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Abstract: To ensure the long-term stable and uninterrupted service of satellite navigation systems,
the robustness and reliability of time–frequency systems are crucial. Integrity monitoring is an effec-
tive method to enhance the robustness and reliability of time–frequency systems. Time–frequency
signals are fundamental for integrity monitoring, with their time differences and frequency biases
serving as essential indicators. These indicators are influenced by the inherent characteristics of
the time–frequency signals, as well as the links and equipment they traverse. Meanwhile, existing
research primarily focuses on only monitoring the integrity of the time–frequency signals’ output
by the atomic clock group, neglecting the integrity monitoring of the time–frequency signals gen-
erated and distributed by the time–frequency signal generation and distribution subsystem. This
paper introduces a time–frequency signal integrity monitoring algorithm based on the tempera-
ture compensation frequency bias combination model. By analyzing the characteristics of time
difference measurements, constructing the temperature compensation frequency bias combination
model, and extracting and monitoring noise and frequency bias features from the time difference
measurements, the algorithm achieves comprehensive time–frequency signal integrity monitoring.
Experimental results demonstrate that the algorithm can effectively detect, identify, and alert users
to time–frequency signal faults. Additionally, the model and the integrity monitoring parameters
developed in this paper exhibit high adaptability, making them directly applicable to the integrity
monitoring of time–frequency signals across various links. Compared with traditional monitoring
algorithms, the algorithm proposed in this paper greatly improves the effectiveness, adaptability, and
real-time performance of time–frequency signal integrity monitoring.

Keywords: time–frequency signal; integrity monitoring; time–frequency system; feature extraction;
temperature compensation

1. Introduction

The integrity of the time–frequency system is a critical determination of the navigation,
positioning, and timing service performance of the Global Navigation Satellite System
(GNSS). A fault within this system can inflict substantial damage on the GNSS operations.
On 11 July 2019, a malfunction in the ground time–frequency system led to a disruption in
the Galileo satellite navigation system. This incident affected over 20 satellites, resulting
in the unavailability of navigation signals and a subsequent interruption of navigation,
positioning, and timing services. These were not restored until a week later, significantly
impacting both system operations and user services. To maintain the long-term stability
and continuous service of satellite navigation systems, the robustness and reliability of
time–frequency systems are essential. Integrity monitoring is a key strategy for enhancing
these aspects. Therefore, there is an urgent need to conduct comprehensive research into
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the integrity monitoring of time–frequency systems to ensure the dependable functioning
of the GNSS worldwide.

Currently, the development and research of integrity monitoring are primarily fo-
cused on the field of GNSS integrity monitoring, which is mainly divided into GNSS
system integrity monitoring and receiver autonomous integrity monitoring (RAIM). The
scope of GNSS system integrity monitoring is expansive, encompassing satellite integrity
monitoring for satellite-based augmentation systems [1], real-time integrity monitoring
for wide-area-precision positioning systems [2], and the theoretical framework for multi-
tiered autonomous integrity monitoring in multi-source PNT elastic fusion navigation
systems [3,4]. RAIM enables GNSS receivers to autonomously detect and rectify errors
using redundant GNSS data. Scholars are presently delving into its methodological prin-
ciples and performance analyses [5–8], availability and integrity risk assessment [9–11],
GNSS satellite selection strategy [12], scenarios involving multiple constellations and
faults [8,13–15], cross-integration with other disciplines [16], and applications in aviation,
Precise Point Positioning (PPP), Real-Time Kinematics (RTK), and other fields [17–22]. In
response to the integrity monitoring requirements of timing receivers with precisely known,
stationary antenna coordinates, a Timing-Receiver Autonomous Integrity Monitoring (T-
RAIM) algorithm has been proposed [23–25]. In order to meet the integrity monitoring
needs of the aviation LPV-200 operation, an advanced receiver autonomous integrity moni-
toring (ARAIM) algorithm has been developed on the basis of the RAIM algorithm, and its
performance is evaluated [26–28]. In addition, the receiver solution information combines
external auxiliary information to develop an auxiliary integrity monitoring algorithm,
which is mainly combined with auxiliary information such as inertial navigation, WIFI,
and differential GNSS [29–33].

However, in the realm of time–frequency systems’ integrity monitoring, the time–
frequency signal serves as the fundamental basis, with its time differences and frequency
biases being important indicators for the assessment of the integrity monitoring of time–
frequency systems. A typical time–frequency system is shown in Figure 1.
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Figure 1. Architecture of a typical time–frequency system.

The time–frequency signal is generated by the time–frequency source in the atomic
clock group, and is finally output to the users through a series of system equipment in
the time–frequency system. All time–frequency signals in the time–frequency system are
transmitted through cables. The 10 MHz frequency signal generated by the atomic clock
group, after the time–frequency signal generation and distribution subsystem, generates
multiple 10 MHz frequency signals and Pulse Per Second (1PPS) signals and outputs them
to the users. Although the atomic clock group is the core part of the time–frequency system,
the time–frequency signal generation and distribution subsystem is also an important
part that affects the quality and performance of the time–frequency signal used by users.
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Therefore, to study the integrity monitoring of time–frequency systems, it is necessary to
study the integrity monitoring of the time–frequency signals’ output by the atomic clock
group and the time–frequency signal generation and distribution subsystem.

Presently, there is a scarcity of methods concerning the comprehensive monitoring
of time–frequency signal integrity, particularly those emanating from the atomic clock
ensemble within the time–frequency system. The existing approaches primarily involve
cross-comparing the output signals of the atomic clocks, reviewing the phase, frequency
deviation, and stability to achieve real-time integrity monitoring of the atomic clock’s signal
output [34]. Current research only focuses on the integrity monitoring of the time–frequency
signal produced by the atomic clock group, yet it neglects to monitor the integrity of the
signals generated by the time–frequency signal generation and distribution subsystem.

