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Abstract: Efficient and precise forest surveys are crucial for in-depth understanding of the present
state of forest resources and conducting scientific forest management. Close-range photogramme-
try (CRP) technology enables the convenient and fast collection of highly overlapping sequential
images, facilitating the reconstruction of 3D models of forest scenes, which significantly improves
the efficiency of forest surveys and holds great potential for forestry visualization management.
However, in practical forestry applications, CRP technology still presents challenges, such as low
image quality and low reconstruction rates when dealing with complex undergrowth vegetation or
forest terrain scenes. In this study, we utilized an iPad Pro device equipped with high-resolution
cameras to collect sequential images of four plots in Gaofeng Forest Farm in Guangxi and Genhe
Nature Reserve in Inner Mongolia, China. First, we compared the image enhancement effects of
two algorithms: histogram equalization (HE) and median–Gaussian filtering (MG). Then, we pro-
posed a deep learning network model called SA-Pmnet based on self-attention mechanisms for 3D
reconstruction of forest scenes. The performance of the SA-Pmnet model was compared with that
of the traditional SfM+MVS algorithm and the Patchmatchnet network model. The results show
that histogram equalization significantly increases the number of matched feature points in the
images and improves the uneven distribution of lighting. The deep learning networks demonstrate
better performance in complex environmental forest scenes. The SA-Pmnet network, which employs
self-attention mechanisms, improves the 3D reconstruction rate in the four plots to 94%, 92%, 94%,
and 96% by capturing more details and achieves higher extraction accuracy of diameter at breast
height (DBH) with values of 91.8%, 94.1%, 94.7%, and 91.2% respectively. These findings demonstrate
the potential of combining of the image enhancement algorithm with deep learning models based
on self-attention mechanisms for 3D reconstruction of forests, providing effective support for forest
resource surveys and visualization management.

Keywords: close-range photogrammetry (CRP); image enhancement; deep learning; self-attention;
SA-Pmnet; 3D reconstruction

1. Introduction

The forest ecosystem affects the global and regional carbon–water cycle and the
stability of the climate system. Accurate investigation of forest resources is essential for
forest protection as well as scientific planning and management [1]. The sample plot survey
is the basis of forest resource inventory and management planning; accurate and efficient
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parameter extraction of individual trees in the forest is also an important prerequisite for
conducting various forest ecological studies [2]. Therefore, rapid and automatic acquisition
of individual tree parameters is essential for forest resource monitoring and scientific forest
management. Traditional methods involve manually measuring the parameters of each
tree in the samples and recording these measurements in digital form [3]. However, this
method is both time-consuming and labor-intensive, making it difficult to efficiently obtain
rich data from a large number of plots in a short period of time.

Automatic extraction of individual tree parameters based on 3D forest models can
overcome the limitations of traditional survey methods, transforming extensive field inves-
tigations into computer data processing, and thereby enhancing survey efficiency. Light
detection and ranging (LiDAR) is an active remote sensing technology that has been rapidly
advancing. It enables the accurate and efficient acquisition of point cloud data that covers a
wide range, effectively extracting forest structure information. In forestry surveys, LiDAR
plays an increasingly pivotal role, particularly individual tree segmentation and parameter
extraction. Airborne laser scanning (ALS) and terrestrial laser scanning (TLS) can acquire
high-density 3D point clouds of forest environments, facilitating precise 3D modelling [4,5].
Notably, ALS is particularly proficient in swiftly capturing extensive point cloud data over
large areas. Nonetheless, the vertical perspective of the overhead scanning results in fewer
lateral details of objects in the point cloud, thus impeding the acquisition of information,
such as diameter at breast height DBH and height below branches. Conversely, TLS scans
the objects from the ground to obtain full point clouds of the trunk and is suitable for
extracting DBH and height below branches. However, such equipment is expensive and
requires specialized technical expertise for data collection. Close-range photogrammetry
(CRP) is a ground-based measurement method based on multi-view geometry and spatial
transformation matrices, enabling the acquisition of 3D point cloud data from sequences
of images [6–8]. CRP possesses the capacity to automatically match sets of images, thus
transforming images into novel data sources for 3D point clouds [9]. In recent years, CRP
has been a promising technology in forestry surveys, providing products akin to LiDAR
data but at reduced costs [10,11]. Furthermore, CRP demonstrates the capability for rapid
on-site measurement and efficient data processing, showing considerable potential for
precise forestry applications [12–14].

