, respectively. In Section 4.4, six selected flood events are used to evaluate the
actual performance of the SA-CNN-LSTM model, compared with the performances of
other models.

4.1. Comparisons of Evaluation Indicators

Comparisons of model performance according to evaluation indicator are shown in
Tables 2 and 3. The testing set result revealed that the prediction accuracy of each model
decreased with increasing lead time. The SA-CNN-LSTM exhibited the best performance
according to all evaluation indicators at the lead times of 1–5 h. Its performance at the lead
times of 6–7 h was similar to the performances of the SA-LSTM and SA-CNN, although
it remained better than the performance of the four benchmark models. From the results,
the proposed model had better performance with short lead times, and the difference of
indicators became smaller as the lead time increased. Notably, at the lead time of 1 h, the
RMSE of the SA-CNN-LSTM was 51%, 55%, 61%, and 83% lower than the respective RMSE
of the CNN, LSTM, ANN, and RF.

Comparison of performance among the four data-driven models revealed that RF
performed the worst at each lead time, followed by ANN. This result indicated that the
LSTM and CNN have a stronger ability to extract time series features, compared with ANN
and RF, because of their specific network structures. At the lead times of 1–2 h, the predictive
ability of the CNN was better than the predictive ability of the LSTM; subsequently, the
performance of the LSTM was better. Tian et al. showed that whether a neural network
model or a hydrological model is used for hydrological simulation, the basin with high
station density will have more abundant data information and more accurate simulation
results [64]. These above results may have occurred because the dense rainfall stations
(50.25 km2/station) in the Mazhou watershed provided the CNN with rich rainfall features,
which enhanced the prediction ability for the short forecast period. The LSTM exhibited
outstanding forecast ability in the long forecast period because of its memory advantage in
time series data.
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Table 2. Performances of each model in the training set.

Model/Train
Lead Time of 1 h Lead Time of 2 h Lead Time of 3 h

NSE MAE MRE RMSE NSE MAE MRE RMSE NSE MAE MRE RMSE

CNN 0.996 1.941 0.141 3.424 0.992 2.855 0.243 4.477 0.990 3.278 0.260 5.283

LSTM 0.994 2.178 0.163 3.894 0.991 3.017 0.222 4.910 0.990 2.985 0.197 5.217

ANN 0.994 2.555 0.222 4.073 0.991 2.979 0.234 4.853 0.990 3.133 0.249 5.062

RF 0.974 2.234 0.090 8.340 0.974 2.260 0.091 8.336 0.974 2.286 0.093 8.341

SA-CNN 0.993 1.182 0.034 4.273 0.986 1.873 0.061 6.137 0.976 2.575 0.086 8.002

SA-LSTM 0.994 1.186 0.035 3.835 0.989 2.261 0.099 5.328 0.973 4.918 0.241 8.439

SA-CNN-LSTM 0.994 1.344 0.059 3.920 0.990 1.783 0.056 5.214 0.985 2.525 0.099 6.343

Model/Train
Lead Time of 4 h Lead Time of 5 h Lead Time of 6 h

NSE MAE MRE RMSE NSE MAE MRE RMSE NSE MAE MRE RMSE

CNN 0.986 3.674 0.275 6.056 0.983 4.031 0.287 6.830 0.976 4.572 0.304 7.950

LSTM 0.988 3.457 0.255 5.710 0.985 3.479 0.225 6.302 0.981 4.092 0.283 7.065

ANN 0.990 3.284 0.257 5.236 0.989 3.403 0.261 5.377 0.987 3.653 0.269 5.901

RF 0.974 2.314 0.094 8.365 0.973 2.344 0.096 8.409 0.973 2.382 0.098 8.511

SA-CNN 0.965 3.080 0.077 9.704 0.950 3.859 0.110 11.512 0.868 5.048 0.166 18.742

SA-LSTM 0.979 3.162 0.125 7.404 0.972 3.980 0.131 8.567 0.966 4.496 0.162 9.544

SA-CNN-LSTM 0.980 2.866 0.082 7.223 0.976 3.491 0.143 7.970 0.972 4.050 0.209 8.703

Model/Train
Lead Time of 7 h

NSE MAE MRE RMSE

CNN 0.971 4.770 0.306 8.812

LSTM 0.977 4.372 0.292 7.844

ANN 0.984 4.098 0.283 6.582

RF 0.972 2.428 0.100 8.635

SA-CNN 0.926 4.997 0.217 14.074

SA-LSTM 0.963 4.580 0.193 9.965

SA-CNN-LSTM 0.967 4.554 0.259 9.437
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Table 3. Performances of each model in the testing set.

