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Abstract: Pecan is a major crop in the Mesilla Valley, New Mexico. Due to prolonged droughts, grow-
ers face challenges related to water shortages. Therefore, irrigation management is crucial for farmers.
Advancements in satellite-derived evapotranspiration (ET) models and accessibility to data from web-
based platforms like OpenET provide farmers with new tools to improve crop irrigation management.
This study evaluates the evapotranspiration (ET) of a mature pecan orchard using OpenET platform
data generated by six satellite-based models and their ensemble. The ET values obtained from the
platform were compared with the ET values obtained from the eddy covariance (ETec) method from
2017 to 2021. The six models assessed included Google Earth Engine implementation of the Surface
Energy Balance Algorithm for Land (geeSEBAL), Google Earth Engine implemonthsmentation of the
Mapping Evapotranspiration at High Resolution with Internalized Calibration (eeMETRIC) model,
Operational Simplified Surface Energy Balance (SSEBop), Satellite Irrigation Management Support
(SIMS), Priestley–Taylor Jet Propulsion Laboratory (PT-JPL), and Atmosphere–Land Exchange Inverse
and associated flux disaggregation technique (ALEXI/DisALEXI). The average growing season ET of
mature pecan estimated from April to October of 2017 to 2021 by geeSEBAL, eeMETRIC, SSEBop,
SIMS, PT-JPL, ALEXI/DisALEXI, and the ensemble were 1061, 1230, 1232, 1176, 1040, 1016, and
1130 mm, respectively, and 1108 mm by ETec. Overall, the ensemble model-based monthly ET of ma-
ture pecan during the growing season was relatively close to the ETec (R2 of 0.9477) with a 2% mean
relative difference (MRD) and standard error of estimate (SEE) of 15 mm/month for the five years
(N = 60 months). The high agreement of the OpenET ensemble of the six satellite-derived models’
estimates of mature pecan ET with the ETec demonstrates the utility of this promising approach to
enhance the reliability of remote sensing-based ET data for agricultural and water resource management.

Keywords: evapotranspiration; OpenET; eeMETRIC; SSEBop; PT-JPL; SIMS; ALEXI/DisALEXI;
geeSEBAL; ensemble mean

1. Introduction

The Mesilla Valley in the south-central part of New Mexico is well-known for its agri-
culture due to its fertile soil and available irrigation water. Several crops are grown in the
Mesilla Valley, including pecan, alfalfa, cotton, chili, and onion. Pecan orchards are pivotal in
New Mexico’s agricultural landscape, serving as the predominant crop and demanding the
highest volume of irrigation water annually [1]. New Mexico, situated in the southwestern
part of the USA’s semiarid environment, has established itself as the leading pecan producer
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in the nation. Pecan is one of the major contributors to New Mexico’s economy [2–4]. In
2018, New Mexico produced 91.1 million pounds of in-shell pecan nuts, surpassing Geor-
gia and becoming the number-one producing state in the USA [1]. It should be noted that
Hurricane Michael was the reason the Georgia crop was down significantly in 2018 and
2019—it had largely recovered from that by 2020. New Mexico has consistently been the
second highest pecan-producing state in the USA since 2011, except for those two years
(2018 and 2019) when Georgia production dropped below that of NM. A large percentage
of the pecans produced in New Mexico come from the Mesilla Valley (~Doña Ana County).
Approximately 70% of the bearing acres in the state are in Doña Ana County, and more than
70% of the pecans produced in the USA come from Doña Ana County [2]. The US Department
of Agriculture (USDA)’s National Agricultural Statistics Service (NASS) Cropland Data Layer
(CDL) [5] shows that pecan acreage in the Mesilla Valley has expanded from 8778 ha in 2012 to
14,696 ha in 2021, a 67.4% increase. This expansion has increased irrigation demands and total
crop water consumption in this river basin.

The Mesilla Valley’s topography features flat terrain that gradually slopes upwards
to an elevation of 1524 m above the average sea level. The Rio Grande (river) meanders
through the valley and serves as the primary water source for irrigation. The river flows
during the irrigation season, when water is released from Elephant Butte and Caballo
reservoirs on the Rio Grande, about 60 km north of the Mesilla Valley. Groundwater serves
as a secondary source of irrigation water during periods of drought, when water from
the river is not available or not enough to meet crop irrigation needs. The amount of
water needed for pecan orchards in New Mexico can vary significantly due to several
factors, including soil type, land area, orchard age, stage of development, and pruning
techniques [6–8]. According to the research conducted by Kallestad et al. [9], the ideal level
of irrigation for optimal pecan production in the southwestern region of the United States
lies between 1.9 and 2.5 m per year. However, the persistent drought with less than 250 mm
of rainfall per year for several decades has posed a significant challenge for farmers in the
area. As a result, there is an urgent need for advanced irrigation water management tools
to conserve water for irrigation purposes and tackle the water scarcity issue in the region.

Accurate measurement of water usage by crops is crucial, as evapotranspiration (ET) is
generally the largest agricultural water loss from hydrological and ecological systems. Accu-
rate estimation of ET is important in irrigation scheduling, water allocation, crop modeling,
water stress evaluation, water dynamics in wetlands, and measuring energy and moisture
transfer between the earth’s surface and the atmosphere [10–12]. Several methods, including
eddy covariance, lysimeter, and Bowen ratio measurements, have successfully been used to
estimate crop ET at a farm scale and in combination with crop coefficient at a regional level.
However, these techniques can be costly, time-intensive, and require specialized knowledge
and care of instrumentation [13]. Thus, several methods have been developed for estimat-
ing ET using remote sensing (RS) imagery (a.k.a. data). These RS-based methods involve
calculating ET as a residual of surface energy balance equations [14,15]. RS models have been
widely applied in measuring ET [11,14–30]. These models utilize satellite imagery and employ
diverse algorithms to estimate ET with precision and efficiency. The advancement of RS-based
ET methods has paved the way for estimating ET on a spatial and temporal scale, overcoming
the limitations of traditional measurement techniques such as soil moisture and tensiometer
probes, weighing lysimeters, Bowen ratio, and eddy covariance. The usage of this technology
has helped assess the amount of water consumed by crops and understand the dynamics of
the water cycle in different areas.

Water resource management has increasingly become essential, especially with pro-
longed droughts that have created increased competition for fresh water. In recent decades,
advancements in satellite-based ET estimation for estimating the consumptive use of water
have led to increased interest in its application from farmers and water managers. However,
RS-based ET estimation requires unique expertise. The development of the OpenET platform
has created readily available and easy-to-access crop ET via the internet. This paper aims to
assess ET on a temporal scale (monthly, seasonal, and annual) of mature pecan orchards in
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the Mesilla Valley, New Mexico, generated on the OpenET platform by six remote sensing
models and their ensembled mean by comparing the results with measurements using the
eddy covariance (EC) method from 2017 to 2021. Mature pecan orchards are considered here
to be orchards with trees 20 years of age or older. The goal is to identify the best remote
sensing model or ensemble for estimating the ET of mature pecan orchards at the farm scale.
We hope that this assessment will aid farmers and water managers in using the OpenET
platform to improve the management of irrigation water to grow pecan.

1.1. Description of OpenET Platform Models

The OpenET and Google Earth Engine Evapotranspiration Flux (EEFlux) platforms
provide automated methods for calculating ET based on remote sensing data and give
users access to ET for individual fields. OpenET (https://openetdata.org, accessed on
29 January 2022) combines algorithms from multiple remote sensing models using Landsat
satellite data to produce ET at a spatial resolution of 30 m by 30 m using six satellite-based
models and their ensemble. The available models within OpenET include Google Earth
Engine implementation of the Surface Energy Balance Algorithm for Land (geeSEBAL)
by Bastiaanssen et al. [16–18] and Laipelt et al. [24], Google Earth Engine implementa-
tion of the Mapping Evapotranspiration at High Resolution with Internalized Calibration
(eeMETRIC) model by Allen et al. [14,15], Operational Simplified Surface Energy Bal-
ance (SSEBop) by Senay et al. [10,25], Satellite Irrigation Management Support (SIMS) by
Melton et al. [26] and Pereira et al. [27], Priestley–Taylor Jet Propulsion Laboratory
(PT-JPL) by Fisher et al. [28], Atmosphere–Land Exchange Inverse/Disaggregation of the
Atmosphere–Land Exchange Inverse (ALEXI/DisALEXI) by Anderson et al. [22,23], and
their ensemble. The OpenET program employs a range of gridded weather datasets derived
from multiple weather stations covering the entire United States, such as
gridMET [29], to determine grass reference ET (ETo) and precipitation. Each model is
described in the following sections.