The dominant 3D reconstruction methods are Structure from Motion (SfM) and Multi-
View Stereo (MVS) [15,16]. These methods have found wide applications in precision
agriculture, geographic surveying, archaeology, and others [17]. SfM is a commonly used
sparse reconstruction algorithm that aims to reconstruct the 3D coordinates of image
feature points [18]. MVS leverages the camera model based on SfM to compute the camera
poses and conducts dense reconstruction to recover the geometric information of the
scene [19]. This multi-view 3D reconstruction technique has been extensively utilized in
reconstruction of forest trees and stands using unmanned aerial systems [20–22], showing
its effectiveness in 3D reconstruction [23]. However, in complex forest scenes, traditional 3D
reconstruction techniques face a range of problems and challenges, such as mutual occlusion
among trees, uneven lighting distribution, and high texture repetition. These factors
introduce uncertainties to feature matching [24], which may result in point cloud noise,
incomplete imaging, or imaging overlap, leading to significant deviations in parameter
extraction. Although the use of a large number of multi-angle, highly overlapping images
and higher pixel photos can enhance the accuracy and completeness of 3D imaging [25],
it also increases the difficulty and time required for data processing. Therefore, there is a
pressing need to explore improved methods for forest 3D reconstruction. Deep learning,
with its neural network-based feature extraction capability [26], holds great potential for
forestry visualization and management. Nonetheless, to date, there have been relatively
few studies on applying deep learning to 3D reconstruction of forest scenes.

Taking advantage of the advancements in convolutional neural networks (CNN) in
image processing, researchers have been striving to enhance the performance of MVS.
MVSNet pioneered the integration of deep learning techniques into depth map-based MVS
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tasks [27]. It constructs a cost volume and employs 3DCNN for cost volume regularization,
leading to outstanding reconstruction results and unveiling novel avenues for learning-
based MVS methods. However, using 3D CNN for regularization in MVSNet consumes
too much GPU memory and poses practical challenges. Consequently, subsequent studies
have proposed a series of improved supervised and unsupervised networks, including
P-MVSNet, CVP-MVSNet, Fast-MVSNet, and Unsup-MVSNet [28–36]. Nonetheless, these
approaches still struggle to strike a perfect balance between memory consumption and
reconstruction accuracy.

Therefore, an efficient and high-precision learning-based MVS method is of wide prac-
tical significance. PatchmatchNet [37] eliminates the algorithmic framework of MVSNet,
which is derived from the traditional stereo matching method, and implements a dense
reconstruction algorithm based on deep learning with the idea of PatchMatch [38]. The
PatchmatchNet framework is composed of multi-scale feature extraction and learning-
based Patchmatch, which combines the advantages of traditional algorithms and deep
learning to improve the accuracy and completeness of the reconstruction. In addition,
the memory consumption and running time are also dramatically reduced compared to
other methods. However, the network is unable to capture important information for deep
inference tasks in the feature extraction module, and this means that critical information in
the data is missed, which affects the accuracy of the 3D model in terms of details.

To address these critical concerns, this research proposes a deep learning network
model based on the self-attention mechanism for SA-Pmnet and validates its performance
using forest stand sequence images taken using an iPad Pro. This network model is capable
of generating high-quality dense point clouds and achieving a high reconstruction rate
and high-precision DBH extraction in complex forest environments. The specific research
objectives are as follows:

1. Comparing two image enhancement algorithms, median–Gaussian filtering and his-
togram equalization, to solve the impact of lighting factors on image quality.

2. Proposing a SA-Pmnet model by combining the self-attention mechanism with the
multi-scale feature extraction module to enhance the ability of image details.

3. Using the SfM+MVS algorithm to verify the superiority of the proposed deep learning
network model for 3D reconstruction in complex forest environments.

2. Materials and Methods
2.1. Study Area

Four typical sample plots of different plant species in southern and northern China
were selected (Figure 1). The sample plots were set as a square with a size of 20 m × 20 m.

Two of the sample sites are situated in the Genhe Forest Farm located in the Inner
Mongolia Autonomous Region. They have a latitude range of 51◦40′ to 51◦52′ and a
longitude range of 122◦12′ to 122◦21′. The elevation in this region ranges from 700 to
1300 m. Larch is the dominant species covering 76% (1.14 million hectares) of the area.
Additionally, birch and larch mixed forests account for 19.3% (290,000 hectares) of the total
forested area.