In light of the aforementioned absence of integrity monitoring for the time–frequency
signals generated by the time–frequency signal generation and distribution subsystem,
this paper aims to explore the integrity monitoring of the time–frequency signals from the
time–frequency signal generation and distribution subsystem. The structure of the article is
as follows: Section 1 introduces the research background, significance, and current status of
the integrity monitoring addressed in this article, along with proposing the research objec-
tives. In Section 2, the characteristics of the measurement results between time–frequency
signals are analyzed, a time–frequency signal temperature compensation frequency bias
combination model is developed, and a time–frequency signal integrity monitoring algo-
rithm along with its parameter calculation criteria based on the temperature compensation
frequency bias combination model are proposed. Section 3 introduces the source of the
time difference measurement results, which come from five different time–frequency signal
links, and proposes experimental strategies. In Section 4, relevant parameters are calcu-
lated using the constructed model, the proposed algorithm, and the acquired experimental
data. These parameters are then applied to another set of experimental data to evaluate
and analyze their applicability. Finally, we compare and analyze the performance of the
proposed algorithm and the traditional monitoring algorithm. Section 5 summarizes the
research content of this article.

2. Model and Method

In the process of model construction, it is essential to conduct statistical analysis of
measurement data and account for noise. Therefore, some statistical evaluation indicators
such as mean, standard deviation (STD), and root mean square error (RMSE) become
necessary tools for assessment. The corresponding equations are presented as follows:

µ =
1
N

N

∑
i=1

xi (1)

σ =

√√√√ 1
N

N

∑
i=1

(xi − µ)2 (2)

RMSE =

√√√√ 1
N

N

∑
i=1

(xi − f (ti))
2 (3)

where xi is the i-th real data, N is the data length, and f (ti) represents the predicted value
at the time of ti.

2.1. Characteristic Analysis

The time–frequency signal is generated by a time–frequency source and ultimately
conveyed to the user through an array of system equipment within the time–frequency
system. The theoretical time difference c(t) of the time–frequency source can be expressed
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in two distinct elements: the deterministic component and the random component. The
deterministic component can be represented by a quadratic polynomial [35–37]:

c(t) = x + yt +
1
2

Dt2 + ε(t) (4)

where x, y, and D represent time difference, frequency bias, and frequency drift rate,
and t represents time. The random component ε(t) is the noise of the time–frequency
source. It is a power-law spectral model [37–42]. It can be described by five independent
random processes, and the total noise can be regarded as a linear superposition of five
different noises.

As shown in Figure 1, the time–frequency signal link refers to the path where the
time–frequency signal generated by the time–frequency source is finally output to the users
through different cables and equipment inside the time–frequency system. For example:
the time–frequency signal is output from the atomic clock group, through the cable to
the frequency distribution equipment, and then through the cable to the users, this is a
time–frequency signal link. The delay of the time–frequency signal link is the link delay,
which is expressed by d(t).

In theory, the link delay d(t) can be expressed as two parts: the deterministic compo-
nent and the random component. The deterministic component can be represented by a
fixed constant.

d(t) = τ + δ(t) (5)

where τ is a time-independent fixed constant, called the fixed link delay. The random
component δ(t) is the noise generated by the time–frequency signal passing through the
link, called link noise, which follows the Gaussian distribution. The size of the noise is
related to the length of the cable on the link and the number of pieces of equipment.

During the actual operation of the time–frequency system, the deterministic compo-
nent of the link delay of the time–frequency signal changes: the time–frequency signal
passing through the time–frequency equipment on the link will produce a link frequency
bias [43,44]. At the same time, the deterministic component is affected by temperature
changes and has a linear relationship with the amount of temperature change [45,46].
Therefore, d(t) is corrected to:

d(t) = τ + ∆yt + a∆T + δ(t) (6)

where τ represents the fixed link delay, ∆y represents the link frequency bias, t represents
the time, a represents the temperature change coefficient, ∆T represents the amount of
temperature change, and δ(t) is the link noise, which follows the Gaussian distribution.

Therefore, the time difference of the time–frequency signal output, which is repre-
sented by z(t), to the users is:

z(t) = c(t) + d(t) (7)

2.2. Model Construction

The time difference z1(t) and z2(t) of the time–frequency signals of two different
links are:

z1(t) = c(t) + d1(t)
z2(t) = c(t) + d2(t)

(8)

At the same time, the time difference measurement result of the two time–frequency
signals, which are represented by m(t), is the difference between the time difference of the
two links’ output to the user:

m(t) = z1(t)− z2(t) = d1(t)− d2(t) (9)

The stably operating time–frequency system means that the internal cables and equip-
ment of the time–frequency system are connected and fixed, the cables are not damaged, the
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equipment is in good operating condition and trouble-free, and the ambient temperature
is controlled by a precision air-conditioning system. In a stably operating time–frequency
system, the temperature change coefficient of the time–frequency signal link is related to
the link, but the temperature change of each link is consistent, depending on the ambient
temperature of the time–frequency system.

Therefore, by expanding and merging the above equations, we can construct an
integrated model for temperature compensation frequency bias:

m(t) = d1(t)− d2(t)
= (τ1 − τ2) + (∆y1 − ∆y2)t + (a1 − a2)∆T + (δ1(t)− δ2(t))
= md + fbt + A∆T + n(t)

(10)

where md represents the difference between the fixed link delay of the two time–frequency
signal links, fb represents the combined frequency bias value, t represents the time, A
represents the combined temperature change coefficient, ∆T represents the amount of
change in ambient temperature of the time–frequency system, and n(t) represents the
combined noise of the two links, which also follows the Gaussian distribution.

2.3. Integrity Monitoring Algorithm
2.3.1. Algorithm Overview

Building upon the temperature compensation frequency bias combination model
developed in this paper, the noise and frequency bias within the measurement results
are estimated. At the same time, utilizing the aforementioned model, a time difference
prediction model is constructed as follows:

mp = md + fbtp + A∆Ttp (11)

where mp represents the predicted time difference, tp represents the predicted time, and
∆Ttp represents amount of change in ambient temperature of the time–frequency system at
the predicted time.