1.2. geeSEBAL

The Surface Energy Balance Algorithm for Land (SEBAL) is a single-source remote
sensing model developed by Bastiaanssen et al. [16–18]. The addition of “gee” in the
name, geeSEBAL, represents implementing the SEBAL model on the Google Earth Engine.
Multispectral, near-infrared, and thermal bands from satellite images are used to calculate
SEBAL’s vegetation indices and land surface temperature. The model is based on energy
balance (EB) at the predefined surface boundary, where latent heat flux (λET) is calculated as
a residual of the EB. The net radiation (Rn) in the SEBAL model is calculated as the difference
between the incoming and outgoing short- and long-wave radiations. The soil heat flux (G)
is calculated as a ratio of the soil heat flux and Rn using an empirical equation [16–18] based
on vegetation cover, surface temperature, and albedo. The sensible heat (H) is calculated
using the bulk aerodynamic resistance function (rah) and near-surface temperature gradient
(dT) through an iterative process considering the effects of atmospheric stability. The dT
is calculated using a simple linear function between two near-surface heights , z1 and z2,
which is generally 0.1 and 2 m using wind speed extrapolated to some blending height
above the ground surface of 200 m [14–18,30]. The SEBAL technique to estimate dT as
an indexed function of radiometric surface temperature eliminates the need for accurate
surface or air temperature measurements to calculate the surface’s sensible heat flux [14,15].
SEBAL applies a self-calibration procedure to train the surface energy balance by taking two
“anchor” pixels as reference points [14–16,31]. The two anchor pixels are used to estimate
the corresponding hot and cold near-surface temperatures (dT). At the time of the satellite
overpass, the instantaneous ET is extrapolated to the daily ET using the evaporative fraction
(Λ), computed as a ratio between the instantaneous values of λET and the available energy
(Rn–G) for each pixel. It is assumed that Λ is constant throughout the day. This assumption,
however, can underpredict the daily ET in warm, arid environments where afternoon advection
or increased afternoon wind speeds may increase ET in proportion to Rn-G [14].

https://openetdata.org
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The SEBAL model has been validated with data obtained from the large-scale field experi-
ments EFEDA (Spain), HAPEX-Sahel (Niger), and HEIFE (China) by Bastiaanssen et al. [30].
It has the advantage of estimating ET for large areas with minimal weather station data
requirements [31]. Compared to other remote sensing models, the SEBAL model has been
published widely in the literature [31–37]. In addition to the United States, the SEBAL
model has been used in many countries, such as Egypt, India, Sri Lanka, Pakistan, and
Argentina, to determine crop consumptive water use, crop water stress, and irrigation
performance under various irrigation conditions [31]. Tasumi et al. [32] compared the
SEBAL-estimated ET with the lysimeter-measured ET for crops in southern Idaho. The
findings indicated that the predicted ET for monthly periods averaged ±16% compared
to the lysimeter. Singh et al. [38] used the SEBAL model to estimate ET for drip-irrigated
corn on a large scale in south-central Nebraska, USA. Their study compared the model
crop ET results with field measurements of ET from the Bowen ratio energy balance sys-
tem (BREBS). The study indicated a good correlation between the BREBS-measured and
SEBAL-estimated ET, with an R2 of 0.73 and a root mean square difference (RMSD) of
1.04 mm/day. Bezerra et al. [33] compared the SEBAL-estimated ET with the Bowen ratio
measurements for a cotton field in Ceará State, Brazil. The findings showed a good cor-
relation between measured and estimated ET, with an R2 of 0.9 and a root mean square
error (RMSE) of 0.4 mm/day. However, Mkhwanazi and Chávez [39] showed that the
SEBAL model underestimated the ET of alfalfa by 5.7% to 45.5% with an average of 29%
(n = 9 days of Landsat 7 ETM+ images) when compared to lysimeter measurements at the
Colorado State University Arkansas Valley Research Center near Rocky Ford in eastern
Colorado. They attributed the underestimation of ET to the SEBAL model’s deficiency in
estimating H under advective conditions of high wind speeds, warm air, and drought.

1.3. eeMETRIC

The METRIC model [14,15] is a variant of the SEBAL model. It employs the same
principles and techniques as SEBAL [14,15]. Adding “ee” in front of METRIC represents the
implementation of the METRIC model on the Google Earth Engine. METRIC and SEBAL
are both surface energy balance (EB) methods that use remotely sensed surface reflectance,
near-infrared (NIR), and thermal bands (IR) to estimate ET as a residual of the energy balance
equation [14,15,40]. The algorithms of these models, METRIC and SEBAL, estimate ET fluxes
based on agronomic parameters and vegetation indices such as albedo, surface temperature,
emissivity, and surface roughness. METRIC differs from SEBAL in that each satellite image
is auto-calibrated using an hourly alfalfa reference ET (ETr). The ETr in METRIC is used to
extrapolate instantaneous ET derived from the satellite image to daily (24 h) ET or longer,
rather than using the Λ as in the SEBAL model. The ratio of METRIC-calculated ET (or
ETinst) at the time of satellite overpass, considered the actual ET, to ETr calculated using the
Penman–Monteith equation is known as the alfalfa evapotranspiration fraction (ETrF). The
fraction is also assumed to be constant throughout the day. The advantage of using ETrF
in the METRIC rather than using Λ as in the SEBAL model is that it can capture changing
weather conditions, such as cloud cover, increased wind speed, and fluctuations in humidity,
during the day in addition to advective conditions of warm, arid environments [14]. These
typical conditions of warm, arid environments, such as in Southern New Mexico, are captured
in the ETrF of the METRIC model. The model autocalibration method reduces the impact
of bias in estimating aerodynamic stability correction or surface roughness and using dT. It
also eliminates the need for atmospheric correction of surface temperature (Ts) and albedo
measurements using radiative transfer models [14,15].

METRIC has been compared with precision-weighing lysimeter datasets collected at
Kimberly, Idaho, and drainage lysimeter data near Montpellier, Idaho, north of Bear Lake [15].
The study reported the standard deviation of differences between METRIC and lysimeters over
time for each satellite image, averaging 20% for the Kimberly and ±16% for the Montpellier
lysimeters. METRIC has been widely used to estimate the ET of crops and riparian vegetation,
such as in New Mexico [41], Colorado [39], Saudi Arabia [42], and Iran [43].
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1.4. SSEBop

The SSEBop model [10,25] is a modified version of the Simplified Surface Energy
Balance (SSEB) model [44] that uses a parametrization approach for estimating global and
regional actual ET. The SSEBop uses predefined boundary conditions for the hot and cold
reference pixels to estimate ET as a function of the land surface temperature (Ts) from
remotely sensed data and ET referenced to grass (ETo) from global weather datasets using
a standardized Penman–Monteith equation. The model incorporates the effects of elevation
and latitude on the Ts and air temperature (Ta). Unlike the SSEB, SEBAL, and METRIC
models, dT is predefined in the SSEBop model. The only data needed are Ts from satellite
data, Ta from gridded weather data such as those provided by the Parameter-Elevation
Regression in the Independent Slopes Model (PRISM), and ETo from the National Oceanic
and Atmospheric Administration (NOAA)’s Global Data Assimilation System (GDAS). The
ETo is scaled in the model using a coefficient (k) to achieve the maximum ET experienced
by a crop. Senay et al. [10] recommend a k value of 1.2 to estimate ET for tall, full-cover
crops such as alfalfa, corn, and wheat. However, the k value of 1.2 is not recommended
if ETr (ET referenced to alfalfa) is used instead of ETo. The actual ET is then determined
by multiplying the scaled ETo (k ETo) with the ET fraction (ETf). The details of the model
algorithm, including how to choose the k coefficient and ETf for estimating actual ET, are
described by Senay et al. [10].

The SSEBop model ET has been compared to measured ET for different land cover
types. Senay et al. [10] compared the SSEBop monthly ET for 2005 with the eddy covariance
(EC) measured ET data from 45 geographically diverse AmeriFlux stations representing
different land cover types across the contiguous United States (CONUS). The comparison
using the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data resulted
in an overall RMSE of 27 mm and a coefficient of determination of R2 of 0.64 for 528 data
samples. The land cover types included cropland, cropland/natural vegetation mosaic,
forest, grassland, shrubland, woody savannas, and urban. Velpuri et al. [45] compared
SSEBop monthly ET (MODIS16 satellite data) with EC-measured ET data from 60 FLUXNET
stations (AmeriFlux stations across the United States) from 2001 to 2007. The comparison
of ET aggregated by year for the seven years ranged from an R2 of 0.21 to 0.70 with an
overall R2 of 0.64; by landcover, the R2 ranged from 0.57 to 0.81. Chen et al. [46] compared
monthly average ET by the SSEBop model using MODIS satellite data with eddy covariance-
measured ET of five land cover types measured by 42 AmeriFlux towers spread across
CONUS from 2001 to 2007. The land cover types included cropland, grassland, forest,
shrubland, and woody savanna. Their comparison of all the land cover types showed that
SSEBop monthly average ET explained 86% (R2 of 0.86) of the eddy covariance-measured
ET and 92% (R2 of 0.92) from the same period for croplands.