The other two sample sites are situated in the Gaofeng Forest Farm located in Nanning
City, Guangxi Province. They have a latitude range of 22◦49′ to 23◦5′ and a longitude range
of 108◦7′ to 108◦38′. The elevation in this region ranges from 100 to 450 m. Various forest
types can be found, with Red oatchestnut (Castanopsis hystrix Hook.) forests and Chinese
fir (Cunninghamia lanceolata (Lamb.) Hook.) being the predominant ones.
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Cupertino, CA, USA). The images were taken from a fixed focal point, with a distance of 
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The overlap ratio for each pair of images exceeded 70%. The number of photos taken for 
each plot was limited to a range of 400 to 600. 

  

Figure 1. Overview of the study area. (A) Plot_1, (B) plot_2, (C) plot_3, (D) plot_4. (a) Genhe,
(b) Nanning.

2.2. Data

The data for this study were collected in August 2022 and January 2023. The informa-
tion of the sample plots is shown in Table 1. The DBH of each tree was measured with a
diameter tape, which was used for the accuracy verification of the extracted parameters.

Table 1. Sample plot information.

Sample Plot Slope (◦) Major Tree Species Number of Trees Stand Complexity

1 36 Larch, Birch 51 Complex
2 9 Larch, Birch 39 Complex
3 13 Red oatchestnut 32 Simple
4 27 Chinese fir 28 Medium
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Sequential images were captured using the primary camera (with a focal length of
3.99 mm, aperture size of f/1.8, and 12 megapixels) of a portable iPad Pro (Apple Inc.,
Cupertino, CA, USA). The images were taken from a fixed focal point, with a distance of
0.5 meters between adjacent points and a distance of 1 meter from the edge of the plot. The
overlap ratio for each pair of images exceeded 70%. The number of photos taken for each
plot was limited to a range of 400 to 600.

2.3. Methods

An overview of the workflow is shown in Figure 2, which encompasses the following
procedures: (1) sequential image enhancement of the four plots, (2) presentation of SA-
Pmnet model and comparison with SfM+MVS algorithm and PatchmatchNet model in
generating the 3D model, and (3) extraction of the parameters and evaluation of the
applicability of the SA-Pmnet model using accuracy validation.
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2.3.1. Image Enhancement

Occlusion and shadow in forest environments can cause uneven illumination within
images, consequently impacting image quality and the accuracy of extracting pertinent
information. Intense lighting results in blurred boundaries, whereas weak lighting reduces
grayscale values in localized areas, concealing detailed information. Enhancing the quality
of captured image sequences before conducting feature detection is crucial. Taking into
account the requirements and objectives of feature detection, we compared histogram
equalization and median–Gaussian filtering algorithms to identify the suitable image
enhancement method for detecting tree features in forest scenes.

1. Median–Gaussian filtering

The spatial enhancement algorithm processes the grayscale values of every pixel
in the image based on their respective positions [39]. The median filter is a simple and
efficient spatial filter that reduces image noise while preserving edge information. In the
context of precise 3D reconstruction of forest scenes, the detailed features of the image are
particularly important, especially for the identification of tree trunks and ground edges.
Low-lying branches and shrubs are the primary sources of noise that affect the accuracy of
the reconstruction model. The Gaussian filter enhances trunk edges by emphasizing the
edge information within the image. To address this, a 3×3 filtering window is employed,
enabling sequential application of both the median filter and Gaussian high-pass filter. This
process effectively removes noise and enhances the edge information in the image.

2. Histogram Equalization

Histogram equalization (HE) serves as a widely adopted image enhancement tech-
nique for improving image contrast and facilitating visual analysis and processing [40]. By
redistributing the grayscale levels of image pixels, it ensures a more uniform distribution
of pixel values across the entire grayscale range, thereby enhancing the visual quality of
the image. In this experiment, we divided the color image into three channels (blue, green,
and red), individually applying histogram equalization to each channel, and subsequently
merging the equalized channels to obtain the resultant histogram-equalized color image.

2.3.2. 3D Model Reconstruction

(1) SA-Pmnet
SA-Pmnet is a network that utilizes a reference image and multiple source images as

input with the core task of generating a depth map for each reference image. The network’s
innovation lies in its incorporation of a self-attention mechanism into the feature extraction
process. This integration enables the capture of global information, resulting in a larger
receptive field and contextual awareness. Consequently, it enhances the feature extraction
capability and produces higher-quality depth maps. The primary modules of this network
model consist of multi-scale feature extraction utilizing the self-attention mechanism and a
learnable Patchmatch approach for progressively refining results. The specific structure of
the network is shown in Figure 3.

Self-Attention Multi-scale Feature extractor:
The self-attention multi-scale feature extraction (SA-MsFe) module is shown in Figure 4.