The bias pd
(
tp
)

of the prediction of the time difference at time tp is:

pd
(
tp
)
= m

(
tp
)
− mp (12)

where m
(
tp
)

represents the actual measured value of the time difference at time tp.
Under the stably operating time–frequency system, the estimated frequency bias fb

is stable. The estimated noise is stable and follows the Gaussian distribution, that is,
pd

(
tp
)
= n

(
tp
)
, σpd = σn. The STD of the bias of the prediction of time difference is

equivalent to RMSE, σpd ⇔ RMSE .
Should the equipment undergo aging, the RMSE will increase significantly, then

RMSE > σn. If the equipment or link phase transitions, the predicted bias represented by
pd increases, and the absolute value of the statistical mean expressed by

∣∣∣µpd

∣∣∣ increases
over a period of time. If the frequency of the device or link changes, the absolute value
of the combined frequency deviation value increases. Therefore, the devised temperature
compensation frequency bias combination model serves to extract the noise n(t), the fre-
quency bias fb, and the predicted bias pd from the time difference measurement outcomes.
This facilitated real time monitoring of the time–frequency signal’s health status and the
detection of time–frequency signal anomalies, thereby achieving vigilance over the integrity
of the time–frequency signal.

2.3.2. Algorithm Implementation

Leveraging the composite model of time–frequency signal measurement results con-
structed in this paper, in conjunction with the above algorithm concepts, the process of
constructing a time–frequency signal integrity monitoring algorithm is shown in Figure 2.
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The meaning of each parameter is shown in Table 1. And, |x| replaces the absolute value
of x.
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Table 1. The meaning of each parameter in process.

Parameter Meaning

dataold Historical measurement data
∆T Historical temperature change data
data Current measurement result

fb Frequency bias
σn The STD of noise

pdarr Sequence of historical forecast bias
thrRMSE Threshold of RMSE

thrpd Threshold of forecast bias
thrpdmean Threshold of the mean of the forecast bias
meanpdarr Mean of the historical forecast bias
statematrix Sequence of historical fault state

thrfb Threshold of frequency bias
statefault Fault Status at the current time

stateIntegrity Integrity status at the current time
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Specifically, the algorithm steps are as follows: Step 1 is to use dataold, ∆T, and data
to calculate fb, σn, and pd. Step 2 is to obtain the parameters pdarr, thrRMSE, thrpd, thrpdmean ,
meanpdarr , statematrix, and thrfb. Step 3 is to set the parameter stateIntegrity to 0, which means
that the time–frequency signal state is healthy. Step 4 is to judge the parameter statefault. The

specific process is that when |pd|> thrpd,
∣∣∣meanpdarr

∣∣∣ > thrpdmean , RMSE > thrRMSE, or |fb|>
thrfb, the parameter statefault is 1, otherwise it is 0. When |pd|> thrpd, the measurement result
needs to be replaced with the predicted result. Step 5 is to update the array statematrix. The
specific operation is to throw the oldest fault state into array statematrix and stuff the latest
fault state into array statematrix. Step 6 is to judge the integrity of the time–frequency signal.
The specific method is that when the array statematrix is all 1, then the time–frequency signal
is faulty, otherwise the time–frequency signal is trouble-free. When the array statematrix
is all 1, the measurement result needs to be replaced with the predicted result. The last
step is to output the integrity monitoring status parameter stateIntegrity. When it is 1, the
measurement result is abnormal and it is not recommended to use it. The predicted time
difference is generally used. Otherwise, the measurement results are normal.

2.4. Model Parameter Calculation Criteria

Using the temperature compensation frequency bias combination model, three param-
eters can be calculated: the STD of noise σn, the estimated value of the frequency bias fb,
and the predicted bias pd. The estimation accuracy of the above three parameters is closely
related to the fitting time of the data represented by ftdata used in the model. Under the
stably operating time–frequency system, σn is stable, | fb| is less than a certain threshold,
and RMSE is similar to σn. Therefore, ∆bias, | fb|max, and σσn are used to construct the model
parameter calculation criteria, where ∆bias = |RMSE − µσn | is the absolute value of the
difference between µσn and the RMSE, µσn is the mean of the σn, | fb|max is the maximum
value of the | fb|, and σσn is the STD of the σn.

R = αt(w1 + w2 + w3) (13)

where R is the weighting result, αt is the weighting coefficient of the fitting time, and wi is
the weight represented by each parameter. Different users set it according to the importance
of different parameters. In this article, it is set to:

αt = 0.2 + 0.8
1+exp(−t+12) 1 ≤ t ≤ 24

w1 =

{
1 ∆bias ≤ 1
1 + 10(∆bias − 1) ∆bias > 1

w2 =

{
1 | fb|max ≤ Td

1 + B(| fb|max − Td) | fb|max > Td

w3 =

{
1 σσn ≤ 0.1
1 + 10(σσn − 0.1) σσn > 0.1

(14)

where B is the frequency offset amplification factor, take 1 × 1016. Td is the threshold
for the worst frequency bias, take 3 × 10−16. Based on the S-curve and its extension,
S-curve has now been used in the field of parameter estimation and contribution and
weight calculation [47,48]. At the same time, the reference for the value of αt is: the value
is nonlinear and positively correlated with the fitting time. And the initial value of αt
should not be excessively small, maintaining compatibility with other fitting time values
without orders of magnitude differences, thus neglecting errors induced by brief fitting
periods. Therefore, the standard S-curve is modified to obtain the αt in this paper. Therefore,
the R value is calculated according to different fitting times. When R is the smallest, the
corresponding ftdata is the calculated model parameter.
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3. Data and Strategy
3.1. Experimental Data

We obtain the relevant experimental data from a stably operating time–frequency
system. The time difference measurement results are measured using high-precision time
interval measurement equipment, and the ambient temperature measurement results of
the time–frequency system are measured using high-precision temperature measurement
modules.

The time–frequency signal output by the atomic clock group is used as the reference
signal. The time difference measurement results of the time–frequency signal and the
reference signal is denoted as td, and the time difference measurement results of the
time–frequency signal and the reference signal of the i-th link is denoted as tdi.