Dias Lopes et al. [47] compared SSEBop-based daily ET estimates derived from Landsat
8 and 7 data with Bowen ratio-based measured ET for irrigated wheat in the Brazilian
Savannah region. The results showed SSEBop overestimated ETa by 13.6% on average,
with an R2 of 0.82 and an RMSE of 0.89 mm/day. Bawa et al. [48] validated the SSEBop
ET model using the Landsat 5, 7, and 8 data with the water balance method for corn and
soybean in South Dakota (SD), USA. Their results showed an R2 of 0.91 and an RMSE of
11.8%. Mukherjee et al. [49] used the SSEBop model and Landsat 8 satellite data to estimate
ET for maize and winter wheat from 2017 to 2018. The estimated ET was validated using
the measured ET using the Bowen ratio energy balance (BREB) method. The results showed
that the SSEBop model overestimated the ET value daily by 9.7% and agreed with BREB-ET
with an R2 of 0.76 and an RMSE of 0.48 mm/day.

1.5. SIMS

The satellite irrigation management system (SIMS) was developed by Melton et al. [26]
to support satellite mapping of crop coefficients and evapotranspiration (ET) from irrigated
lands. Pereira et al. [27] further updated the SIMS model for irrigation schedules and water
resource management. The SIMS was developed based on a collaboration between NASA,
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California State University Monterey Bay (CSUMB), and the California Department of
Water Resources (CDWR) and utilizes satellite data to improve irrigation scheduling and
management of water resources. SIMS uses satellite data with grass reference ET (ETo)
data from the California Department of Water Resources California Irrigation Management
Information System (CIMIS), the Arizona Meteorological Network (AZMET), and the
Gridded Surface Meteorological (gridMET) dataset. SIMS utilizes Landsat 5 TM, Landsat
7 ETM+, and MODIS satellite imagery to estimate the ET of crops [26]. The high spatial
resolution of the Landsat imagery is used to produce crop data on individual fields. In
contrast, MODIS’ lower resolution is used to fill in data gaps for daily crop ET [26]. SIMS’s
crop data are generated at a spatial resolution of 30 m x 30 m (0.22 acres), which include
the normalized difference vegetation index (NDVI), crop fractional cover (fc), and basal
crop coefficients (Kcb) [26,27].

The calculation of crop fractional cover (fc) is based on the satellite-derived normalized
difference vegetation index (NDVI), which utilizes an empirical equation developed by
Trout et al. [50]. This equation was derived from the measured fc values of 18 crops across
49 fields. The Kcb is determined using the density coefficient (Kd) and fc values under
standard climate conditions described in the FAO-56 guidelines [51]. The Kcb takes into
account both crop transpiration and soil evaporation. The Kcb is calculated following the
methodology outlined by Allen and Pereira [52]. Then, SIMS uses the standard method
for estimating crop water use by multiplying weather-based estimates of ETo by Kcb for a
particular crop. The SIMS algorithm is available for desktop users as Python code or as
open source in Google Earth Engine (http://earthengine.google.com) [53]. The SIMS user
manual explains complete information about the SIMS model and its current algorithms
for irrigation schedules [54].

Er-Raki et al. [55] compared three approaches to calculate Kcb-based ET for winter
wheat in central Morocco. The first is called “No-Calibration”, which employs the Kcb and
fc values calculated according to the FAO-56 guidelines [51]. The second approach, “Local-
Calibration”, uses a locally derived Kcb based on measured fc values. The third approach,
termed “NDVI-Calibration”, uses remotely sensed vegetation indices by SIMS. Comparing
the three approaches to ETec, it was found that the third approach, NDVI-Calibration, showed
promising potential for estimating ET at a regional scale with RMSE ranging from 0.51 to
1.01 mm/day. Pereira et al. [27] estimated ET using the SIMS model for a variety of crops,
including trees, vines, vegetables (such as peas, onions, and tomatoes), and field crops (such
as barley, wheat, maize, sunflower, canola, cotton, and soybeans) at different sites in Portugal.
They compared the SIMS model calculated ET to the actual ET measured by EC for peach and
grape wine and the ET of the rest of the crops using the soil water balance method. Their study
found an R2 of 0.81 for field crops and 0.91 for woody crops. Wang et al. [56] verified the ET
for drip-irrigated sugar beet fields in the California Central Valley using the SIMS model. They
compared ET based on SIMS to validate the model results with the measurements obtained
from weighing lysimeters and EC. The results showed that the SIMS-based ET was closely
aligned with the ET values from the lysimeters and the EC, with an R2 of 0.91 and 0.94 and an
RMSE of 0.73 mm/day and 0.65 mm/day, respectively.

1.6. PT-JPL

The Priestley–Taylor Jet Propulsion Laboratory (PT-JPL) ET model follows the formu-
lation detailed by Fisher et al. [28]. The PT-JPL model has been adapted for use in OpenET
with modifications to use gridded datasets to optimize its compatibility with other models.
These updates extend its applicability to open-water evaporation estimates and consider
the advection over crop and wetland regions in semiarid and arid environments.

The OpenET Priestley–Taylor coefficient (α) is calculated following the complementary
relationship (CR) of evaporation [57–59]. The CR is a simple approach that hypothesizes a
complementary relationship between the actual ET and the potential ET (ETp), subsequently
connecting these fluxes to the wet environment, referred to as equilibrium evapotranspiration

http://earthengine.google.com
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(ETw). In the CR method, the ETw is part of the actual ET, estimated using the Priestley–Taylor
equation [60] and the Penman equation [61] used to calculate the ETp.

The PT-JPL model within OpenET utilizes adjusted alpha values ranging from
1 to 2.5, which fit within the scope of α from previous findings in arid and humid settings.
For instance, based on lysimeter data, Priestley and Taylor [60] found an average value of
α of 1.26 for land and water surfaces. Viswanadham et al. [62] reported that the α value is a
function of atmospheric stability (based on aerodynamic resistance and H calculations), and
it varied from 0.67 to 1.16 during unstable conditions and from 1.28 to 3.12 during stable
conditions in tropical forests at daylight hours. Engstrom et al. [63] assessed α for wet
sedge, tundra, and cotton grass in North Alaska. They determined that average α values
ranged from 1.24 to 1.48. Tabari and Talaee [64] reported average α values of 2.14 and
1.82 for arid and cold climates, respectively. Yang et al. [65] calculated the annual mean α

of 1.32 and 1.05 from the daily average ET and 30 min average ET data, respectively. Singh
and Irmak [66] calibrated α to 1.14 for maize and soybean crops irrigated in southcentral
Nebraska, USA. Nikolaou et al. [67] estimated α values of 0.86 and 0.72 for greenhouses
with forced air ventilation and wetted evaporative-pad systems, respectively. The coeffi-
cient can, however, vary based on factors such as soil moisture, vapor pressure deficits, and
vegetation cover [57,63,64,66,68,69].

The PT-JPL ET model has been validated using ET field measurements. In a study by
Fisher et al. [28], the PT-JPL model was compared to EC measurements from 16 FLUXNET
sites across various climate conditions, including grasslands, crops, deciduous broadleaf,
evergreen broadleaf, and evergreen needleleaf forests. They determined an R2 of 0.9 and
an RMSE of 16 mm/month for all 16 FLUXNET sites from 2000 to 2003. For an annual
ET comparison, an R2 of 0.94 with an RMSE of 12 mm/year was achieved. Huntington
et al. [59] validated the PT-JPL model for arid shrubland in Nevada using the CR method.
Two approaches were used to apply the PT-JPL model: the Brutsaert and Stricker advection-
aridity (AA) approach [70] and a modified AA approach [58]. The modified AA approach
extends the concept of AA by integrating the wet environment’s surface temperature (Te) to
improve wet ET estimation. Then, the EC-derived ET is compared to the CR-predicted ET.
The results showed R2 values of 0.77 and 0.71 and RMSE values of 11 and 13 mm/month
for the AA and modified AA models, respectively.

1.7. ALEXI/DisALEXI Model

The Atmosphere–Land Exchange Inverse (ALEXI) surface energy balance model and
its associated flux disaggregation technique (DisALEXI) are two-source energy balance
models (TSEB). The algorithms of the two ET models are compiled together as one model
known as ALEXI/DisALEXI to utilize low- and high-resolution remote sensing data [71].
The TSEB model was initially developed by Norman et al. [21]. The original version of the
TSEB model applied a modified Priestley–Taylor (PT) approximation [60] with a coefficient
of α = 1.26 for vegetation cover to estimate the canopy latent heat flux (λETc), assuming
the vegetation is unstressed and transpiring at the potential rate. The original TSEB was
modified later by Anderson et al. [72] and Kustas and Norman [73,74] for operational
monitoring of surface fluxes from space. Kustas and Norman [73] modified the TSEB by
adjusting the magnitude of the Priestley–Taylor coefficient to range from 1.3 to 2, then
compared the estimated energy fluxes with the Bowen ratio and EC measurements for
cotton crops in central Arizona. The ALEXI/DisALEXI model has gone through several
improvements over the years. The most recent improved model algorithms can be found
in Anderson et al. [23].