Overall, the architecture adopts the Feature Pyramid Network [41] (FPN), which includes
convolutional layers and self-attention layers. The feature extraction process involves
two steps: first, performing pixel-level feature extraction on the input reference image
and source images at multiple resolutions; second, inputting the pixel features into the
self-attention layer at the lowest resolution level, followed by convolution and subsequent
input of the final pixel features to the corresponding stage of the learnable Patchmatch
module. During this process, the upsampled features are fused with those obtained from
the previous convolutional layer, serving as input for the self-attention layer at a higher
resolution level.
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Figure 4. The self-attention framework.

In this paper, the feature pyramid network incorporates a self-attention mechanism to
acquire significant depth information. Self-attention connects various positions within a
sequence and aims to compute the sequence’s representation (Figure 2). It is designed for a
single context and can establish dependencies directly without considering their respective
positions in the input or output sequences. The attention function maps queries and a
set of key-value pairs to an output, wherein queries, keys, and values are all vectors. The
output is obtained by weighing the query values, and the assignment of weights relies on
the compatibility between query results and corresponding keys. The specific formula is as
follows [42]:

yuv = ∑
m,n∈B

so f tmaxmn

(
qT

uvkmn

)
vmn (1)

In the equation, quv = WQxuv represents the query, kmn = Wkxmn represents the key,
and vmn = WV xmn represents the value. The matrix Wp(p = Q, K, V) is a weight matrix that
is learned and composed of learning parameters. B corresponds to an image block utilized
for the convolution calculation, which possesses the same dimensions as the convolution
kernel. Lastly, yuv denotes the output.
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The equation involves three steps:

1. Calculating the queries (quv), keys (kmn), and values (vmn);
2. Assessing their similarity by computing the inner product of queries and keys (qT

uvkmn),
followed by mapping the similarity into the range of (0,1) using the softmax operation;

3. Assigning weights to the similarity values from step 2, repeating these steps for each
pixel in B, and ultimately summing all the outputs.

Matrix WQ is employed to extract pixel information across all channels surrounding
mmn, while matrix Wk is responsible for extracting information from all channels within xmn.
Therefore, matrices WQ and WK are utilized to quantify similarity. Additionally, matrix WV
is employed as a linear transformation to map xmn from input channels to output channels.

Learnable PatchMatch:
The traditional PatchMatch algorithm is capable of rapidly searching for approximate

nearest neighbor matches between image blocks. By employing iterative steps including
initialization, cost propagation, and random search, it efficiently identifies matching pixel
blocks. In comparison to the traditional PatchMatch, the learnable PatchMatch algorithm
introduces neural networks to acquire the knowledge of similarity between matching pixel
blocks, enabling it to handle more intricate matching tasks. The learnable PatchMatch
algorithm comprises three main steps:

1. Depth initialization, which involves the generation of random depth hypotheses;
2. Propagation, in which the depth hypotheses are propagated to neighboring pixels;
3. Evaluation, focusing on the computation of matching costs for all depth hypotheses

and the selection of the optimal solution.

This structure serves as the central component of the network. Following the fea-
ture extraction process, the feature map is fed into this structure, and subsequent steps
encompass depth map initialization, matching cost calculation, cost aggregation, and depth
estimation, culminating in the generation of a coherent depth map. Finally, by integrating
the depth map, the generation of a point cloud model is achieved.

Experimental environment and details:
Hardware environment: a CPU with 8 cores and 64GB of memory, along with an

NVIDIA GeForce RTX 3090 (NVIDIA Corporation, Santa Clara, CA, USA) graphics card,
which has 24GB of memory.

Software environment: Ubuntu 20.04.3 LTS, Python 3.8, PyTorch 1.10.1, CUDA 11.1,
and cuDNN 8.0.5.

During the training phase, images with a resolution of 640 × 512 are utilized. To
account for GPU consumption, the batch size is set to 1, with each batch containing
1 reference image and 4 source images. For training, a total of 49 × 7 × 128 images were
used, acquired from the DTU dataset accessed on 13 June 2023. (https://roboimagedata.
compute.dtu.dk). These images consist of 49 positions, 7 different lighting intensities, and
128 scenes in total. Regarding the preset depth assumption range, it spans from 425 mm to
935 mm. The number of PatchMatch iterations in stages 3, 2, and 1 are set to 2, 2, and 1,
respectively. In stages 3, 2, and 1, the number of random perturbations is set to 16, 8, and 1,
respectively. Furthermore, the neighborhood size for adaptive propagation is established
as 16, 8, and 0 in stages 3, 2, and 1, respectively, while the neighborhood size for adaptive
matching cost aggregation is set to 9. As for the network’s initial learning rate, it is set to
0.001. At the 10th, 12th, and 14th epochs, the learning rate is halved, resulting in a total of
16 epochs of training. Lastly, the Adam optimizer is employed with β1 = 0.9 and β2 = 0.999.