Unlike the one shown in Figure 1, the time–frequency system has more frequency
distribution equipment and 1PPS distribution equipment to output time–frequency signals
to more users.

Therefore, the time–frequency system has five time–frequency signal links, and the
time difference measurement result of 1 day is shown in Figure 3. In order to facilitate the
display, the measurement results eliminate a fixed delay and limit it to 1000 ps.
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At the same time, the results of the ambient temperature change of the time–frequency
system are shown in Figure 4.
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3.2. Experimental Strategy

First, we obtain the time difference measurement results of a link and handle the
data abnormalities, and this is a long period of trouble-free measurement data. Then,
by employing the previously established model and methodology, a set of model cal-
culation and experimental parameters that are pertinent to the measurement results are
determined, including the data fitting time, thrpd, forecast deviation accumulation time,
thrpdmean , thrRMSE, and thrfb. In this paper, the first link is selected for the experiment, and
the noise characteristics of the 16-day measurement results are shown in Figure 5.
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Secondly, the adaptability of the set parameters is evaluated and dissected through
the utilization of the defined model and experimental parameters, the integrity monitoring
algorithm, and the time difference measurement results of other links.

Finally, the traditional monitoring algorithm for time–frequency signals is introduced,
and the performance of the algorithm proposed in this paper and the traditional monitoring
algorithm are compared and analyzed.

4. Experiment and Results Analysis
4.1. Calculation of Experimental Parameters
4.1.1. Calculation of Model Parameters

According to the calculation criterion in Equation (13) of the ftdata, within one day, the
results of the data with different fitting times under the condition of running for 2 h are
shown in Table 2. It was found that the minimum value for R is 10 h. Therefore, the ftdata of
the model is selected to be 10 h for subsequent analysis.

Table 2. Calculation results of model parameters.

ftdata (Hour) ∆bias |fb|max σσn R

1 0.53 8.96 × 10−15 0.34 18.40
2 0.14 4.74 × 10−15 0.38 10.06
3 0.29 4.42 × 10−15 0.27 9.19
4 0.31 4.58 × 10−15 0.21 9.38
5 0.35 4.07 × 10−15 0.16 8.30
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Table 2. Cont.

ftdata (Hour) ∆bias |fb|max σσn R

6 0.47 2.35 × 10−15 0.15 4.85
7 0.70 1.30 × 10−15 0.13 2.74
8 0.67 1.20 × 10−15 0.12 2.61
9 0.69 8.55 × 10−16 0.14 2.13

10 0.81 3.85 × 10−16 0.07 1.14
11 0.87 3.13 × 10−16 0.09 1.30
12 0.91 2.36 × 10−16 0.05 1.80
13 1.01 1.30 × 10−16 0.06 2.40
14 1.01 8.94 × 10−17 0.04 2.80
15 1.01 8.87 × 10−17 0.03 2.94
16 0.93 9.36 × 10−17 0.02 2.96
17 0.92 9.81 × 10−17 0.04 2.98
18 0.92 8.06 × 10−17 0.02 2.99
19 0.90 5.96 × 10−17 0.04 3.00
20 0.95 1.97 × 10−16 0.08 3.00
21 1.01 2.46 × 10−16 0.07 3.12
22 1.06 2.85 × 10−16 0.04 3.56
23 1.07 2.93 × 10−16 0.04 3.69
24 1.06 2.98 × 10−16 0.02 3.55

4.1.2. Calculation of Experimental Parameters

According to the algorithm ideas and processes proposed in this paper, the integrity
monitoring parameters that need to be set by the user are as follows: the fault continuous
alarm time threshold, the forecast deviation fault threshold, the forecast deviation cumula-
tive time, the forecast deviation mean threshold, the RMSE threshold, and the frequency
bias threshold.

The above parameters are all determined based on the user’s requirements for the
Probability of False Alarm (PFA) and Probability of Missed Detection (PMD) of the system.
Drawing on the navigation performance requirements of civil aviation for GNSS in GNSS
integrity monitoring [49], this experiment sets the PFA to be better than 10−3, and the PMD
to be better than 10−3. Some parameters of integrity monitoring can be calculated from the
PFA and PMD:

IR = PFA ∗ PMD
AR = PFA + PMD
integrity level = 1 − PMD
continuity = 1 − PFA
availability = 1 − AR

(15)

So, its Integrity Risk (IR) is better than 10−6 and the Availability Risk (AR) is bet-
ter than 2 × 10−3. Therefore, the corresponding integrity level of this experiment is
(1 − 1 × 10−3/s), the continuity is (1 − 1 × 10−3/s), and the availability is 99.8%.

The continuous fault alarm time represented by ATcon refers to the length of time
before the signal fault is continuously detected before the alarm is issued to the system. It
is usually set by the user according to the needs. It has nothing to do with the PFA and the
PMD. This experiment is set to 5 s.

The fault threshold of the forecast bias refers to the threshold value which the forecast
bias must exceed for the detection signal to be a fault. According to the preliminary
research in this paper, the noise extracted from the combined model follows the Gaussian
distribution and its STD is stable over time. Therefore, according to the requirement that the
PMD is better than 10−3 and the probability interval of the standard normal distribution,
the detection threshold for the forecast bias is selected to be 3.1 times the STD (σ).
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The thrpdmean and thrRMSE are selected based on the cumulative time of the prediction.
By analyzing the curve of the mean and RMSE of the forecast bias, as shown in Figure 6,
we select the cumulative prediction time as 30 s for this experiment, represented by Tcp.
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Figure 6. Curve of the mean and RMSE of forecast bias.

Based on the trouble-free measurement data after long-term analysis and processing,
we take the cumulative prediction time as 30 s and analyze the PFA of the threshold of
the mean of the forecast bias, the RMSE, and the frequency bias. At different moments
randomly selected within the time range of the measurement data, the frequency bias
estimation and time difference forecast bias results of these moments are used to perform a
Monte Carlo simulation of the PFA of the thresholds. The number of times the Monte Carlo
simulation is run is 10,000, and the PFA of the thresholds is shown in Figure 7.
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According to the index requirements that the PFA set in this paper is better than 10−3

and the results shown in Figure 7, thrpdmean is selected to be 50 ps, thrRMSE is 1.44 times the
σn, and thrfb is 1.5 × 10−15.