The ALEXI/DisALEXI ET model ET estimates have been validated with ground-level
EC and lysimeter measurements. Anderson et al. [75] compared the model ET fluxes
with EC flux measurements for agriculture/pasture in Oklahoma from 2000 to 2001. They
used the convolved sharpening method (CS) to evaluate the statistical measures of model
performance. The results showed an R2 of 0.96 and a root mean square difference (RMSD) of
1.42 Mj/m2 for daily prediction of the flux components (RN, H, LE, and G). Anderson et al. [22]
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compared the ALEXI/DisALEXI model with measured EC of energy fluxes for experiments
at three sites in Oklahoma and Iowa. These experiments were conducted in different
climatic zones across the state. The researchers found that the instantaneous RMSD for
all flux components combined had a range of 34–62 W/m2 for ALEXI, and it improved to
28–35 W/m2 for DisALEXI. Anderson et al. [76] evaluated the ALEXI/DiaALEXI model
using measured EC ET data in El Reno (ER), Oklahoma, over rangeland and pasture during
the Southern Great Plains 1997 (SGP97) field experiment. They obtained R2 values of 0.95
and 0.97 by comparing the model with half-hourly daytime fluxes measured at individual
EC towers in the ER. The RMSDs were 56 and 40 W/m2, respectively. Anderson et al. [77]
compared the daily ALEXI/DisALEXI model ET at the Landsat scale with lysimeter and
EC ET measurements under highly advective conditions, collected during the Bushland
Evapotranspiration and Agricultural Remote Sensing Experiment of 2008 (BEAREX08) in
the Texas Panhandle. They determined that R2 for combined fluxes ranged from 0.97 to
0.98, and the RMSDs ranged from 1.0 to 1.4 W/m2 at daily timesteps for four flux sites.

1.8. Ensemble ET

The ensemble ET data derived from the OpenET platform is a combination of the six
ET models, namely, geeSEBAL, eeMETRIC, SSEBop, SIMS, PT-JPL, and ALEXI/DisALEXI,
as previously described. The OpenET ensemble mean ET value is determined at monthly
time steps by calculating the ensemble’s mean after eliminating any outliers through the
median absolute deviation (MAD) technique. The MAD technique was initially developed
by Carl Friedrich Gauss in 1816, and it has been updated recently by Hampel [78] and Leys
et al. [79]. MAD is a statistical measure to determine how a dataset is spread out. The MAD
approach computes the absolute deviation median from the given distribution’s median
value. The MAD approach is implemented per pixel before calculating the average ET from
OpenET models for the remaining ensemble ET every month [80].

Several studies have demonstrated that ensemble modeling, which combines estimates
from multiple models, is reliable and accurate in various applications [81–83]. The OpenET
team has found that individual model estimates often produce less accurate ET results,
identified as outliers, than the ensemble mean. Averaging ET values from multiple models
simplifies the application of remotely sensed ET data in water management scenarios,
overcoming the limitations of relying on a single model [80,84].

Based on the OpenET team’s experience, the ensemble average value offers the most
dependable and consistent estimation of ET based on the accuracy assessment, particularly
in well-irrigated crop areas and diverse natural land covers like California’s Central Valley
and Delta. Melton et al. [84] assessed six different OpenET models—ALEXI/DisALEXI,
eeMETRIC, geeSEBAL, PT-JPL, SIMS, and SSEBop—alongside the ensemble mean ET.
Ground measurements of ET obtained from over 139 flux tower sites across the United
States were used for this comparison. The results showed that all models had a good
agreement with the ground measurements of ET, with R2 values ranging from 0.89 to 0.94
and RMSE ranging from 21 to 27 mm/month for individual models and R2 of 0.96 with
RMSE of 17 mm/month for the ensemble mean. The accuracy assessment for additional
cropland sites showed R2 values ranging from 0.69 to 0.78 with RMSE ranging from 1.12 to
1.39 mm/day for individual models, with an R2 value of 0.84 and RMSE of 0.96 mm/day
for the ensemble mean. It was concluded that the intercomparison and accuracy assessment
showed a high level of agreement between the ET models and flux tower data.

Huntington et al. [80] compared OpenET estimates with measured ET from four EC
flux stations within the Upper Colorado River Basin (UCRB) for the growing season (April–
October) of 2018–2020. The UCRB EC stations were distributed across Wyoming (WY),
Colorado (CO), Utah (UT), and New Mexico (NM). The results showed that the ensemble
mean outperformed individual models compared to measured ET data from the four UCRB
stations. For croplands, the OpenET ensemble mean showed R2 values of 0.95, 0.91, 0.92,
and 0.89 with corresponding RMSE values of 0.47, 1.82, 0.75, and 1.53 inch/month for WY,
CO, UT, and NM, respectively.
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2. Materials and Methods
2.1. Study Site Description and Setting

The study area is located on a well-managed commercial pecan orchard owned by
Stahmann Farms Incorporated in the Mesilla Valley adjacent to the Rio Grande, about
13 km south of Las Cruces, NM (Figure 1). Stahmann Farms is one of the largest pecan
farms in New Mexico. It is about 1620 ha and has approximately 180,000 trees [85]. The
geographic coordinate boundaries are 32◦10′36.08′′N and 106◦44′22.39′′W at 1144 m AMSL.
The Rio Grande runs southward along the eastern border of the farm (Figure 1), with a
naturally occurring mesa and Santo Tomas Mountain (peak elevation of about 1274 m
AMSL) on the west side. Stahmann Farms Incorporated is divided into the Santo Tomas
Farm and the Snow Farm. The study location is in the Santo Tomas Farm, which is about
4.8 km long and has a maximum width of about 2.4 km. The pecan trees are mainly of the
“Western” (synonym “Western Schley”) cultivar [85] and mature (60 years and older). The
tree spacing is 9.1 m by 9.1 m, with an average height of 16 m and trunk diameters ranging
from 38 to 50 cm. The trees are mechanically pruned (hedged and topped) in alternate rows
after the harvest, keeping them at an average height of about 16 m. This practice became
popular among Mesilla Valley pecan farmers in the early 2000s to allow better tree canopy
sunlight distribution, reduce the intensity of fluctuation in nut yields, and maximize nut
quality. Eddy covariance instrumentation for measuring ET was mounted on a tower
located within the southeastern fields of the farm (red circle, Figure 1). Pertinent weather
data were collected from the Leyendecker III weather station (red triangle, Figure 1), located
approximately 1 km away from the farm at geographical coordinates of 32◦12′3.26′′N and
106◦44′34.00′′W, with an elevation of 1176 m AMSL.
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The soils of the study area, as described by Bulloch and Neher [86], are alluvial flood
plains, often with a top 15 cm of clay loam and sandy soils below it extending to more
than 3 m deep. The predominant soil series in the study area comprises Anapra clay
loam, Agua silt loam, Glendale clay loam, and Anthony–Vinton loams. The farmland is
laser-leveled and split into plots with borders for flood irrigation, an irrigation method
known as “dead-level irrigation”. Farmers in the Mesilla Valley commonly use this method
to irrigate mature pecan trees that have developed an expansive root system. The technique
allows the grower to refill the root zone of mature trees to obtain high nut quality and yield,
in addition to a proper amount of fertilizer applications. The primary source of irrigation
water is the Rio Grande when available, and it is augmented with groundwater during
drought years when surface water is unavailable. Surface water from the Rio Grande is
distributed to farmers in the Mesilla Valley by a network of irrigation canals managed by
the Elephant Butte Irrigation District (EBID). According to LaRock and Ellington [87], the
orchard in this study was irrigated in the past with 12,200 to 18,300 m3 per ha of water
a year (1220 to 1830 mm per year) with a typical two-week irrigation frequency during
the summer months. Nut quality decreases when the trees are water-stressed during the
nut-filling stage [88].

2.2. Climate

The climate of the Mesilla Valley region is semiarid. It is characterized by low and
variable precipitation, large diurnal and moderate temperature ranges, low average relative
humidity, and plenty of sunshine [89]. Malm’s [89] analysis of 109 years of historical
data from 1892 to 2000 for Las Cruces, considered here as representing the climate of the
Mesilla Valley study area, is summarized. The amount of precipitation in the region varies
considerably with the changing seasons. The annual rainfall ranges from 203 to 229 mm,
with a mean of 222 mm. Most rainfall (>50%) is received during the summer monsoon
months of July and September. The dry season extends from November to May. The mean
monthly temperatures vary from 5.5 ◦C in January to 26.6 ◦C in July, with a mean annual
temperature of 15.8 ◦C. The mean monthly relative humidity ranges from 37% to 62% with
an average of 52% in the early mornings and 16% to 34% with an average of 26% in the late
afternoons. The solar radiation for the region ranges between 12 and 31 MJ/m2, with an
average of 22 MJ/m2.