(2) SfM+MVS
The traditional method for reconstructing 3D (3D) scenes based on visual geometry

primarily relies on the geometric information embedded in two-dimensional (2D) images
as prior knowledge. This process can be divided into two main steps: SfM and MVS.
Sparse reconstruction recovers the 3D coordinates of feature points and camera poses from
the images, while dense reconstruction utilizes depth maps to perform registration and
reconstruct dense point clouds.

https://roboimagedata.compute.dtu.dk
https://roboimagedata.compute.dtu.dk
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SfM determines the spatial and geometric relationships of objects through camera
movements. First, feature points are extracted from a given set of multi-view images
using feature extraction algorithms. These points are then matched, and only the ones
that satisfy geometric constraints are retained. Second, the intrinsic and extrinsic camera
parameters are calculated based on the matching points, and the spatial coordinates of the
points are triangulated. In order to achieve better reconstruction results, techniques such as
bundle adjustment [43] can be employed to iteratively refine the camera parameters and
scene structure.

MVS utilizes the corresponding images and camera parameters obtained from sparse
reconstruction to reconstruct a dense point cloud model using multi-view stereo vision.
Given the known camera parameters, the epipolar geometry principle is employed to locate
corresponding points on the source images for every point on the reference image. By
making different assumptions regarding disparities, a 3D matrix cost volume is obtained.
The aggregated cost volume is then used to calculate the optimal depth value for each pixel.
Depth map optimization techniques, including view consistency detection and brightness
consistency constraints, are applied to eliminate incorrect depth values, leading to further
enhancement and smoothing of the depth map quality. Finally, a fusion method [44] based
on visibility, stability, or confidence is utilized to merge the depth maps acquired from
multiple viewpoints, ultimately generating a dense point cloud.

2.4. Accuracy Verification

The results obtained from DBH measurements are utilized as reference data for evalu-
ating the accuracy of various parameters, including the reconstruction rate (r), root mean
square error (RMSE), relative root mean square error (rRMSE), and accuracy evaluation
(AE). The formula is as follows [45]:

r =
n
m

× 100% (2)

where n is the number of reconstructed trees, and M is the number of trees in the plot.

RMSE =

√
1
n

n

∑
i=1

(Textraction − Ttruth)
2 (3)

rRMSE =
RMSE

x
× 100% (4)

AE = (1 − rRMSE)× 100% (5)

Here, n is the number of reconstructed trees, Textraction is the value of extracted DBH, and
Ttruth is the value of measured DBH.

3. Results
3.1. Results of Different Image Enhancement Methods
3.1.1. Image Enhancement

The image enhancement results of the histogram equalization (HE) and median–
Gaussian (MG) filtering algorithms are shown in Figure 5. It can be seen that after applying
the HE algorithm, the overall brightness of the images of all sample plots was significantly
enhanced, while the texture features of the trees became clearer. This effect is especially
prominent in sample plots 1 and 4, which have large shadows under the forest due to
excessive light. After the histogram equalization process, the contrast of the shadowed area
is greatly increased, which makes the details that were originally covered by the shadows
stand out, and the image is subsequently more conducive to the detection and matching of
feature points. Although MG filtering makes the image smoother overall and effectively
removes some of the noise, it also brings some negative effects. Especially on the tree trunks
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and the ground, we can observe the loss of some texture and detail information. This may
adversely affect further feature point matching and 3D reconstruction.
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3.1.2. Results of Feature Matching

The results of feature point matching are shown in Figure 6. The yellow lines indicate
the same feature points detected in two consecutive images. It can be observed that the
distribution of matching points is mainly concentrated on the ground and tree trunks.
In the original image processed by the median–Gaussian filtering, the number of total
matching points does not increase significantly, while there are some wrong matches. After
the histogram equalization, the matching feature points are significantly increased, and the
number of feature points in the trunk position is also improved accordingly, which reduces
the influence of sunlight on the pictures. This experiment was repeated with two methods
for four sample plots, and similar results were obtained.