In summary, the setting of the experimental parameters in this paper are shown in
Table 3.

Table 3. Parameters of the experiment.

Parameters Meanings Values

ftdata The fitting time of data 10 h
ATcon The threshold of continuous fault alarm time 5 s
thrpd Threshold of the forecast bias 3.1 σn
Tcp Cumulative prediction time 30 s

thrpdmean Threshold of the mean of the forecast bias 50 ps
thrRMSE Threshold for RMSE 1.44 σn

thrfb Threshold for frequency bias 1.5 × 10−15

4.1.3. Calculation of Fault Simulation Parameters

Based on the trouble-free measurement data after long-term analysis and processing,
different moments are randomly selected within the time range of the measurement data,
and the parameters set by the experiment are used to perform a Monte Carlo simulation of
the PMD of thresholds under faults of different sizes. The size of the faults corresponding
to the PMD required by the user is the Minimum Detection Bias (MDB). The number of
times the Monte Carlo simulation is run is 10,000 and the PMD of the thresholds is shown
in Figure 8.
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According to the results shown in Figure 8, it can be found that under the set exper-
imental parameters, under the condition that the PMD is better than 10−3, the MDB of
various types of faults are the phase transition is 86 ps, the STD of the noise deterioration is
88 ps, and the frequency bias is 2 × 10−15.

4.2. Evaluation of Parameter Adaptability
4.2.1. Experimental Scene

In this experiment, other link data were selected for the adaptability evaluation experi-
ment of experimental parameters.

The parameter settings of the experimental scene are shown in Table 3. Time–frequency
signal faults are mainly categorized into three distinct fault types: phase transition faults,
noise deterioration faults, and frequency transition faults. In this paper, noise deterioration
refers to noise increase. According to the MDB results calculated above, for these three fault
types, a randomized onset time is selected, and the following fault simulation scenarios are
devised during the 101st second of the time difference results of different links.

The details are as follows: 1. The time–frequency signal has a significant phase
transition of 400 ps and the result exceeds the maximum fault threshold after the transition.
2. The time–frequency signal has an ordinary phase transition of 200 ps and the result after
the transition does not exceed the maximum fault threshold. 3.The time–frequency signal
has a small phase transition of 90 ps. 4. The noise deterioration of the time–frequency
signal, superimposing a Gaussian white noise with an STD of 90 ps. 5. The frequency
transition of the time–frequency signal leads to a frequency bias change in the order of
2 × 10−15. The simulation results of the above fault scenario are shown in Figure 9.
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Figure 9. Simulation of time–frequency signal fault. (a) Simulation of phase transition fault;
(b) Simulation of noise deterioration fault; (c) Simulation of frequency transition fault.



Remote Sens. 2024, 16, 1453 14 of 18

4.2.2. Experimental Results

In view of the above-mentioned faults’ simulation results, the algorithm is used for
integrity monitoring, with the status of the alarm and the Time To Alert (TTA) detailed in
Table 4.

Table 4. Experimental results of parameter adaptability evaluation.

Type of Faults
TTA(s)

td1 td2 td3 td4 td5

Phase transition of 400 ps 5 5 5 5 5
Phase transition of 200 ps 8 7 5 5 5
Phase transition of 90 ps 13 13 10 7 10

Noise deterioration at 90 ps 14 13 19 7 7
Frequency transition of 2 × 10−15 7784 7666 7596 1846 7798

According to the experimental results in the table above, it can be found that the
algorithm proposed in this paper can effectively monitor the time–frequency signal fault
and issue an alarm to the user within a period of time after the signal fault occurs. At the
same time, the model and experimental parameters set above are still valid in the integrity
monitoring of other time–frequency signal links. In view of the frequency transition fault
of the time–frequency signal, the impact on the measurement result within the maximum
alarm time under different links is 2× 10−15 × 7798 ≈ 15.6 ps, and the impact on the system
is within the range of the time–frequency system index (500 ps). At the same time, the
TTA of the frequency transition fault of the 4th link is less than that of the other links. The
reason is that the number of pieces of equipment and cables on the link is small, the impact
of the noise and temperature changes is small, and the impact of the frequency changes can
be monitored more sensitively.

4.3. Comparative Experiment of Algorithm
4.3.1. Traditional Monitoring Algorithm

Due to the current lack of research on the integrity monitoring of time–frequency
systems, the time–frequency signals output by the time–frequency signal generation and
distribution subsystem in the time–frequency system use a very simple traditional monitor-
ing algorithm. The principle and process are shown in Figure 10.
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First, based on Equation (5), the link delay of each link is calculated by averaging
the historical 30 min measurement data. Then, the noise of each link is calculated. The
noise of each link is the corresponding link delay calculated in the first step deducted
from the measurement data of each link. The noise of each link is near 0. Finally, the fault
status is determined based on the fault threshold set by the user and the time difference
measurement result. If the time difference measurement result exceeds the threshold, the
link is considered to be faulty. On the contrary, if it is below the threshold, the link is
considered to be trouble-free.

4.3.2. Experimental Scene and Parameter Setting

The scene of this experiment is consistent with the scene of the experiment described
in Section 4.2.1 and will not be repeated here. And the threshold of this experiment is 500
ps, which is the index of the time–frequency system.

4.3.3. Experimental Results

For the scene of this experiment in Section 4.2.1, the traditional monitoring algorithm
is used for integrity monitoring, and the status of the alarm and the TTA are shown in
Table 5.

Table 5. Experimental results of the traditional monitoring algorithm.