During the five years of this study, the mean monthly temperatures varied from 6.4 to
27.2 ◦C, with an average of 17.05 ◦C. June, July, and August are the warmest months. The
highest temperatures are often observed in June and July and occasionally in August. In
June, July, and August 2020, the air temperature exceeded 38 ◦C for 33 days. The highest
temperature of 42.4 ◦C was measured on 23 June 2017, and the lowest temperature of
−10.1 ◦C was measured on 2 January 2021. The mean monthly relative humidity varied
from 38% to 56%, averaging 48.6%. The mean daily relative humidity ranged from 16%
to 88%. Low humidity values were observed in the late afternoons, and high humidity
in the early mornings. The annual precipitation ranged from 171 to 283 mm, averaging
226 mm. The lowest precipitation of 171 mm occurred in 2020, while the highest precipita-
tion of 283 mm occurred in 2017. The monthly average wind speeds ranged from 1.21 to
2.15 m/s and averaged 1.56 m/s. Higher winds occur in March and April, with a maximum
daily mean of 6 m/s. The mean monthly solar radiation ranged from 11 to 29 MJ/m2, with
an annual average of 20 MJ/m2. Evapotranspiration values referenced to grass using the
ASCE-standardized equation (Penman–Monteith equation) were 1586, 1547, 1500, 1518,
and 1474 mm for 2017 to 2021, respectively.

2.3. Measurement of Evapotranspiration Using Eddy Covariance

Evapotranspiration of the mature pecan orchard was measured in 2004 and 2005 using the
one-propellor eddy covariance (OPEC) instrumentation installed on a 23 m tall triangulated
tower, 7 m above the canopy. The details of instrumentation and measurements are described
in [8,85]. Measurements included flux densities of net radiation (Rn), sensible heat (H), and
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soil heat (G). From the measurements, latent heat flux (LE) was determined as a residual in the
energy budget (LE = Rn-G-H) and converted to an equivalent depth of water (ET) by dividing
LE by the latent heat of vaporization and density of water. The ET measurements for 2004
and 2005 were obtained every 30 min and summed to daily (24 h) values.

2.4. Evapotranspiration (ETec)

The daily ET values of monotypic mature pecan for 2017 to 2021, referred to here as
ETec, were determined from the developed daily Kc derived from eddy covariance mea-
surements and ETo from climate data in 2004 and 2005 by Reveles [85]. The Kc is a ratio of
the crop ET when the crop is grown in large fields under optimum growing conditions [90]
to the reference crop (short or tall) evapotranspiration (ASCE-EWRI) [91]. The ETo in 2004
and 2005 were determined by the American Society of Civil Engineers Environmental
and Water Resources Institute (ASCE-EWRI) method [91], similar to the FAO-56 Penman–
Monteith equation using weather data collected at the Chamberino weather station located
(N32◦3′43.8′′ and W106◦40′43.8′′, elevation of 1145 m AMSL) in the southern part of the
Mesilla Valley [85]. Reveles [85] fitted the daily Kc values as a function of the day of the
year (DOY) with fourth- and third-degree polynomial functions for 2004 (R = 0.8692, n = 318
days) and 2005 (R = 0.9113, n = 224 days), respectively, that could be used to estimate the
ET of mature pecan using ETo when actual measurements were not available. Using these
developed functions, Kc for each DOY from 2004 and 2005 was averaged to determine the
daily Kc of mature pecan orchards, given the relatively minor differences in the pecan’s crop
coefficient over the two years. The daily ETec values of the mature pecan orchards were
then calculated for 2017 to 2021 using the average daily Kc and reference ETo calculated
using the ASCE-EWRI method [91] from climate data measured at the Leyendecker III
weather station (Figure 1). The daily ETec values were then summed to determine the
monthly values.

2.5. Comparative Analysis Procedure

The daily ETec values for 2017 to 2021 were aggregated into monthly, seasonal, and
annual data. These were compared to satellite-based ET, estimated by the six models and their
ensemble on the OpenET platform. Seven polygons, numbered 1 to 7, surrounding the eddy
covariance tower were delineated based on the existing subsection boundaries of the farm
(red polygons in Figure 2). Respective monthly ET values generated by OpenET models for
the fields within those polygons were then extracted and averaged. An average of the seven
polygons’ monthly ET values for each model was compared with ETec. Various statistical
measures were employed for evaluation, including the coefficient of determination (R2), root
mean square error (RMSE), mean bias error (MBE), standard error of the predicted y-value for
each x in a regression (SEE), mean relative difference (MRD), and probability value (p-value)
for assessing statistical significance, using the following formula:

MBE =
∑n

i=1(yi−xi)

n
(1)

RMSE =

√
∑n

i=1(yi−xi)
2

n
(2)

MRD =
|yi − xi|

xi
× 100 (3)

where n is the number of observations, x sub i is the measured value using eddy covariance,
and yi is the predicted value using models.
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3. Results
3.1. Annual and Growing Season ET of Pecan

The monthly ET for mature pecan orchards (Figure 2) in the Mesilla Valley obtained
from the OpenET website (downloaded on 28 and 29 January 2022) by the six models and
their ensemble was compared to the ET estimated using ETec for mature pecan orchards.
OpenET remote sensing and ground-measured eddy covariance estimates for the orchard
varied monthly, annually, and among the models. All the models captured the typical
annual cycle of pecan ET, with low ET values during the winter months of January to
March and November and December when the plants are dormant, increasing during the
growing season in spring and reaching the peak in the summer months, and then declining
after summer (Figure 3). The monthly ET values from 2017 to 2021 are listed in Table A1
(Appendix A), and the time series is shown in Figure 3. The mean annual ET for all the
models during the five years varied from 1240 mm (Std. Dev. ± 67.1 mm) estimated by
geeSEBAL to 1557 mm (Std. Dev. ± 73.8 mm) estimated by the SSEBop model. The mean
annual ET estimated by eddy covariance was 1289 mm. All models’ growing season ET
values fell within the range of 1016–1232 mm, as previously reported by Samani et al. [8],
Sammis et al. [6], and Miyamoto [7].
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Figure 3. Comparison of monthly ET from OpenET models and their ensemble mean to eddy
covariance ETec for Mesilla Valley’s pecan orchards from 2017 to 2021.

During the growing season, i.e., April to October, the mean annual ET varied from
1016 mm (Std. Dev. ± 37.11 mm) using the ALEXI/DisALEXI model to 1232 mm using
SSEBop (Std. Dev. of ±38.09 mm). The mean annual ET estimated by eddy covariance was
1108 mm (Std. dev. ± 42.35 mm). A comparison of each model’s ET with ETec using linear
regression is explained in the following sections.

3.2. geeSEBAL

The geeSEBAL ET estimates ranged from 1168 to 1345 mm per year with a 5-year
average of 1240 mm and from 1028 to 1115 mm with a 5-year average of 1061 mm during
the growing season. Comparing the 5-year average ETec of 1289 mm and the growing
season ET of 1108 mm, the absolute MRD was 4.4% and 4.2%, respectively. A comparison of
the geeSEBAL model and ETec on an annual basis for 2017 to 2021 (Table A2 in Appendix A)
using a linear regression showed a strong positive relationship, with an R2 ranging from
0.9297 to 0.9726 (N = 12 months). The geeSEBAL estimates had the smallest RMSE and SEE
values, ranging 15–19 and 12–19 mm/mo, respectively, compared to all other OpenET model
comparisons with ETec. The geeSEBAL slightly underestimated ET when compared to ETec
for 2017 (MBE = −7.2 mm/mo), 2018 (MBE = −8.2 mm/mo), 2019 (MBE = −9.1 mm/mo),
and 2021 (MBE = −0.26 mm/mo) and overestimated ET in 2020 (3.6 mm/mo).

During the five years (N = 60 months; 12 months × 5 years), the geeSEBAL-estimated
ET correlated with the ETec with an R2 of 0.9449, a small RMSE of 17 mm/mo, and a SEE
of 16 mm/mo. During the growing season, when the plants are actively growing, from
2017 to 2021 (N = 35; 7 months × 5 years; p < 0.05), the geeSEBAL model had the highest
agreement with the ETec among all OpenET models with R2, RMSE, and SEE of 0.8504,
17 mm/mo, and 15 mm/mo, respectively (p-value < 0.5). See Table A3 in Appendix A.