Model/Test
Lead Time of 1 h Lead Time of 2 h Lead Time of 3 h

NSE MAE MRE RMSE NSE MAE MRE RMSE NSE MAE MRE RMSE

CNN 0.965 2.639 0.136 4.978 0.936 2.971 0.134 6.708 0.899 3.701 0.167 8.441

LSTM 0.958 1.969 0.081 5.416 0.926 3.513 0.178 7.219 0.899 3.498 0.160 8.441

ANN 0.943 2.811 0.123 6.307 0.911 3.693 0.168 7.928 0.878 4.150 0.183 9.256

RF 0.696 4.333 0.136 14.626 0.690 4.447 0.141 14.772 0.684 4.560 0.146 14.918

SA-CNN 0.987 0.826 0.029 3.080 0.954 1.420 0.048 5.664 0.899 2.061 0.067 8.452

SA-LSTM 0.987 0.799 0.029 2.972 0.959 1.879 0.082 5.346 0.912 4.257 0.212 7.885

SA-CNN-LSTM 0.992 0.901 0.041 2.435 0.974 1.237 0.046 4.271 0.950 1.598 0.056 5.914

Model/Test
Lead Time of 4 h Lead Time of 5 h Lead Time of 6 h

NSE MAE MRE RMSE NSE MAE MRE RMSE NSE MAE MRE RMSE

CNN 0.855 4.329 0.191 10.113 0.821 4.938 0.218 11.220 0.763 5.876 0.261 12.907

LSTM 0.865 3.643 0.149 9.738 0.833 3.860 0.150 10.831 0.787 5.206 0.234 12.231

ANN 0.840 4.720 0.208 10.622 0.801 5.007 0.212 11.825 0.748 5.585 0.232 13.316

RF 0.677 4.672 0.151 15.083 0.670 4.780 0.156 15.250 0.661 4.893 0.161 15.456

SA-CNN 0.829 2.753 0.093 10.962 0.755 3.320 0.112 13.134 0.779 2.851 0.091 12.478

SA-LSTM 0.909 2.222 0.076 7.996 0.875 3.454 0.143 9.375 0.853 3.293 0.122 10.169

SA-CNN-LSTM 0.917 2.272 0.083 7.666 0.875 2.511 0.084 9.373 0.834 2.921 0.100 10.818

Model/Test
Lead Time of 7 h

NSE MAE MRE RMSE

CNN 0.727 5.974 0.251 13.868

LSTM 0.754 5.650 0.256 13.163

ANN 0.685 6.690 0.293 14.901

RF 0.649 5.013 0.166 15.719

SA-CNN 0.625 4.204 0.140 16.247

SA-LSTM 0.822 3.260 0.111 11.195

SA-CNN-LSTM 0.774 3.395 0.118 12.615
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In respective comparisons with the CNN and LSTM, the SA-CNN and SA-LSTM
exhibited varying degrees of improved prediction accuracy with respect to the indicators.
The RMSE of the SA-LSTM was 45% lower than the RMSE of the LSTM at the lead time
of 1 h; the RMSE of the SA-CNN was 38% lower than the RMSE of the CNN at the
lead time of 1 h. As indicated by the performances at different lead times, the SA-LSTM
was always better than the LSTM as measured by the evaluation indicators; at the lead
time of 7 h, it exhibited the best performance among all models. Notably, temporal
dependencies improved the prediction performance of the LSTM, which was consistent
with the conclusion of the articles proposed by Gao et al. [46,65] and Liu et al. [66]. However,
their paper did not consider the impact of feature dependencies on runoff prediction. The
SA-CNN had better prediction performance than the CNN only at the lead times of 1–2 h;
it was less effective than the CNN at 3–7 h lead times. These results indicated that feature
correlations help the CNN to perform better when predictions are made at a short lead
time, but they have a negative effect on the CNN at longer lead times. This result may
be related to the lack of memory ability of the CNN in time series, which leads to poor
performance in more advanced prediction. However, the introduction of the self-attention
mechanism increases model complexity and leads to reduced predictive ability. Based
on the above results, temporal and feature dependencies can provide varying degrees of
improvement in the predictive performances of conventional data-driven models. The
self-attention mechanism has a more robust improvement effect on the LSTM, particularly
in longer lead time forecasts; when combined with the self-attention mechanism, the CNN
is more appropriate for short lead-time prediction, where it has better performance.