Type of Faults
TTA(s)

td1 td2 td3 td4 td5

Phase transition of 400 ps 1463 1463 27788 N/A 10062
Phase transition of 200 ps N/A N/A N/A N/A N/A
Phase transition of 90 ps N/A N/A N/A N/A N/A

Noise deterioration at 90 ps 12,314 83,798 26,135 N/A N/A
Frequency transition of 2 × 10−15 89,666 107,408 135,189 182,726 160,450

In Table 5, N/A means that the faults cannot be detected within 3 days after the faults
occurs. It can be found that the traditional monitoring algorithm cannot accurately and
effectively detect the small phase transition fault and the noise deterioration fault, and
the detection effectiveness and real-time performance are weak. The detection ability of
the traditional monitoring algorithm is closely related to the link itself, so its adaptability
is weak. At the same time, for the frequency transition fault, the traditional monitoring
algorithm takes 1 to 2 days to detect, and the real-time performance is weak.

In addition, by comparing the results of Tables 4 and 5, it can be found that the integrity
monitoring algorithm proposed in this paper has the following advantages compared with
the traditional monitoring algorithm: the effectiveness and timeliness of fault detection
are significantly improved, it can effectively detect multiple types of faults, and the real-
time performance is increased by about 12 times. Therefore, the integrity monitoring
algorithm proposed in this paper greatly improves the effectiveness, adaptability, and
real-time performance of time–frequency signal monitoring.

In summary, the integrity monitoring algorithm proposed in this paper can effectively
detect, identify, and alarm the phase transition fault, the noise deterioration fault, and
the frequency transition fault. At the same time, the model proposed in this paper and
the calculated integrity monitoring parameters have good adaptability. Compared with
the traditional monitoring algorithm, the integrity monitoring algorithm proposed in
this paper greatly improves the effectiveness, adaptability, and real-time performance of
time–frequency signal integrity monitoring.

5. Conclusions

This paper focuses on the problem that the integrity monitoring of the time–frequency
system is limited to the time–frequency signal output by the atomic clock group. By analyz-
ing the theory of time–frequency source and link delay, it is found that temperature changes
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and frequency changes of the time–frequency signal are the main influencing factors of time
difference measurement results. Therefore, a time–frequency signal integrity monitoring
algorithm based on a temperature compensation frequency bias combination model is
proposed. The algorithm analyzes the characteristics of time difference measurements,
constructs a temperature compensation frequency bias combination model, and extracts
and monitors the characteristics of the noise and frequency bias of the time difference mea-
surement results, so as to realize the integrity monitoring of the time–frequency signal. The
time difference measurement results of multiple links in a stably operating time–frequency
system are used for verification. The conclusion is as follows:

(1) Under the condition that the PFA is 10−3 and the PMD is 10−3, the typical value of
the MDB is as follows: the phase transition is 86 ps, the STD of noise deterioration is
88 ps, and the frequency bias is 2 × 10−15.

(2) Based on the typical value of the MDB and the calculated integrity monitoring param-
eters, the time difference measurement data of different links is used to construct a
simulation experiment of the time–frequency signal fault of the corresponding link.
The experimental results show that the algorithm in this paper can effectively detect,
identify, and alarm the phase transition fault, the noise deterioration fault, and the
frequency transition fault.

(3) Additionally, the model and the integrity monitoring parameters developed in this pa-
per exhibit high adaptability, making it directly applicable to the integrity monitoring
of time–frequency signals across various links.

(4) The traditional monitoring algorithm is used for fault simulation experiments, and
the experimental results are compared with the experimental results of the algorithm
in this paper. The experimental results show that the algorithm proposed in this
paper greatly improves the effectiveness, adaptability, and real-time performance of
time–frequency signal integrity monitoring.

Author Contributions: All authors contributed to the study conception and design. Y.G. designed
and performed the experiments, analyzed the data, and wrote the paper. Z.L., H.G., J.P. and G.O.
contributed to discussions and revisions. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded by the National Key R&D Program of China (grant number
2023YFC2205400), the National Natural Science Foundation of China (grant number U20A0193), and
the Science and Technology Innovation Program of Hunan Province (grant number 2021RC3073).

Data Availability Statement: The datasets generated and/or analyzed during the current study are
not publicly available due to the foundation requirements, but are available from the corresponding
author on reasonable request.

Conflicts of Interest: The authors declare that the research was conducted in the absence of any
commercial or financial relationships that could be construed as a potential conflicts of interest.

References
1. Zheng, S.; Gao, M.; Huang, Z.; Jin, X.; Li, K. Satellite integrity monitoring for satellite-based augmentation system: An improved

covariance-based method. Satell. Navig. 2022, 3, 9. [CrossRef]
2. Wang, Y.; Shen, J. Real-time integrity monitoring for a wide area precise positioning system. Satell. Navig. 2020, 1, 24. [CrossRef]
3. Chen, R.; Zhao, L. Multi-level autonomous integrity monitoring method for multi-source PNT resilient fusion navigation. Satell.

Navig. 2023, 4, 21. [CrossRef]
4. Zabalegui, P.; De Miguel, G.; Perez, A.; Mendizabal, J.; Goya, J.; Adin, I. A Review of the Evolution of the Integrity Methods

Applied in GNSS. IEEE Access 2020, 8, 45813–45824. [CrossRef]
5. Uwineza, J.-B.; Farrell, J.A. RAIM and Failure Mode Slope: Effects of Increased Number of Measurements and Number of Faults.