3.3. eeMETRIC

The eeMETRIC ET estimates ranged from 1490 to 1671 mm per year with a 5-year
average of 1552 mm and from 1198 to 1295 mm with a 5-year average of 1231 mm during
the growing season. Comparing the 5-year average ETec of 1289 mm and the growing
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season ET of 1108 mm, the absolute MRD was 23.7% and 11.1%, respectively (Figure 4). A
comparison of the eeMETRIC model and ETec on an annual basis for 2017 to 2021 (Table A2)
using a linear regression showed a positive relationship, with an R2 ranging from 0.8688
to 0.9379 (N = 12 months). When compared with ETec, the eeMETRIC-estimated RMSE
and SEE had a range of 25–40 and 18–26 mm/mo. The eeMETRIC overestimated ET
when compared to ETec for 2017 (MBE = 19.7 mm/mo), 2018 (MBE = 16.3 mm/mo), 2019
(MBE = 18.1 mm/mo), 2020 (30.7 mm/mo), and 2021 (MBE = 24.6 mm/mo).
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During the five years (N = 60 months; 12 months × 5 years), the eeMETRIC-estimated
ET correlated with the ETec with an R2 of 0.8906, an RMSE of 32 mm/mo, and a SEE of
21 mm/mo. During the growing season, when the plants are actively growing, from 2017
to 2021 (N = 35; 7 months × 5 years; p < 0.05), eeMETRIC model comparison with the ETec
resulted in an R2 of 0.6249, an RMSE of 32 mm/mo, and a SEE of 25 mm/mo (p-value < 0.5).
See Table A3.

The estimated ET values of eeMETRIC were consistently higher during the non-
growing season, resulting in a higher annual ET than those of ETec. These high estimates
are also shown in Figure 3, with a slight shift in the ET patterns. This occurred during the
early half of the growing season for the five years. De Oliveira et al. [92] stated that the
high moisture content from irrigation events accounts for the uncertainties associated with
estimating ET during the non-growing season by the METRIC model. A high residual water
supply from irrigation influences the advection effect, resulting in a low estimate of sensible
heat and an overestimation of ET. A previous study by Singh and Irmak [66] compared
the METRIC-based estimate of ET with the ETec in central Nebraska, USA. Their results
demonstrated the uncertainty of the METRIC model in estimating sensible heat for high
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residual soil moisture content, with a high RMSE of 122 W m−2 for sensible heat. Higher
ET estimates compared to ETec by METRIC were also observed by Wagle et al. [93] for
sorghum crops during the 2012 and 2013 growing seasons. They reported that the METRIC
model overestimated the growing season ET for sorghum by approximately 25–30%.

3.4. SSEBop

The SSEBop ET estimates ranged from 1506 to 1685 mm per year with a 5-year average
of 1557 mm and from 1175 to 1315 mm with a 5-year average of 1232 mm during the growing
season. Comparing the 5-year average ETec of 1289 mm and the growing season ET of
1108 mm, the absolute MRD was 24.2% and 11.2%, respectively (Figure 4). A comparison
of the SSEBop ET model and ETec on an annual basis for 2017 to 2021 (Table A2) using a
linear regression showed a positive relationship, with an R2 ranging from 0.8991 to 0.9546
(N = 12 months). More than 89.9% of variations in the estimated ET by the SSEBop model
can be explained by the ETec annually for five years. During this time frame, SSEBop’s
RMSE varied between 26 and 38 mm/mo, and SEE ranged from 14 to 22 mm/mo. For
each year from 2017 to 2021, similar to eeMETRIC, the SSEBop also overestimated ET when
compared to ETec (MBE = 17.9, 18.3, 20.8, 31.9, and 22.8 mm/mo; Table A2).

During the five years (N = 60 months; 12 months × 5 years), the SSEBop-estimated
ET correlated with the ETec with an R2 of 0.9122, an RMSE of 30 mm/mo, and a SEE of
19 mm/mo (Table A3). During the growing season, when the plants are actively growing,
from 2017 to 2021 (N = 35; 7 months × 5 years), the SSEBop model comparison with the
ETec resulted in R2, RMSE, and SEE of 0.6974, 29 mm/mo, and 21 mm/mo, respectively
(p-value < 0.5). Like eeMETRIC, the SSEBop also exhibited a slight shift in the annual
ET pattern (Figure 3), estimating higher ET values during the earlier part of the growing
season. Despite the similarity in ET estimates for pecan on a monthly, annual, and av-
erage basis for five years, the SSEBop model outperformed the eeMETRIC model based
on the statistical measures employed. During the growing seasons from 2017 to 2021
(N = 35 months), the SSEBop model demonstrated better agreement with the ETec. See
Tables A2 and A3. However, both model estimates of ET were statistically significant
(p < 0.05) compared to the ETec. Other studies, such as those by Chen et al. [46], have shown
that SSEBop model ET estimates of different land cover types (cropland, grassland, forest,
shrubland, and woody savanna) using MODIS satellite data agreed well (R2 = 0.86) with eddy
covariance-measured ET. For the pecan orchard in this study, 69.7% (R2 = 0.6974, N = 35) of the
variance in ET estimates by SSEBop can be explained by the ETec during the growing season.

3.5. SIMS

The SIMS ET estimates ranged from 1320 to 1457 mm per year with a 5-year average of
1372 mm and from 1127 to 1226 mm with a 5-year average of 1176 mm during the growing
season (Table A1). Comparing the 5-year average ETec of 1289 mm and the growing season
ET of 1108 mm, the absolute MRD was 7.5% and 6.2%, respectively. SIMS’s ET estimates were
in good agreement with the ETec from 2017 to 2021 (Tables A1 and A2). Over 92% of the
proportion of variance in ET estimated by SIMS can be explained by the ETec. A comparison
of SIM’s ET estimates with ETec using linear regression analysis during the five years on an
annual and growing season basis is presented in Table A3. Similar to geeSEBAL, on average,
for the five years, the SIMS model ET estimates also agreed well with the ETec (R2 = 0.9331,
RMSE of 20 mm/mo, and SEE of 19 mm/mo; N = 60 months). During the growing season
(N = 35 months), the RMSE of 23 mm/mo and SEE of 22 mm/mo were slightly higher than
the geeSEBAL. The SIMS model ET estimates and ETec were statistically significant (p < 0.05).
However, minor variances were observed between SIMS and ETec in May, June, and July as
the plants approached peak growth, as shown in Figure 3. The SIMS model estimated slightly
higher ET values than the ETec during those months.
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3.6. PT-JPL

The PT-JPL-estimated ET ranged from 1228 to 1330 mm per year with a 5-year average
of 1275 mm and from 993 to 1073 mm with a 5-year average of 1040 mm during the growing
season (Table A1). Comparing the 5-year average ETec of 1289 mm and the growing
season ET of 1108 mm, the absolute MRD was 1.2% and 6.1%, respectively (Table A2).
The PT-JPL underestimated ET by −6.1% compared to ETec (Figure 4). A comparison of
PT-JPL model ET estimates and ETec using linear regression for each year (Table A2) and
for the five years (N = 60 months) and growing season (N = 35 months) is presented in
Table A3. The R2 ranged from 0.8815 to 0.9483, and the RMSE ranged from 19 to 21 mm/mo
(N = 12 months). For the five years, the values were R2 of 0.9203, RMSE of 21 mm/mo, and
SEE of 17 mm/mo (N = 60 months), while R2 of 0.8068, RMSE of 21 mm/mo, and SEE of
17 mm/mo were recorded during the growing season (N = 35 months). The comparison
of the ET estimates by PT-JPL with the ETec was correlated and statistically significant
at p < 0.05. The MBEs for 2017 to 2021 were −3.0, −4.6, −0.08, 2.3, and −0.37 mm/mo,
respectively. The PT-JPL average annual ET for five years was close to the ETec (1275 vs.
1289 mm) with an MRD of 1.2%. The PT-JPL ET followed the same trend as the ETec during
the five years (Figure 3), with some deviation in May, June, and July. The PT-JPL values
were slightly higher during the three months than the ETec (Table A1).

3.7. ALEXI/DisALEXI

The ALEXI/DisALEXI ET estimates ranged from 1072 to 1318 mm per year with a
5-year average of 1256 mm and from 847 to 1077 mm with an average of 1016 mm during
the growing season. The ETec estimates for the 5-year annual average and growing season
averages were 1289 and 1108 mm. The absolute MRD of ALEXI/DisALEXI ET compared to
the ETec for a yearly average was 2.6%, and the growing season average was 8.3% for the
five years, overestimating ET by just a small percentage (Table A1). However, on an annual
basis and using regression analysis for comparison with the ETec, the R2 in 2019 was very
low (R2 = 0.7214), and the RMSE was high at 44 mm/mo compared to other OpenET model
estimates. The ALEXI/DisALEX ET estimates were not consistent annually compared
to ETec. On an annual basis, the model either overestimated or underestimated ET. The
MBEs for 2017 to 2021 were −1.7, 1.0, −16.8, −2.0, and 5.6, respectively. For the five years
(Table A3), the ALEXI/DisALEXI model ET estimates did not compare well with the ETec,
especially during the peak of the growing season (R2 = 0.4365, RMSE of 35 mm/mo, and
SEE of 28 mm/mo, N = 35 months). A large discrepancy in ALEXI/DisALEXI model ET
estimates compared to other models was observed from May to August (refer to Figure 3).