Chen et al. [46] developed the Self-Attentive Long Short-Term Memory (SA-LSTM),
which achieved the best performance by comparing the four benchmark models, but the
model only considered the temporal dependencies in the rainfall–runoff relationship and
ignored importance of the feature dependencies. However, the SA-CNN-LSTM proposed by
this study exhibited better comprehensive performance among all models in the prediction
evaluation. This finding indicates that feature dependencies can further improve the
prediction accuracy of the improved model considering only temporal dependencies,
although its best performance only was observed with short lead times.

4.2. Comparison of Scatter Regression Plots

Figure 7 shows the scatter distributions of predicted and observed hourly runoff,
along with the respective regression lines of each model, at lead times of 1, 3, 5, and 7 h.
The regression line of the SA-CNN-LSTM is nearest to the ideal line (1:1) at different lead
times, whereas RF is the model with the greatest deviation from the ideal line. At the
lead time of 1 h, the ranking according to the distance from the ideal line is as follows:
SA-CNN-LSTM < SA-CNN < SA-LSTM < LSTM < CNN < ANN < RF. This result indicates
that the SA-CNN-LSTM model has the best forecasting ability, followed by the SA-CNN
and SA-LSTM. However, the regression lines of the SA-CNN and SA-LSTM gradually
fluctuate from the ideal line, indicating a lack of stability with increasing lead time. In
contrast, the hybrid model integrating the CNN, LSTM, and the self-attention mechanism
exhibits more stable performance. This result confirms that, after considering feature and
temporal correlation, the combination of CNN, LSTM, and the self-attention mechanism has
better robustness in terms of runoff prediction performance. The comparison of regression
results further proves the importance of temporal and feature dependencies in improving
runoff prediction.
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4.3. Comparisons of Streamflow in Three Categories

In terms of hydrology, high flow is important for flood forecasting, which can predict
the impacts of potential floods and reduce the risks of economic loss. Low flow can affect
the sustainable water supply for agricultural departments or groundwater recharge [67].
We divided streamflow into three categories according to flow value: low (0–50 m3/s),
medium (50–250 m3/s), and high (>250 m3/s). We evaluated the performance of the
SA-CNN-LSTM model with respect to prediction of streamflow in the different categories.
Figure 8 shows the comparison of prediction results among models, according to RMSE,
for the prediction periods of 1, 3, 5, and 7 h. The SA-CNN-LSTM exhibited excellent
performance at various streamflow values. With increasing lead time, the model exhibited
some degradation at low and medium flow values, but it maintained good performance at
high flow values. These results indicate that the model is more stable with increasing lead
time at high runoff flow values.
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4.4. Comparisons of Performance during Actual Flood Events

As shown in Figure 9, six flood events were selected for evaluation of the SA-CNN-
LSTM model’s performance during actual flood events; these events were 2020040200,
2020042100, 2020060800, 2020081109, 2021050900, and 2021051612. In addition, the evalua-
tion indicators of these six floods were shown in Table 4, where PE was used to evaluate the
performance of the flood peak predicted by the model. SA-CNN-LSTM showed the best
performance in six flood events, and NSE of five floods was above 0.9. For the prediction
of runoff peak, the PEs of SA-CNN-LSTM in six flood events were all within 3%, indicating
that the flood peak prediction was also effective.
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Table 4. Comparisons of evaluation indicators of six flood events from each model at the lead time of 1 h.

Flood SA-CNN-LSTM SA-LSTM SA-CNN LSTM CNN ANN RF

2020040200

NSE 0.99 0.99 0.99 0.98 0.99 0.98 0.55
MAE 4.86 5.98 4.88 7.36 6.42 7.71 39.41
MRE 0.04 0.05 0.04 0.06 0.05 0.06 0.29

RMSE 6.49 7.88 6.22 9.72 8.84 10.31 50.82
PE

(305.6 m3/s)
1.7%

(311.04)
5%

(290.14)
2.2%

(298.82)
7%

(327.15)
1.6%

(310.54)
3%

(314.78)
36.4%

(195.23)

2020042100

NSE 0.87 0.31 0.85 0.45 0.75 0.35 0.21
MAE 5.97 11.98 5.92 13.22 10.04 15.72 15.67
MRE 0.09 0.19 0.08 0.23 0.22 0.29 0.23

RMSE 10.56 24.63 11.57 22.02 14.90 23.89 26.45
PE

(144 m3/s)
0.1%

(144.21)
55%

(223.7)
4.6%

(150.76)
24.6%

(108.49)
14.4%
(123.2)