Typically, low vegetation is the main source of noise in the images. As can be seen
from Table 2, in sample plots 1 and 2, which have more understory shrubs and weeds,
the number of feature point matches of the images processed by MG filtering is improved
more, with improvements in matching point pairs of 12 and 24, respectively. Whereas
in sample plots 3 and 4 with a relatively clear understory, the number of feature point
matches does not increase significantly and even decreases after MG filtering. However,
after being processed using the HE algorithm, the contrast of the images is adjusted to
capture details in the shadows and avoid uneven light distribution; thus, the number of
feature point matches in the four sample plots reaches 72, 103, 116, and 97, respectively,
which is improved by 2–3 times compared with the original images.
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Table 2. Comparison of the number of feature matching point pairs.

Sample Plots Original Images HE MG

1 29 72 41
2 38 103 62
3 57 116 45
4 31 97 39

3.2. 3D Forest Model Reconstruction Results

Figure 7 and Table 3 show the 3D reconstruction results and point cloud density
information of the different reconstruction models after histogram equalization filtering for
all the images. The results show that SfM+MVS is more seriously affected by environmental
factors in recovering the forest scene, resulting in sparse point clouds on the ground and
tree trunks. In sample plots 1 and 4 with larger slopes, the same tree is reconstructed
several times to different degrees, which seriously affects the quality of the point cloud.
Compared to the SfM+MVS algorithm, both deep learning models increase the point cloud
density by 3 to 8 times, resulting in improved accuracy and 3D model quality. Particularly,
the point cloud density of the 3D model generated by SA-Pmnet network based on the
self-attention mechanism is also slightly higher than that of PatchmatchNet, indicating that
the supplementation of detail information makes the point cloud model denser.

Table 4 compares the computational time complexity of different methods. Deep
learning models usually have a large number of parameters and complex network struc-
tures, which makes them require more computational resources. The overall computational
time of the SfM+MVS algorithm is less than that of the deep learning methods, and the
computational times of the PatchmatchNet and SA-Pmnet models are basically the same.
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Figure 7. Results of three different 3D reconstruction methods. (A) Plot_1, (B) plot_2, (C) plot_3,
(D) plot_4, 1: SfM+MVS, 2: PatchmatchNet 3: SA-Pmnet.

Table 3. Comparison of point cloud densities of different methods.

Sample Plots SfM+MVS (106) PatchmatchNet (106) SA-Pmnet (106)

1 3.32 10.96 11.78
2 4.75 19.87 20.64
3 2.58 22.61 24.05
4 34.58 79.46 84.17

Table 4. Comparison of the computational time complexity of different methods.

Sample Plots SfM+MVS (h) PatchmatchNet (h) SA-Pmnet (h)

1 7 10 10
2 8 12 12
3 6.5 10 10
4 10 15 15

Figure 8 shows the point cloud details at the same locations in the four sample plots,
for comparing the variability between different models. It is observed that in the 3D models
using the SfM+MVS algorithm, the point clouds at the trunk and ground are relatively
sparse, the overall point cloud density is low, and they are greatly affected by environmental
factors, such as slope and shading, leading to incorrect matching of feature points. As
a result, multiple duplicate trees were generated at the same location, causing a large
impact on subsequent parameter extraction. In contrast, the models generated using the
PatchmatchNet and SA-Pmnet deep learning network have a high point cloud density
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without tree trunk overlapping and produce a more realistic reconstruction of the forest
scenes. However, in terms of model details, the trunk texture generated using SA-Pmnet
is clearer compared to PatchmatchNet, and the trunk contour is closer to a circle at the
location of DBH, which is favorable for the subsequent DBH extraction of the tree.
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3.2.1. Reconstruction Rate Results

To validate the reconstruction results of the different methods, we used LiDAR360
software (V6.0.3.0) to perform preprocessing, including point cloud filtering and point
cloud normalization, and counted the number of trees in each model using single-tree
segmentation. The results are shown in Figure 9. The two numbers in the columns represent
the number of reconstructed trees and the reconstruction rate, separately. In sample plots 1
and 4 with large slopes, the SfM+MVS algorithm incorrectly reconstructed single trees into
multiple repetitive models. Thus, the number of trees in the generated 3D point cloud
model far exceeded the true number. The reconstruction rates of 67% and 66% in the other
two sample plots are also unsatisfactory overall. However, the results using the deep
learning approaches are much closer to the real situation. The SA-Pmnet network model
achieves reconstruction rates of 94%, 92%, 94%, and 96% in the four sample plots. It is
worth noting that the self-attention mechanism plays a significant role in sample plots 1 and
2, which have more understory shrubs and weeds, resulting in 8% and 10% improvements
in the reconstruction rate, respectively, compared with the PatchmatchNet model. This
indicates that the self-attention mechanism can improve the reconstruction accuracy of the
point cloud to a great extent in the complex understory environment.
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3.2.2. Individual Tree DBH Extraction