3.8. Ensemble

The ensemble model with ET estimates of mature pecan orchards showed the strongest
agreement with the ETec estimates. See Tables A1–A3. The ensemble ET estimates ranged
from 1333 to 1462 mm per year, with a 5-year average ET of 1370 mm. During the grow-
ing season, the ensemble ET ranged from 1107 to 1188 mm, with a 5-year average of
1130 mm. Comparing the 5-year average annual ETec of 1289 mm and the average growing
season ET of 1108 mm, the absolute MRD was 7.3% and 2.0% (Figure 4), respectively. A
comparison of the ensemble ET estimates to ETec resulted in R2 > 0.93 for all the years from
2017 to 2021, ranging from 0.9345 to 0.9738 (R2 = 0.9477 for N = 60 months; R2 = 0.8234 for
N = 35 months). The RMSE ranged from 13 to 23 mm/mo, and the SEE ranged from 11 to
19 mm/mo for these years for the same period (refer to Tables A1–A3 in Appendix A).

4. Discussion

The average ET estimates during the growing season for the five years (N = 35 months)
when the plants are active varied among the models, especially during the early and middle
growth stages of pecan from April to July (Figure 3). Overall, all ET estimates of pecan
orchards by the models on the OpenET platform were linearly related to the ETec estimates
(Table A3) with R2 > 0.84 (N = 60 months) during the five years and were statistically significant
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(p < 0.05). Monthly aggregated ET estimates during the five years (N = 60 months) by the
ensemble model were overestimated in the winter months (January, February, November,
and December) and also during the early part of the growing season in May and June and
underestimated in July, August, and September during the peak of the growing season when
compared to the ETec. The geeSEBAL estimates were closer to the ETec estimates in the
winter months but underestimated ET during March, June, July, August, and September. The
eeMETRIC and SSEBop monthly aggregated ET estimates followed the same trend during the
year. Compared with ETec, the MRD for the two models’ average annual ET for the five years
was about 24% and 11% (Figure 4) during the growing season. The two models overestimated
ET compared to ETec and geeSEBAL for most months, with a higher discrepancy during
the first half of the year (January–June). The SIMS monthly ET estimates generally had a
strong agreement with the ETec (MRD = 6.2%, N = 35) but overestimated ET in May and
June. The PT-JPL ET estimates varied during the year, with higher values in wintertime and
lower values during the summer months of June to September (MRD = −6.1% during the
growing season). The ALEXI/DisALEXI ET estimates varied interannually compared to the
other models’ ET estimates. High variability was noticed during May, July, and August, with
lower mean monthly ETs than ETec. The ET estimates during winter when the plants are
dormant are expected to have high uncertainty due to many factors, not only eddy covariance
measurements and energy imbalances involved with ground measurements [94,95] but also
remote sensing-based models [96,97].

Similar studies to assess OpenET models with eddy covariance measurements for
various crops have been conducted, for example, by Melton et al. [84] and Volk et al. [98].
They concluded that overall, the crop ET estimated by the ensemble model correlated well
with the ETec ground measurements every month (R2 > 0.85 and RMSE < 30 mm/month).
This study also shows that the ensemble modeling on the OpenET platform estimates ETec
the best, especially during the growing season when managing irrigation water to grow
crops is most critical in a region where water is scarce. The assessment of the OpenET
platform in this study focused on the monthly and seasonal ET of mature pecan orchards.
However, further assessment of OpenET is needed for estimating the ET of young pecan
orchards with exposed soil or grasses between the trees, different irrigation systems, and
where cropping patterns are varied. While the remote sensing-based OpenET has its
limitations of not providing daily ET values, it does provide valuable information that
could be used as a tool for planning sustainable water use, identifying areas in the field
that need attention due to salinity, nutrient deficiencies, plant disease, or water clogging.

5. Conclusions

Six remote sensing-based ET models (geeSEBAL, eeMETRIC, SSEBop, SIMS,
PT-JPL, ALEXI/DisALEXI) and their ensemble were evaluated on the OpenET platform by
comparing their monthly ET estimates with eddy covariance estimates from 2017 to 2021.
The models were assessed for estimating the monthly, growing season, and annual ET of a
mature pecan orchard at the field scale in the Mesilla Valley, NM, from 2017 to 2021. The av-
erage ET estimates during the growing season for the five years (N = 35 months) when the
plants are active varied among the models, especially during the early and middle growth
stages of pecan from April to July. Overall, all ET estimates of pecan orchards by the models
were linearly related to the ETec estimates with R2 greater than 0.84 (N = 60 months) during
the five years and were statistically significant (p < 0.05). The ensemble approach, which
takes into account all the models and minimizes the biases among the models, showed
the best results compared with ground-measured ETec estimates, especially during the
growing season (absolute MRD = 2%), when the management of irrigation water to grow
crops such as pecan is most critical in regions where water is scarce. However, assessment
of OpenET is still needed for young pecan orchards with exposed soil or grasses between
them and where cropping patterns are varied.
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Appendix A

Table A1. Growing season (GS) monthly evapotranspiration of pecan orchards estimated by eddy
covariance (ETec) and by OpenET platform remote sensing-based ET models for 2017 to 2021. MRD-
GS is the annual mean relative difference for the GS.

ET (mm/month) 2017

Month ETec geeSEBAL eeMETRIC SSEBop SIMS PT-JPL ALEXI/DisALEXIEnsemble

January 21.91 36.28 52.32 58.70 47.38 64.20 40.21 49.65

February 31.16 35.11 74.86 56.95 34.37 32.61 46.40 42.57

March 66.27 41.49 74.98 48.10 39.68 41.92 61.13 49.09

April 106.86 112.39 153.78 152.60 116.01 105.60 92.31 120.31

May 162.63 184.88 201.24 198.39 203.72 175.87 185.71 190.49

June 203.35 178.90 221.65 219.18 217.37 181.19 162.63 196.53

July 207.43 179.33 181.43 181.75 189.97 178.71 223.56 181.81

August 195.70 178.92 179.40 187.44 183.45 175.75 147.00 178.83

September 157.63 133.07 162.33 173.20 156.31 133.72 153.14 151.95

October 115.19 100.22 116.11 133.47 111.67 109.78 105.11 109.45

November 53.36 55.29 95.84 88.26 68.03 72.64 70.99 74.08

December 17.20 17.96 61.08 54.98 27.14 30.48 29.85 30.62

Total 1338.69 1253.83 1575.02 1553.02 1395.10 1302.48 1318.04 1375.38

GS 1148.79 1067.71 1215.94 1246.03 1178.50 1060.62 1069.46 1129.38

MRD-GS --- 7.1% 5.8% 8.5% 2.6% 7.7% 6.9% 1.7%

https://openetdata.org/


Remote Sens. 2024, 16, 1429 19 of 25

Table A1. Cont.

ET (mm/month) 2017

Month ETec geeSEBAL eeMETRIC SSEBop SIMS PT-JPL ALEXI/DisALEXIEnsemble

ET (mm/month) 2018

January 24.21 19.31 38.71 59.89 20.48 29.74 30.15 28.98

February 30.88 29.75 59.80 64.68 39.94 32.84 40.08 41.21

March 62.75 28.24 85.11 78.41 33.60 30.38 63.60 52.83

April 112.52 88.25 147.00 131.10 99.03 94.46 112.28 111.20

May 155.90 155.41 223.45 203.05 216.66 166.71 179.59 189.98

June 199.79 187.51 218.31 216.18 215.95 180.20 156.53 197.50

July 207.48 202.29 189.70 193.05 211.82 197.57 230.82 199.11

August 201.18 170.37 201.01 188.98 196.11 158.56 158.02 177.50

September 153.59 147.21 133.61 140.04 137.52 155.86 141.42 142.53

October 83.72 92.61 84.83 102.58 94.55 104.93 98.05 97.20

November 48.68 54.56 63.94 79.47 46.10 60.46 66.32 61.08

December 17.60 26.96 48.41 60.12 33.74 32.03 33.66 33.75

Total 1298.30 1202.48 1493.88 1517.53 1345.50 1243.73 1310.51 1332.89

GS 1114.18 1043.65 1197.91 1174.97 1171.65 1058.29 1076.71 1115.03

MRD-GS --- 6.3% 7.5% 5.5% 5.2% 5.0% 3.4% 0.08%

ET (mm/month) 2019

January 22.02 20.49 44.22 53.56 22.27 42.54 38.37 37.60

February 28.76 22.31 41.25 61.40 22.83 42.48 42.31 38.63

March 63.41 35.74 70.53 62.91 47.72 61.69 50.38 54.86

April 98.88 86.61 157.87 126.61 98.17 73.79 89.85 98.93

May 145.40 155.47 182.23 187.49 192.29 163.57 134.78 170.54

June 186.60 176.56 218.05 213.73 213.45 166.50 152.70 190.96

July 217.71 204.96 215.18 211.71 216.32 195.62 106.19 207.41

August 204.85 173.26 199.52 202.18 202.79 171.27 114.05 188.63

September 143.62 135.26 155.31 157.51 152.02 139.65 148.04 147.77

October 97.48 95.65 114.61 123.35 103.72 106.81 101.04 105.56

November 47.09 36.65 50.62 65.72 41.30 60.74 52.48 51.52

December 17.20 25.18 40.78 56.40 30.78 47.46 41.61 40.57

Total 1273.02 1168.13 1490.18 1522.56 1343.67 1272.13 1071.80 1332.98

GS 1094.54 1027.76 1242.78 1222.57 1178.76 1017.21 846.65 1109.80

MRD-GS --- 6.1% 13.5% 11.7% 7.7% 7.1% 22.7% 1.4%
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Table A1. Cont.