Sensors 2023, 23, 4947. [CrossRef]
6. Martin, A. RAIM Performance Analysis of Three Typical Low-Orbit Augmentation Constellations Combined with BDS Applica-

tions. Geomat. Inf. Sci. Wuhan Univ. 2023, 48, 678–686. [CrossRef]
7. Liu, C.; Cao, Y.; Zhang, G.; Gao, W.; Chen, Y.; Lu, J.; Liu, C.; Zhao, H.; Li, F. Design and Performance Analysis of BDS-3 Integrity

Concept. Remote Sens. 2021, 13, 2860. [CrossRef]

https://doi.org/10.1186/s43020-022-00070-6
https://doi.org/10.1186/s43020-020-00018-8
https://doi.org/10.1186/s43020-023-00111-8
https://doi.org/10.1109/ACCESS.2020.2977455
https://doi.org/10.3390/s23104947
https://doi.org/10.13203/j.whugis20210567
https://doi.org/10.3390/rs13152860


Remote Sens. 2024, 16, 1453 17 of 18

8. Meng, Q.; Zhuang, Y.; Li, S. Implementation and Performance Analysis of Constellation Dynamic Selection in Multi-Constellation
RAIM. Micromachines 2022, 13, 1455. [CrossRef]

9. Blanch, J.; Walter, T. An Evaluation of the Advanced RAIM Threat Model. In Proceedings of the 2023 IEEE/ION Position Location
and Navigation Symposium (PLANS), Monterey, CA, USA, 24–27 April 2023; pp. 408–413. [CrossRef]

10. Chen, L.; Gao, W.; Hu, Z.; Cao, Y.; Pei, L.; Liu, C.; Zhou, W.; Liu, X.; Chen, L.; Yang, R. BDS-3 Integrity Risk Modeling and
Probability Evaluation. Remote Sens. 2022, 14, 944. [CrossRef]

11. Liu, J.; Zhao, X. GNSS Fault Detection and Exclusion Based on Virtual Pseudorange-Based Consistency Check Method. Chin. J.
Electron. 2020, 29, 41–48. [CrossRef]

12. Wang, H.; Cheng, Y.; Cheng, C.; Li, S.; Li, Z. Research on Satellite Selection Strategy for Receiver Autonomous Integrity Monitoring
Applications. Remote Sens. 2021, 13, 1725. [CrossRef]

13. Ma, X.; Yu, K.; He, X.; Li, Q.; Zhao, L.; Wang, H. Development and evaluation of a generalized model of RAIM availability for
single-, dual- and multi-satellite faults. Meas. Sci. Technol. 2022, 33, 065022. [CrossRef]

14. Sun, R.; Xu, C.; Huang, G.; Lan, X.; Wu, M. Multiple epochs solution separation RAIM algorithm considering alarm time. Syst.
Eng. Electron. 2023, 45, 1469–1475. [CrossRef]

15. Yu, Z.; Zhang, Q.; Zhang, S.; Zheng, N.; Liu, K. A state-domain robust autonomous integrity monitoring with an extrapolation
method for single receiver positioning in the presence of slowly growing fault. Satell. Navig. 2023, 4, 20. [CrossRef]

16. Sun, Y. RAIM-NET: A Deep Neural Network for Receiver Autonomous Integrity Monitoring. Remote Sens. 2020, 12, 1503.
[CrossRef]

17. Bhattacharyya, S. A computationally efficient Kalman filter-based RAIM algorithm for aircraft navigation with GPS and NavIC.
Meas. Sci. Technol. 2023, 34, 125106. [CrossRef]

18. Ren, Z.; Lyu, D.; Gong, H.; Peng, J.; Huang, X.; Sun, G. Continuous time and frequency transfer using robust GPS PPP integer
ambiguity resolution method. GPS Solut. 2023, 27, 82. [CrossRef]

19. Zhang, W.; Wang, J. Integrity monitoring scheme for single-epoch GNSS PPP-RTK positioning. Satell. Navig. 2023, 4, 10.
[CrossRef]

20. Wang, S.; Zhan, X.; Xiao, Y.; Zhai, Y. Integrity Monitoring of PPP-RTK Based on Multiple Hypothesis Solution Separation. In
Proceedings of the 13th China Satellite Navigation Conference (CSNC)—Digital Economy and Intelligent Navigation, Beijing,
China, 25–27 May 2022; pp. 321–331. [CrossRef]

21. Zhang, W.; Wang, J.; El-Mowafy, A.; Rizos, C. Integrity monitoring scheme for undifferenced and uncombined multi-frequency
multi-constellation PPP-RTK. GPS Solut. 2023, 27, 68. [CrossRef]

22. Zhang, W.; Wang, J. GNSS PPP-RTK: Integrity monitoring method considering wrong ambiguity fixing. GPS Solut. 2024, 28, 30.
[CrossRef]

23. Gioia, C.; Borio, D. Multi-Layer Defences for Robust GNSS Timing Retrieval. Sensors 2021, 21, 7787. [CrossRef]
24. Gioia, C.; Borio, D. Interference Mitigation and T-RAIM for Robust GNSS Timing; European Commission, Joint Research Centre:

Ispra, Italy, 2021; pp. 70–79.
25. Gioia, C. T-RAIM Approaches: Testing with Galileo Measurements. Sensors 2023, 23, 2283. [CrossRef]
26. Tian, Y.; Wang, L.; Shu, B.; Han, Q.; Li, L.; Yi, C.; Xu, H. Evaluation of the availability of BDS ARAIM. Acta Geod. Cartogr. Sin.

2021, 50, 879–890.
27. Cozzens, T. FAA Researching Advanced RAIM for GPS + Galileo Approaches. GPS World 2023, 34, 11.
28. Patel, J.; Pervan, B. Accurate GPS LNAV parameters and clock biases for ARAIM offline monitoring. IEEE Trans. Aerosp. Electron.

Syst. 2023, 59, 4313–4332. [CrossRef]
29. Gao, W.; Yue, F.; Xu, Z.; Liu, P.; Li, D. Integrity Monitoring Methods of BDS Receiver Based on Inertial Assistance. Navig. Position

Timing 2021, 8, 107–113. [CrossRef]
30. Wu, K. Research on Autonomous Integrity Monitoring Technology of GNSS/INS Integrated Navigation Receiver. Master’s

Thesis, National University of Defense Technology, Changsha, China, 2021.
31. Xia, J.; Wang, S.; Jin, X.; Zeng, Q. Wi-Fi Assisted BDS Positioning Integrity Monitoring in Urban Cities. Geomat. Spat. Inf. Technol.

2022, 45, 15–17,23. [CrossRef]
32. Zheng, H.; Atia, M.; Yanikomeroglu, H. Analysis of a HAPS-Aided GNSS in Urban Areas Using a RAIM Algorithm. IEEE Open J.