The overall point cloud density of the SfM+MVS algorithm is low, and the trunks
appear to overlap, which is not favorable for DBH extraction. Therefore, the two deep
learning networks models were utilized to extract DBH of individual trees in the four plots,
and their accuracies were compared. Figure 10 and Table 5 demonstrate that both deep
learning networks models have good performance in terms of DBH extraction accuracy.
In particular, the accuracies of DBH extracted from the model generated by the SA-Pmnet
network reach 91.83%, 91.51%, 93.55%, and 92.35%, and the overall accuracies are higher
than those of the PatchmatchNet model, with improvements of 1.89%, 0.85%, 0.71%, and
1.03%, respectively. In the sample plots with a greater slope, the enhancement is more
pronounced, indicating that the self-attention mechanism can reduce the influence of
topographic factors on the results and extract the DBH parameter more accurately under
the complex forest environmental conditions.
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Table 5. Comparison of the accuracy of the extracted DBH.

Sample Plots SA-Pmnet (%) PatchmatchNet (%) Accuracy Improvement
Ratio (%)

1 91.83 89.94 1.89
2 91.51 90.66 0.85
3 93.55 92.84 0.71
4 92.35 91.32 1.03

4. Discussion

In this paper, we explored a forest 3D scene reconstruction method that combines
image enhancement and deep learning-based 3D reconstruction techniques. The method
can effectively solve the problems of low image quality and low model reconstruction rates
caused by the complex forest environment. We used a histogram equalization algorithm
to improve the quality of the images and proposed a deep learning network model based
on the self-attention mechanism SA-Pmnet to improve the ability of feature extraction,
which in turn generates high-quality point cloud models. Ultimately, high-precision DBH
extraction based on the reconstruction of 3D models for forest visualization was achieved.

4.1. The Effects of Different Image Enhancement Algorithms on Feature Matching

In the task of multi-view 3D reconstruction of forest scenes, improving the quality of
the original images is an essential process to improve the accuracy of 3D reconstruction of
forest scenes. Through our research on median–Gaussian filtering and histogram equaliza-
tion algorithms, we discover that the median–Gaussian filtering algorithm can effectively
remove the noise in the images, make the images smooth, and retain the edge information
in the images [46]. However, it also causes the loss of detail information in the central part
of the image, which results in no significant increase in the number of feature matching
points in the trunk with some false matches. In contrast, the histogram equalization algo-
rithm significantly increases the contrast of the image, making the details of the shaded
parts clearly visible [47]. Compared with the original images and the matching results
after using the median–Gaussian filtering algorithm, the histogram equalization algorithm
can significantly increase the total number of feature points, and the feature points in
the trunk area are more concentrated, which is more conducive to the three-dimensional
reconstruction of the tree model and the subsequent parameter extraction. At the same time,
the method is suitable for situations such as large shadows in the understory area resulting
from excessive sunlight and an uneven brightness distribution due to poor light quality,
which helps to reduce the limitation of weather, topography, and other environmental
conditions for investigators to collect data in the field.

Our findings also highlight that the uneven distribution of lighting is a crucial factor
affecting the matching of feature points. The histogram equalization algorithm can reduce
the impact of lighting conditions effectively, and the median–Gaussian filtering algorithm is
ideal for eliminating noise in forest environments with low and dense vegetation. Therefore,
different image enhancement algorithms should be considered to improve image quality
when dealing with different environmental conditions. Additionally, in sample plots 1 and
4, the number of feature point matches is significantly lower compared to other sample
plots, primarily due to the steep terrain and mutual occlusion of understory vegetation.
This further shows that the terrain factor has a large impact on the matching of image
feature points [48].

4.2. The Differences between the SfM+MVS Algorithm and Deep Learning Models for 3D Models

This paper compared the accuracy of the SfM+MVS algorithm and deep learning
models for 3D reconstruction of forest scenes. The result shows that in the forest scene with
a gentle slope and simple environment, the point cloud model generated by the SfM+MVS
algorithm has a low density, and the number of reconstructed trees is less than the actual
number [49]. In the sample plots with a large slope and more shrubs and weeds, the same
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problem exists, and the number of trees in the generated point cloud model exceeds the
actual number of trees due to the large slope of the sample plots and the high similarity of
texture features in the scene, which reduces the number of feature points and mis-matching,
resulting in the generation of multiple repetitive models for a single tree. Therefore, the
SfM+MVS algorithm requires high-quality original images and is not suitable for complex
forest scenes.