27.7%
(104.01)

57%
(61.84)

2020060800

NSE 0.94 0.93 0.93 0.80 0.87 0.79 −0.15
MAE 11.80 12.32 12.65 23.54 18.55 26.68 60.45
MRE 0.08 0.08 0.09 0.20 0.17 0.26 0.38

RMSE 21.07 22.04 22.46 37.25 29.97 37.97 89.68
PE

(331.6 m3/s)
0.2%

(332.55)
1.9%

(325.18)
5.5%

(351.1)
8.2%

(304.35)
1%

(328.1)
5.7%

(312.42)
63.3%

(121.59)
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Table 4. Cont.

Flood SA-CNN-LSTM SA-LSTM SA-CNN LSTM CNN ANN RF

2020081109

NSE 0.91 0.83 0.49 −0.87 0.08 −0.83 0.35
MAE 2.14 2.77 8.94 14.82 10.26 14.89 9.24
MRE 0.08 0.13 0.34 0.58 0.40 0.58 0.37

RMSE 4.36 5.86 10.17 19.43 13.61 19.22 11.47
PE

(67.33 m3/s)
2.1%

(68.76)
0.02%
(67.31)

18.9%
(80.11)

12.8%
(77.29)

33.5%
(89.9)

42%
(95.65)

29.9%
(47.14)

2021050900

NSE 0.96 0.95 0.96 0.94 0.91 0.89 0.26
MAE 4.07 4.77 4.25 8.46 9.94 11.76 23.06
MRE 0.06 0.07 0.06 0.16 0.18 0.22 0.26

RMSE 9.65 10.77 9.91 11.87 14.52 16.38 42.06
PE

(186.6 m3/s)
1%

(188.58)
4.2%

(178.61)
3.1%

(192.41)
10.9%

(166.17)
4.8%

(177.52)
6.9%

(173.74)
58.5%
(77.34)

2021051612

NSE 0.99 0.98 0.98 0.90 0.96 0.95 0.19
MAE 7.06 8.70 9.27 19.12 13.88 18.65 65.50
MRE 0.06 0.06 0.07 0.15 0.15 0.16 0.31

RMSE 11.77 16.74 17.83 39.45 23.33 28.41 110.34
PE

(429.1 m3/s)
1.7%

(436.48)
4.3%

(447.88)
1%

(433.61)
1.6%

(436.55)
3%

(415.83)
6.7%

(400.31)
65.8%
(146.4)

According to the flood process in Figure 9, the flood events 2021050900 and 2021051612
revealed that data-driven models exhibited some lag with respect to the observed peak time.
However, the lag intervals of the SA-CNN-LSTM, SA-LSTM, and SA-CNN were smaller
than the lag intervals of the other models. This finding indicates that the self-attention
mechanism can alleviate the time lag in terms of flood peak prediction, which is a problem
for conventional data-driven models. Among the models, the SA-CNN-LSTM had the best
performance in terms of predicting peak time, further supporting its superiority. The flood
event of 2020081109 was a small flood; the prediction results of the SA-CNN-LSTM in terms
of flood rise and fall almost fully conformed to the observed values. Other comparison
models exhibited poor performance. For the flood event of 2021051612, a high peak-value
flood, the SA-CNN-LSTM performed better than other models in terms of flood peak time
and peak value prediction. The performances for different magnitudes of flood indicated
that the proposed model has good prediction performance in terms of peak line time, peak
prediction, and flood rise and fall. In addition to flood peak prediction, base flow prediction
is also important. For the flood events of 2021051612, 2021050900, and 2021051612, the SA-
CNN-LSTM demonstrated good prediction of base flow, whereas other models exhibited
some fluctuation. In summary, the proposed model was superior to other models in the
prediction of actual flood events.

In order to verify the flood performance under different lead times, we also selected a
new flood event (2021053000) to compare the model performance under different lead time,
as shown in Figure 10. SA-CNN-LSTM performed well in simulating the flood peak in four
different lead times, while the performance of other models on the peak value decreased
with the increase of lead time. Table 5 showed the flood (2021053000) evaluation indicators
of each model under different lead times. All the evaluation indicators of SA-CNN-LSTM
was the best among all models at the lead times of 1, 3, 5, and 7 h. Especially in the lead time
of 7 h, the PE of SA-CNN-LSTM was still within 3%. However, the PE of other comparison
models all exceeded 10%. It can be predicted from the results that the proposed model also
has certain potential in long lead times.
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Table 5. Comparisons of evaluation indicators of flood event (2021053000) from each model at the
lead times of 1, 3, 5, and 7 h.