ET (mm/month) 2017

Month ETec geeSEBAL eeMETRIC SSEBop SIMS PT-JPL ALEXI/DisALEXIEnsemble

ET (mm/month) 2020

January 22.39 27.00 57.53 59.05 24.11 42.09 38.31 41.19

February 27.87 39.15 58.58 63.09 43.09 42.39 50.01 48.52

March 51.22 86.79 116.22 95.89 86.24 91.26 63.18 89.65

April 97.60 115.30 147.34 138.54 100.19 105.71 99.56 115.07

May 155.25 182.69 227.36 232.96 217.04 177.36 185.08 204.48

June 196.16 201.26 231.93 237.82 229.73 186.79 188.74 212.89

July 215.97 212.30 224.63 223.86 222.12 199.46 141.36 216.90

August 205.07 176.72 207.77 203.48 200.78 166.97 163.36 187.30

September 152.82 125.01 130.63 154.50 143.91 121.82 146.26 137.57

October 103.39 101.42 125.50 124.32 112.13 114.76 107.06 114.21

November 56.49 42.94 74.41 84.36 52.99 56.46 63.86 61.29

December 18.31 34.87 68.83 67.32 25.08 25.07 31.39 33.25

Total 1302.54 1345.45 1670.74 1685.18 1457.41 1330.15 1278.17 1462.32

GS 1126.26 1114.70 1295.16 1315.47 1225.90 1072.88 1031.42 1188.42

MRD-GS --- 1.0% 15.0% 16.8% 8.9% 4.7% 8.4% 5.5%

ET (mm/month) 2021

January 21.40 40.79 56.99 50.59 26.69 44.00 29.07 40.47

February 29.94 19.64 54.31 70.84 39.44 38.28 43.36 41.91

March 62.72 33.49 77.29 78.80 36.92 33.12 78.07 55.85

April 103.02 95.78 126.50 119.85 95.47 63.05 98.89 101.04

May 152.16 167.19 217.66 217.71 207.67 168.43 165.25 189.16

June 185.10 201.20 206.44 217.80 198.10 180.03 168.99 201.57

July 188.89 193.96 195.66 186.35 195.29 182.10 155.88 189.74

August 186.09 161.41 172.48 174.93 178.61 156.98 203.77 168.71

September 139.43 133.82 145.43 152.64 141.74 135.30 136.80 138.95

October 100.95 98.38 137.16 132.20 110.12 106.86 126.35 118.03

November 45.21 56.79 71.14 74.70 60.86 70.80 56.85 64.87

December 17.89 27.17 67.10 29.48 29.27 49.40 37.35 35.39

Total 1232.81 1229.64 1528.15 1505.89 1320.17 1228.34 1300.62 1345.69

GS 1055.64 1051.75 1201.33 1201.48 1126.99 992.74 1055.92 1107.20

MRD-GS --- 0.37% 13.8% 13.8% 6.7% 6.0% 0.03% 4.9%

Total ET (2017–2021)

Annual
Avg. 1289 1240 1552 1557 1372 1275 1256 1370

MRD-
Annual --- 4.4% 23.7% 24.2% 7.5% 1.2% 3.0% 7.3%

GS Avg. 1108 1061 1231 1232 1176 1040 1016 1130

MRD-GS --- 4.2% 11.1% 11.2% 6.2% 6.1% 8.3% 2.0%
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Table A2. Comparison of statistical criteria between the OpenET models-based estimated ET and the
ground-based ETec (mm/mo) of pecan orchards for each year (N = 12) from 2017 to 2021.

Year 2017

Model/Criteria Intercept Slope R2 RMSE MBE SEE p−Value

geeSEBAL 6.50 0.88 0.9494 18.1 −7.2 15.6 <0.05
eeMETRIC 45.4 0.77 0.8991 31.1 19.7 19.7 <0.05

SSEBop 36.0 0.84 0.8998 28.8 17.9 21.4 <0.05
SIMS 9.60 0.96 0.9344 18.5 4.7 19.3 <0.05

PT-JPT 20.1 0.79 0.9288 21.3 −3.0 16.8 <0.05
ALEXI/DisALEXI 17.7 0.83 0.9000 22.8 −1.7 21.0 <0.05

Ensemble 19.4 0.85 0.9454 17.8 3.1 15.7 <0.05

Year 2018

geeSEBAL −0.11 0.93 0.9601 16.9 −8.2 15.4 <0.05
eeMETRIC 27.0 0.90 0.8919 28.2 16.3 24.0 <0.05

SSEBop 40.0 0.80 0.9312 27.6 18.3 16.6 <0.05
SIMS −1.40 1.05 0.9224 21.9 3.9 23.3 <0.05

PT-JPT 10.0 0.87 0.9298 19.3 −4.6 18.2 <0.05
ALEXI/DisALEXI 17.9 0.84 0.9040 22.1 1.0 21.1 <0.05

Ensemble 12.8 0.91 0.9575 15.10 2.90 14.7 <0.05

Year 2019

geeSEBAL −2.40 0.94 0.9726 15.1 −9.1 12.5 <0.05
eeMETRIC 22.5 0.96 0.9379 25.1 18.1 18.8 <0.05

SSEBop 33.1 0.88 0.9546 26.0 20.8 14.7 <0.05
SIMS −1.70 1.10 0.9594 17.2 5.9 16.8 <0.05

PT-JPT 23.6 0.78 0.9483 20.0 −0.08 13.8 <0.05
ALEXI/DisALEXI 35.7 0.51 0.7214 44.1 −16.8 24.0 <0.05

Ensemble 14.8 0.91 0.9738 13.2 5.0 11.3 <0.05

Year 2020

geeSEBAL 16.0 0.89 0.9297 19.1 3.6 18.7 <0.05
eeMETRIC 46.0 0.86 0.8688 40.1 30.7 26.0 <0.05

SSEBop 44.3 0.89 0.9101 38.4 31.9 21.7 <0.05
SIMS 9.70 1.03 0.9330 23.6 12.9 21.5 <0.05

PT-JPT 24.6 0.79 0.9262 21.8 2.3 17.5 <0.05
ALEXI/DisALEXI 28.3 0.72 0.8727 28.0 −2.0 21.4 <0.05

Ensemble 23.8 0.90 0.9345 22.7 13.3 18.7 <0.05

Year 2021

geeSEBAL 1.60 0.98 0.9450 15.2 −0.26 16.9 <0.05
eeMETRIC 37.9 0.87 0.9037 31.7 24.6 19.9 <0.05

SSEBop 30.0 0.93 0.9085 30.0 22.8 20.6 <0.05
SIMS 3.40 1.04 0.9304 20.6 7.30 19.9 <0.05

PT-JPT 16.80 0.83 0.8815 22.3 −0.37 21.3 <0.05
ALEXI/DisALEXI 19.80 0.86 0.9435 17.1 5.60 14.8 <0.05

Ensemble 15.70 0.94 0.9507 17.0 9.40 14.9 <0.05

Table A3. Comparison between the OpenET models with ETec (mm/mo) for annual (N = 60 months)
and growing seasons (N = 35 months) during the entire 2017 to 2021 period.

Model/Criteria
Number

Observations, N
(Months)

Intercept Slope R2 RMSE MBE SEE p−Value

geeSEBAL 60 4.50 0.92 0.9449 17 −4.2 16 <0.05
35 13.32 0.87 0.8564 17 −7 15 <0.05

eeMETRIC
60 35.73 0.87 0.8906 32 22 21 <0.05
35 58.32 0.74 0.6249 32 18 25 <0.05

SSEBop 60 36.82 0.86 0.9122 30 22 19 <0.05
35 57.15 0.75 0.6974 29 18 21 <0.05

SIMS
60 3.89 1.03 0.9331 20 7 19 <0.05
35 10.82 0.99 0.7970 23 10 22 <0.05

PT-JPT 60 19.01 0.81 0.9203 21 −1.1 17 <0.05
35 23.62 0.79 0.8068 21 −10 17 <0.05

ALEXI/DisALEX
60 24.31 0.75 0.8430 28 −3 23 <0.05
35 53.53 0.58 0.4365 35 −13 28 <0.05

Ensemble
60 17.43 0.90 0.9477 17 7 15 <0.05
35 29.37 0.83 0.8234 18 3 17 <0.05
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