In contrast, the deep learning methods surpasses traditional algorithms by learning
and comprehending scene features from datasets and utilizing neural networks for feature
extraction and matching. This approach produces high-quality point cloud models and
enhances the reconstruction rate and point cloud density. The data presented in Figure 9
and Table 5 indicate that the deep learning method closely aligns with actual measure-
ments in terms of reconstructing the number of trees and extracting DBH. Even in complex
environments with steep slopes, the deep learning method achieves remarkable recon-
struction rates of around 80% to 90%. Its flexibility and adaptability make it a potent tool
for tackling the challenges of 3D model reconstruction under diverse forest and terrain
conditions. These findings further underscore the immense potential of deep learning in
forest visualization management.

4.3. The Superiority of the SA-Pmnet Network Model

The complexity of forest environments, including uneven terrain, high repetition in
texture features, and obstruction by shrubs and grass, poses significant challenges to the
recovery of 3D models [50,51]. Therefore, careful attention to the details in images is crucial
for generating high-quality point cloud models.

This study proposed the SA-Pmnet network model, which integrates the self-attention
mechanism with the multi-scale feature extraction module in the PatchmatchNet network.
This combination allows for improved handling of the intricate textures and structures of
tree trunks and vegetation in images. It enables the capture of boundaries and details of
different objects and facilitates the establishment of associations between various regions,
thereby enhancing the model’s understanding of the image content [52]. Additionally, the
vegetation cover and camera position limitations in forests may result in occluded areas or
low-resolution captures. The self-attention multi-scale feature extraction (SA-MsFe) module
can identify and address these issues by balancing local and global features and extracting
pixel-level features at different resolutions, leading to the more accurate 3D restoration.

The experimental results indicate that the SA-Pmnet model surpasses the Patchmatch-
Net model in performance. The reconstruction rate of the model in the four sample plots
reaches 94%, 92%, 94%, and 96%, respectively. In the understory complex sample plots 1
and 2, the reconstruction rate shows a more significant improvement compared with the
PatchmatchNet network, with increases of 8% and 10%, respectively. This demonstrates
that the self-attention multi-scale feature extraction module can substantially reduce the
effect of low reconstruction rate due to occlusion. Meanwhile, the extraction accuracy of
DBH is improved by 1.89%, 0.85%, 0.71%, and 1.03%, respectively, compared with the
PatchmatchNet model. The accuracy improvement is significantly higher in sample plots 1
and 4, which have larger slopes. Consequently, the self-attention mechanism lessens the
impact of errors attributable to terrain factors in deep learning 3D reconstruction tasks.
Moreover, it also enhances the model’s ability to capture fine details, thereby fulfilling
the requirement for high-precision extraction of individual tree parameter. Therefore, the
SA-Pmnet model proposed in this paper is not only applicable to the planted and natural
forests in the north and south of China mentioned in this paper, but is also suitable for
forest samples with complex environments. In addition, better reconstruction results can
be achieved compared with the traditional 3D reconstruction algorithms.

4.4. Research Limitations

In this study, the relationship between the size of the sample plots and the number
of images taken was not taken into account when obtaining stand sequence photographs
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to ensure that the sample plot as a whole was densely photographed. This resulted in a
large number of redundant images in the data, which increased the time of the field survey
task and reduced the efficiency of network operation. Additionally, the image quality
improvement in this study was solely achieved using the histogram equalization algorithm,
without incorporating other algorithms that account for diverse environmental conditions,
which remains for further improvement and validation in other tree species and sample
plot environments with different densities.

5. Conclusions

This study proposes a SA-Pmnet model, a deep learning network based on the self-
attention mechanism. By incorporating the self-attention mechanism into the feature
extraction network for multi-scale extraction, this network enhances feature extraction
capabilities and captures more details in deep inference tasks. For solving the problem
of uneven light distribution, the histogram equalization algorithm increases the number
of feature point matches and improves the image quality. The feasibility of the proposed
method was validated in four typical artificial and natural forests in northern and southern
China. The results show that the reconstruction rate of the point cloud model in the four
sample plots reaches 94%, 92%, 94%, and 96%, and the extraction accuracy for DBH reaches
91.83%, 91.51%, 93.55%, and 92.35%, respectively. It demonstrates the effectiveness of the
proposed model in 3D reconstruction and DBH extraction of individual trees in complex
forest conditions, which has significant potential for application in forest precision survey
and visualized management.
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