Commun. Soc. 2023, 4, 226–238. [CrossRef]
33. Jiang, H.; Li, T.; Song, D.; Shi, C. An Effective Integrity Monitoring Scheme for GNSS/INS/Vision Integration Based on Error

State EKF Model. IEEE Sens. J. 2022, 22, 7063–7073. [CrossRef]
34. Li, Y.; Xue, Y.; Chen, R.; Liu, Y. Research on Integrity Monitoring Method of Time-Frequency Signal. In Proceedings of the 3rd

IEEE Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, China, 12–14
October 2018.

35. Wu, Y. Key Technologies of GNSS Time Scale. Ph.D. Thesis, National University of Defense Technology, Changsha, China, 2016.
36. Wu, Y.; Zhu, X.; Huang, Y.; Sun, G.; Ou, G. Optimal Observation Intervals for Clock Prediction Based on the Mathematical Model

Method. IEEE Trans. Instrum. Meas. 2016, 65, 132–143. [CrossRef]
37. Li, X. Precision Measurement of Time and Frequency Signals; Science Press: Beijing, China, 2010; pp. 15–17.
38. Baghdady, E.J.; Lincoln, R.N.; Nelin, B.D. Short-term frequency stability: Characterization, theory, and measurement. Proc. IEEE

1965, 53, 704–722. [CrossRef]

https://doi.org/10.3390/mi13091455
https://doi.org/10.1109/PLANS53410.2023.10139928
https://doi.org/10.3390/rs14040944
https://doi.org/10.1049/cje.2019.09.005
https://doi.org/10.3390/rs13091725
https://doi.org/10.1088/1361-6501/ac5951
https://doi.org/10.12305/j.issn.1001-506X.2023.05.23
https://doi.org/10.1186/s43020-023-00108-3
https://doi.org/10.3390/rs12091503
https://doi.org/10.1088/1361-6501/acec8e
https://doi.org/10.1007/s10291-023-01420-w
https://doi.org/10.1186/s43020-023-00099-1
https://doi.org/10.1007/978-981-19-2580-1_27
https://doi.org/10.1007/s10291-022-01391-4
https://doi.org/10.1007/s10291-023-01572-9
https://doi.org/10.3390/s21237787
https://doi.org/10.3390/s23042283
https://doi.org/10.1109/TAES.2023.3241897
https://doi.org/10.19306/j.cnki.2095-8110.2021.02.014
https://doi.org/10.3969/j.issn.1672-5867.2022.05.005
https://doi.org/10.1109/OJCOMS.2023.3234193
https://doi.org/10.1109/JSEN.2022.3154054
https://doi.org/10.1109/TIM.2015.2477158
https://doi.org/10.1109/PROC.1965.3995


Remote Sens. 2024, 16, 1453 18 of 18

39. Lesage, P.; Audoin, C. Characterization and measurement of time and frequency stability. Radio Sci. 1979, 14, 521–539. [CrossRef]
40. Stein, S.R. Precision Frequency Control. In Frequency and Time-Their Measurement and Characterization; Gerber, E.A., Ballato, A.,

Eds.; Academic Press: New York, NY, USA, 1985; pp. 191–416.
41. Li, Z. Time Frequency Measurement; Atomic Energy Press: Beijing, China, 2002; p. 296.
42. William, R.; David, H. Handbook of Frequency Stability Analysis. Available online: https://tsapps.nist.gov/publication/get_pdf.

cfm?pub_id=50505 (accessed on 22 December 2023).
43. Dai, Q.; Yi, Q.; Yi, J. Research on Pulse Distribution Technology of High Precision. GNSS World China 2011, 6, 28–31. [CrossRef]
44. Zhao, H.; Lv, Y.; Mei, P. A Digital High Precision Pulses Generation Method. Electron. Packag. 2017, 17, 23–25. [CrossRef]
45. Zhong, W.; Gong, D.; Gong, H. A phase compensation method for time-frequency signal. J. Time Freq. 2011, 34, 16–22.
46. Zhang, Y.; Yan, J. Compensation Method of Pressure Sensor Base on Minimum Two Multiplication Principle. Comput. Meas.

Control 2007, 12, 1870–1871, 1874. [CrossRef]
47. Zhu, J.; Cao, X.; Niu, Y.; Xiao, Z. Investigation of Lactone Chiral Enantiomers and Their Contribution to the Aroma of Longjing

Tea by Odor Activity Value and S-Curve. J. Agric. Food Chem. 2023, 71, 6691–6698. [CrossRef]
48. Kujawski, D.; Vasudevan, A.K.; Plano, S.; Gabellone, D. A method to estimate fatigue limit using (1/Nf)-S curve. Int. J. Fatigue

2024, 182, 108205. [CrossRef]
49. Zhan, X.; Su, X. GNSS Integrity Monitoring Theory and Assisted Performance Enhancement Technique; Science Press: Beijing, China,

2016; p. 46.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1029/RS014i004p00521
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=50505
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=50505
https://doi.org/10.13442/j.gnss.2011.06.018
https://doi.org/10.16257/j.cnki.1681-1070.2017.0131
https://doi.org/10.16526/j.cnki.11-4762/tp.2007.12.045
https://doi.org/10.1021/acs.jafc.3c00860
https://doi.org/10.1016/j.ijfatigue.2024.108205

	Introduction 
	Model and Method 
	Characteristic Analysis 
	Model Construction 
	Integrity Monitoring Algorithm 
	Algorithm Overview 
	Algorithm Implementation 

	Model Parameter Calculation Criteria 

	Data and Strategy 
	Experimental Data 
	Experimental Strategy 

	Experiment and Results Analysis 
	Calculation of Experimental Parameters 
	Calculation of Model Parameters 
	Calculation of Experimental Parameters 
	Calculation of Fault Simulation Parameters 

	Evaluation of Parameter Adaptability 
	Experimental Scene 
	Experimental Results 

	Comparative Experiment of Algorithm 
	Traditional Monitoring Algorithm 
	Experimental Scene and Parameter Setting 
	Experimental Results 


	Conclusions 
	References