Lead Time SA-CNN-LSTM SA-LSTM SA-CNN LSTM CNN ANN RF

1 h

NSE 0.99 0.98 0.99 0.96 0.96 0.95 0.35
MAE 4.40 7.89 4.67 11.55 13.49 15.39 44.65
MRE 0.04 0.06 0.04 0.10 0.13 0.16 0.24

RMSE 7.32 12.83 8.10 17.80 18.45 20.18 70.24
PE

(336.8 m3/s)
0.01%

(336.85)
4.4%

(321.98)
0.7%

(339.38)
4.1%

(322.78)
1.1%

(332.89)
1.1%

(332.88)
52.6%

(159.35)

3 h

NSE 0.95 0.83 0.91 0.86 0.85 0.86 0.32
MAE 12.28 23.63 14.26 20.93 24.58 24.67 46.29
MRE 0.11 0.19 0.11 0.17 0.21 0.24 0.25

RMSE 19.56 35.85 25.70 33.07 34.21 32.78 71.64
PE

(336.8 m3/s)
1.5%

(342.01)
9.8%

(303.75)
5%

(319.87)
8.9%

(306.63)
15%

(286.23)
7.7%

(310.86)
51.5%

(163.19)

5 h

NSE 0.86 0.78 0.74 0.71 0.69 0.70 0.29
MAE 20.96 25.13 25.48 29.62 35.92 33.48 48.53
MRE 0.19 0.20 0.19 0.23 0.30 0.29 0.27

RMSE 32.21 40.96 44.70 47.16 48.17 47.69 73.58
PE

(336.8 m3/s)
1%

(340.22)
11.8%

(296.76)
15.1%

(285.69)
15.1%

(285.90)
21.8%

(263.25)
12.6%

(294.19)
52.5%

(159.72)

7 h

NSE 0.77 0.69 0.50 0.55 0.48 0.49 0.23
MAE 27.43 30.08 34.98 35.70 48.89 44.38 50.76
MRE 0.24 0.24 0.24 0.26 0.41 0.39 0.28

RMSE 42.19 48.81 61.41 58.56 63.02 62.06 76.50
PE

(336.8 m3/s)
1.3%

(341.42)
13.4%

(291.59)
22.5%

(260.80)
19.8%

(269.93)
27.6%

(243.62)
21.4%

(264.51)
52.3%

(160.60)

5. Conclusions

Previous research regarding data-driven models did not effectively exploit temporal
and feature dependencies between time series elements. Therefore, we proposed a hybrid
model, SA-CNN-LSTM, to improve streamflow prediction by considering temporal and
feature dependencies. Our model combines the respective advantages of the CNN and
LSTM to extract the characteristics of rainfall runoff; it uses a self-attention mechanism to
improve performance and robustness by considering interdependence among timesteps
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and features. We tested the performance of the proposed model in the Mazhou Basin
of China. To explore the performance of the SA-CNN-LSTM model, the LSTM, CNN,
ANN, RF, SA-LSTM, and SA-CNN models were compared at lead times of 1–7 h. The
SA-LSTM and SA-CNN models were used to discuss the impact of temporal and feature
dependencies on runoff prediction respectively, and LSTM, CNN, ANN, and RF were used
as the benchmark models.

The experimental results indicated that the SA-CNN-LSTM was better than the four
benchmark models within the lead times of 1–7 h, especially in the lead times of 1–5 h, it
had the best performance among all the comparison models, which is measured by various
evaluation indicators. In addition, the base flow, peak value, and peak time flood prediction
performances were partially improved. It can be proved that the combination of CNN,
LSTM, and self-attention mechanism can more fully extract the abilities of input features,
thereby improving prediction performance and model robustness. Respectively, temporal
and feature dependencies can provide some degree of improvement regarding the predic-
tive performances of conventional data-driven models (LSTM, CNN). The self-attention
mechanism has a more robust improvement effect on the LSTM, particularly in forecasts
with a longer lead time; when combined with the self-attention mechanism, the CNN is
more appropriate for short lead-time prediction, where it has better performance. However,
this study did not include an evaluation of model interpretability and cannot confirm the
advantages of the model with respect to interpretability theory. In future research, we plan
to focus on the combination of interpretability and the rainfall–runoff model.
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